STMICROELECTRONICS STV1601A

STV1601A
SERIAL INTERFACE TRANSMISSION ENCODER
THIS IC CONTAINS ALL THE CIRCUITS NEEDED
FOR CONVERSION FROM PARALLEL DATA,
AND PARALLEL CLOCK, INTO SERIAL DATA.
APPLICATIONS ARE STRAIGHTFORWARD AS
ONLY A FEW EXTERNAL COMPONENTS ARE
NEEDED.
OTHER RELATED IC’s INCLUDE :
STV1602A, A SERIAL TRANSMISSION DECODER (WITH A BUILT-IN CABLE EQUALIZER
AND
PARALLEL-TO-SERIAL
CONVERSION)
STV1389AQ COAXIAL CABLE DRIVER
.
.
.
CODE LIMITATION
The word composing the Sync word listed above
shall not appear during data words.
This limitation includes 00 and FF in 8-bit use and
000 through 003 and 3FC through 3FF in 10-bit
use.
DESCRIPTION
The STV1601Ais a Hybrid IC encoder that converts
parallel data into serial data for a serial transmission line.
STRUCTURE
Hybrid IC
APPLICATIONS
ORDER CODE : STV1601A
D0X
D1Y
D1X
D2Y
D2X
D3Y
27
26
25
24
23
22
21 20
19
RSE
28
18
D3X
V CC
29
17
D4Y
PCX
30
16
D4X
PCY
31
15
D5Y
GND
32
14
D5X
D7Y
10
D7X
TN1
35
1st word
FFH
3FFH
PCK
36 37 NC
2nd word
00H
000H
3rd word
00H
000H
November 1992
2
GND
LST
Sync word conversion (8-bit timing reference signal
is internally converted to 10-bit).
1
3
4
5
6
7
8
9
1601A-01.EPS
11
10 bit
D8Y
D6X
8 bit
D8X
D6Y
12
D9Y
13
34
D9X
33
GND
FV
TRP
SY
Parallel-to-serial conversion
Scrambler : Modulo - 2 division by
G(x) = (x9 + x4 + 1) (x + 1)
PLL for serial clock generation
PLL lock detection
Sync word required with the parallel data
stream
D0Y
FUNCTIONS
V EE
PIN CONNECTIONS
V EE
APPLICATIONS EXAMPLES
Serial data transmission of digital television
signal 525-625 lines
4:2:2 component 270Mb/s (10-BIT)
4*FSC PAL composite 177Mb/s (10-BIT)
4*FSC NTSC composite 143Mb/s (10-BIT)
SX
.
.
..
.
..
..
.
PGA37
(Ceramic Package)
SERIAL DATA TRANSMISSION ENCODER
100 to 270 Mb/s
1/17
STV1601A
PIN DESCRIPTION
Pin
Symbol
N
Equivalent circuit
GND
Description
I/O
PLL lock detection. Is High
while PLL locked. If
unlocked, becomes irregular.
At free running (TN1 H)
turns Low
H
L
O
Clock output frequency
divided to 1/10 VCO output.
Used to check VCO free
running frequency
H
L
O
Standard
Min. Typ. Max. Unit
V CC
4kΩ
1
LST
1
-4.0
V
V
2kΩ
1601A-02.EPS
2kΩ
-1.0
VEE
GND
600Ω
PCK
36
-0.8
-1.6
V
V
-1.6
-2.4
V
V
1601A-03.EPS
36
600Ω
240Ω
V EE
GND
10 0Ω
SX
VCC
100Ω
30Ω
Differential Serial Output
Input parallel data is
converted to serial, then
from scrambled NRZ to
NRZI data
H
L
30Ω
4
3
4
SY
2kΩ
VEE
2/17
115Ω
2kΩ
1601A-04.EPS
VR3
O
1601A-01.TBL
VCC
3
STV1601A
PIN DESCRIPTION (continued)
Pin
Symbol
N
29
VCC
Equivalent circuit
29
1kΩ
D9X
D9Y
D8X
D8Y
D7X
D7Y
D6X
D6Y
D5X
D5Y
D4X
D4Y
D3X
D3Y
D2X
D2Y
D1X
D1Y
D0X
D0Y
6
7
V R3
2kΩ
V EE
1601A-05.EPS
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
Description
I/O
Parallel data and clock input
buffers power supply. When
this pin is connected to +5V,
parallel data clock turns to
TTL mode. When this pin is
connected to GND, parallel
data clock turns to ECL
mode.
-
Parallel input ports:
LSB : D0X or Y
MSB : D9X or Y
Signal : DnX
Return : DnY
For ECL mode, VCC shalll be
0V
H
L
ForTTL mode, VCC shall be
+5V
H
L
Standard
Min. Typ. Max. Unit
-1.0
-1.6
V
V
0.8
V
V
-4.0
V
V
2.0
GND
2kΩ
VCO range selection
H : high range 140 to 270MHz
L : low range 100 to 145MHz
H
L
28
RSE
70kΩ
10kΩ
V EE
1601A-02.TBL
10kΩ
-0.4
1601A-06.EPS
28
I
3/17
STV1601A
PIN DESCRIPTION (continued)
Pin
Symbol
N
Equivalent circuit
Description
I/O
Standard
Min. Typ. Max. Unit
VCC
2kΩ
30
2kΩ
PCX
Parallel clock (PCX) and its
return (PCY)
For ECL mode, VCC = 0
H
L
For TTL mode, VCC = +5V
H
L
30
31
V R3
-1.0
-1.6
V
V
0.8
V
V
2.0
PCY
2kΩ
VEE
1601A-07.EPS
31
I
2, 5,
32
GND
GND
26
VEE
-5V power supply
I/O buffer PLL
-5.2
-5.0
-4.8
V
27
VEE
-5V power supply
Logic part
-5.2
-5.0
-4.8
V
GND
33
VCC
0.022µF
FV
220Ω
1kΩ
1kΩ
34
0.1µF
1kΩ
1kΩ 10kΩ
V9
1601A-08.EPS
2µF
TRP
I
VCO input and phase
comparator output should be
connected to a parallel clock
frequency trap filter to
minimize jitter
O
Test mode :
High : VCO free running
condition (input disabled)
Low : Normal mode (input
enabled)
I
-3.9
V
-3.2
V
33
1kΩ
34
VCO free running frequency
adjustment :
VEE level gives the lowest
frequency. To adjust, set
TN1 high.
VE E
VCC
GND
12kΩ
20kΩ
35
TN1
1
-1.0
V
-4.5
V
VR3
4/17
1601A-03.TBL
VEE
1601A-09.EPS
4kΩ
STV1601A
BLOCK DIAGRAM
PCY PCX
31
30
TN1
FV
TRP
RSE
PCK
35
33
34
28
36
37 N.C.
LST
PHAS E
DETECT OR
PLL LOCK
DE TECTOR
1
TIMING
GENERATOR
VCO
2
GND
5
GND
3
NRZ ⊗
NRZI
SY
Serial Clock
SX
9
Parallel Load
Parallel Clock
4
X + X + 1 SCR AMBLER
4
32 GND
PAR ALELL TO SERIAL CONVER TER
26 V EE
000hex
DETECTO R
10-BIT X 3 WORD SHIFT REGISTER
1601A-10.EPS
25
D0Y
23 24
D0X
22
D1Y
20 21
D1X
19
D2Y
17 18
D2X
D7X
16
D3Y
D8Y
14 15
D3X
D8X
13
D4Y
D9Y
12
D4X
10 11
D5Y
9
D5X
8
D6Y
7
D6X
6
D7Y
29
V CC
D9X
27 V EE
Parameter
Supply Voltage
Supply Voltage
Input Voltage
Output Current
Operating Temperature
Storage Temperature
Allowable Power Dissipation
Value
-6
+6
VEE to VCC
-30
0 to 65
-50 to 125
2.0
Unit
V
V
V
mA
o
C
o
C
W
1601A-04.TBL
Symbol
VEE
VCC
VIN
IOUT
Toper
Tstg
PD
Value
-4.8 to -5.2
4.8 to 5.2
0 to 65
Unit
V
V
o
C
1601A-05.TBL
ABSOLUTE MAXIMUM RATINGS
RECOMMENDED OPERATING CONDITIONS
Symbol
VEE
VCC
Toper
Parameter
Supply Voltage
Supply Voltage *
Operating Temperature
* For TTL input. Voltages are given with respect to GND
ELECTRICAL CHARACTERISTICS (VEE = -5V, VCC = GND/+5V, TA = 25oC unless otherwise speciied)
Parameter
Test Conditions
Test Circuit Min.
Typ.
Max.
Unit
IEE
ICC
Supply Current 1
Supply Current 2
Figure 2
140
7
mA
mA
5/17
1601A-06.TBL
Symbol
DC CHARACTERISTICS
STV1601A
ELECTRICAL CHARACTERISTICS (VEE = -5V, VCC = GND/+5V, TA = 25oC unless otherwise speciied)
Symbol
Parameter
Test Conditions
Test Circuit Min.
VCC = GND
PCX, PCY, DnX, DnY
-1.0
VCC = +5V
PCX, PCY, DnX, DnY
2.0
Typ.
Max.
Unit
DC CHARACTERISTICS
VIH
VIL
VIH
VIL
IIH
IIL
VIH
VIL
VIH
VIL
VOH
VOL
VOH
VOL
VOH
VOL
Input Voltage
Input Current
-1.6
PCX, PCY, DnX, DnY
Figure 3
RSE
Figure 7
Input Voltage
TN1
Figure 6
-1
-0.4
-4.0
-1
-4.5
-0.8
-1.6
PCK
R P = 1kΩ
Output Voltage
0.8
5
+1
LST
IOH = -10µA, IOL = +10µA
Figure 5
-1.0
-4.0
-1.6
-2.4
SX, SY
R P = 220Ω
V
V
V
V
µA
µA
V
V
V
V
V
V
V
V
V
V
fMAX1
fMIN1
fMAX2
fMIN2
fHP1
fLP1
fHP2
fLP2
fHP3
fLP3
fOP1
fOP2
VCO
VCO
VCO
VCO
tjit
Jitter
Max. Oscillation Frequency 1
Min. Oscillation Frequency 1
Max. Oscillation Frequency 2
Min. Oscillation Frequency 2
RSE = ”H”
PLL Generator Frequency
30.0
14.0
15.0
RSE = ”L”
f signal = 270MHz
RSE = ”H”
PLL Pull in Range
Figure 4
10.0
Figure 1
27.7
25.5
f signal = 177MHz
RSE = ”H”
18.8
f signal = 143MHz
RSE = ”H”
15.0
RSE = ”H”
RSE = ”L”
f signal = 270MHz
RSE = ”H”
14.0
10.0
16.5
13.0
27.0
14.5
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
±0.25 nsec
Figure 8
1601A-07.TBL
AC CHARACTERISTICS
Tested through PCK : 1/10 of serial clock.
Parameter
Rise Time
Fall Time
Rise Time
Fall Time
Test Conditions
PCK
R P = 1kΩ
Test Circuit Min.
Figure 10
SX, SY
R P = 220Ω
Unit
nsec
nsec
nsec
nsec
1601A-08.TBL
Symbol
tr
tf
tr
tf
Max.
Unit
+5 + tc/2 nsec
+5
nsec
1601A-09.TBL
SWITCHING CHARACTERISTICS (VEE = -5V, VCC = GND/+5V, TA = 25oC unless otherwise speciied)
Typ.
0.8
1.4
0.7
0.7
Max.
TIMING RELATION OF INPUT CLOCK AND DATA
Symbol
tw
td
6/17
Parameter
Pulse Width
Delay Time
Test Conditions
PCX, PCY
PCX - Dn
Test Circuit
Figure11
Min.
-5 + tc/2
-5
Typ.
tc/2
1601A-11.EPS
SIGNAL
GENERATOR
HP8180A
0.1
VR
+1.4V
-1.3V
D9Y
D8X
D8Y
7
8
9
5
32
29
VCC
0.1
-5V
-5V
B
28
33
SW1
RSE
FV
4
3
1
A
22kΩ
10µF/10V
150pF
-5V
0.22µ H
0.1
220 Ω
PLL LOCK
DETECTOR
1kΩ
-5V
A
B
LOW RANGE
HIGH RANGE
-5V
220 Ω
220Ω
0.1
220Ω
SW2
ON : AF FREQUENCY ADJUST
FREQUENCY MONITOR
VCO RANGE SELECT
TN1 35
-5V
220Ω
TRP 34
SY
SX
LST
PCK 36
N.C. 37
26
VEE
27
0.1
10/16V
VEE -5V
10/16V
VCC
D.U.T.
STV1601A
GND
V R1
10kΩ
25 D0Y
24 D0X
23 D1Y
22 D1X
21 D2Y
20 D2X
19 D3Y
18 D3X
17 D4Y
16 D4X
15 D5Y
14 D5X
13 D6Y
12 D6X
11 D7Y
10 D7X
D9X
6
31 PCY
30 PCX
2
+5V
GND
VCO FREQUENCY
ADJUST
TTL
ECL
INPUT LEVEL
0.1
0.1
220Ω
-5V
150Ω
0.1
150Ω
STV1389AQ
0.1
0.1
75 Ω
75Ω
2
1
SERIAL
OUT
B
A
-5V
220 Ω
73Ω
SERIAL
IN
10kΩ
CABLE INPUT
DIGITAL INPUT
-5V
A
B
INPUT SELECT
0.1
220 Ω
220Ω
41pF
41pF
100Ω
10µF
SW2
SX
SY
10kΩ
VCO FREQUENCY V R2
ADJUST
-5V
0.1
35
-5V
0.1
QSW
TN1
D9
5
6
9
D8 10
D7 11
D6 12
D5 13
D4 14
D3 15
D2 16
D1 17
D0 18
PCK 19
EVR 21
SYN 20
7
DPR
100kΩ
36
37
1
22
FV
8
V EE
STV1602A
GND
24 27 30 23
RSE ESO ESI
34 DIY
33 DIX
25 AIY
26 AIX
28 QFS
31 MON
29 CX
32 ADS
4
3
2
0.1
10/16V
-5V
10µF
0.1
-5V
0.1
SIGNAL
ANALYZER
HP8182A
330Ω
LED
SW3
ON : AF FREQUENCY ADJUST
1kΩ x 8
22kΩ
-5V
TRS DETECTOR
SIGNAL
FREQENCY
MONITOR
1kΩ x 4
STV1601A
Figure 1 : Test Circuit Diagram Example
7/17
STV1601A
Figure 2
V CC +5V
V EE -5V
I CC
I EE
A
A
10/16V
10/16V
0.1
0.1
2
5
32
GND
29
27
V CC
26
V EE
1kΩ
PCX 30
220Ω
STV1601A
SX
3
SY
4
220Ω
FV
RSE
TN1
33
28
35
-5V
0.1µF
SW1
10µF
POSITION
ON
10kΩ
1601A-12.EPS
SW1
22kΩ
V R1
-5V
-5V
Figure 4
-5V
V1
V2
A1
A2
-0.8V
-1.6V
-1.6V
-0.8V
I IH
I IL
I IL
I IH
10/16V
0.1
2
5
32
GND
29
27
26
V EE
V CC
1kΩ
PCX 30
30 PCX
220Ω
STV1601A
31 PCY
SX
3
SY
4
220Ω
V1
12
FV
RSE
TN1
33
28
35
-5V
0.1µF
V2
10µF
SW1
SW2
B
22kΩ
V R1
8/17
POSITION
ANY
ON
A
10kΩ
-5V
SW1
SW2
-5V
-5V
1601A-13.EPS
11
STV1601A
Figure 4
-5V
10/16V
0.1
2
5
32 29
GND
27 26
FREQUENCY
MONITOR
V EE
V CC
1kΩ
PCX 30
220Ω
STV1601A
SX
3
SY
4
220Ω
FV
RSE
TN1
33
28
35
-5V
0.1µF
POSITION
SW1
A
B
SW2
ON ON
VCO RANGE HIGH LOW
10µF
SW1
SW2
B
A
10kΩ
1601A-14.EPS
22kΩ
V R1
-5V
-5V
-5V
Figure 5
-5V
V1
V2
V
-0.8V
-1.6V
-1.6V
-0.8V
VOH
VOL
10/16V
0.1
2
5
32 29
GND
27 26
V CC
V EE
30 PCX
31 PCY
STV1601A
LST
1
V
V2
FV
RSE
TN1
33
28
35
10µF
SW1
SW2
B
SW1
SW2
POSITION
ANY
OFF
A
10kΩ
22kΩ
1601A-15.EPS
V1
V R1
-5V
-5V
-5V
9/17
STV1601A
Figure 6
Figure 7
-5V
2
5
32 29
GND
31 TN1
-5V
10/16V
10/16V
0.1
0.1
27 26
V CC
2
VEE
5
32 29
GND
27 26
1kΩ
V1
PCX 30
30 PCX
28 RSE
STV1601A
LST
220Ω
STV1601A
V1
1
SX
3
SY
4
220Ω
V
31 PCY
-0.8V
FREQUENCY
MONITOR
V EE
V CC
FV
RSE
FV
TN1
33
28
33
35
-5V
0.1µF
-1.6V
10µF
10kΩ
1601A-16.EPS
10kΩ
V R1
-5V
22kΩ
VR1
-5V
-5V
1601A-17.EPS
SW2
Figure 8
-5V
10/16V
0.1
2
5
32
GND
29
27 26
V CC
VEE
TRIGGER
FREQUENCY
MONITOR
-5V
1kΩ
STV1389AQ
PCX 30
Parallel
clock
data
STV1601A
SX
0.1
SIGNAL
75Ω
3
1
220Ω
0.1
SY
FV
RSE
TN1
33
28
35
0.1
4
220Ω
220Ω
150Ω
150Ω
75Ω
-5V
-5V
0.1µF
0.1µF
2
10µF
SW2
SERIAL OUT
SIGNAL 270Mb/s
22kΩ
VR1
-5V
-5V
10/17
jitter = 1/2
1601A-18.EPS
t
10kΩ
STV1601A
Figure 9 : tr, tf Definition
serial data.
To ease clock extraction at the receiving end, serial
data is scrambled. To minimize polarity effect, serial
data is then converted to NRZI and output in differential mode.
80%
A PLL lock detection circuit only enables the serial
output when locked.
tr
1601A-19.EPS
20%
tf
Figure 10 : td, tW Definition
tc
t c /2
Parallel clock and data are such that the rising edge
of PCX should be at the middle of the data. A clock
having the same phase as PCX is internally generated in order to latch the data.
t c /2
1601A-20.EPS
50%
td
1. Phase relation between input parallel clock
and data
The phase relation between the parallel clock and
the data is shown in Figure 11. Both clock and data
are differential inputs
tw
DESCRIPTION
STV1601A internally generates a 10 times clock
frequency locked to the parallel input clock thanks
to a built-in PLLand converts input parallel data into
2. TTL input operation
Parallel clock and data can be either TTL or ECL
inputs. To use as TTL inputs VCC (Pin 29) shall be
connected to +5V. A fixed bias of +1.4V shall be
applied to PCY and DnY (n = 0 to 9). TTL signals
and their parallel clock will be provided through
1kW resistors to each ”X” input. These 1kW resistors are effective to minimize the influence of the
TTL input signals to the jitter characteristics of the
serial output signal. For 8-bit data, unused LSB(s)
must be fixed Low. Fixed bias value can be higher,
for example, 2.5V in case of CMOS inputs.
Figure 11 : Phase Relation between Clock and Data
PCX (Input)
1601A-21.EPS
DATA (Input)
PCX (Output)
Figure 12 : TTL Input Operation
STV1601A
PCX
PCY
D9X
D9Y
D0X
D0Y
29
30
31
5
7
26
25
1kΩ
Parallel
Clock
1kΩ
1kΩ
+ 1.4V for TTL
+ 2.5V for CMOS
Parallel
Data
1601A-22.EPS
+ 5V
V CC
TTL Parallel Signal
11/17
STV1601A
3. PLL block
PARALLEL CLOCK INPUT CONTROL
PLL, PLL lock detection and the various blocks of
the serial output control are shown in Figure 13.
When TN1 is connected to GND (set High), the
parallel clock input is disabled.
The VCO turns to free running conditions and its
frequency can be adjusted through FV.
This frequency decreases when the resistor value
between FV and VEE is reduced. Oscillation frequency monotoring is performed through PCK
which delivers a frequency divided by ten.
When PLL is locked, PLL and PCX input signal
phases are nearly matched. The RC network connected to TN1, temporarily, disables the parallel
clock in order to avoid mislocking problems.
VCO oscillation frequency range selection is available through RSE ; High : from 140 to 270MHz ;
Low : from 100 to 145MHz.
TRP (Pin 34) is the phase comparator output. To
minimize jitter, a trap circuit, consisting in a serial
tuned circuit at parallel clock frequency can be
used.
PLL LOCK DETECTION
The LST signal is generated by latching the incoming parallel clock by the internal one (which is 1/10
of the VCO frequency). LST is used as a PLL lock
detection signal and also controls the serial output.
If the parallel clock input is disabled (by means of
TN1), LST turns Low and the serial output is disabled as described in the previous section (SX
(Pin 3) = High, SY (Pin 4) = Low).
If the serial output has to be disabled while no
parallel clock input is provided, PCX must be set
Low and PCY must be set High.
4. Sync word
To convert serial data back to parallel, insertion of
some timing reference data indicating the parallel
data word boundary in the serial data is needed.
This, called TRS (Timing Reference Signal) in the
digital interface format, consists of the three consecutive words 3FFH, 000H, 000H.
Conversion to 10-bit TRS from 8-bit (TRS)
8-bit parallel data
8-bit parallel data can be converted into 10-bit data
by using the 8th bit as the MSB and by setting the
2 LSBs at logical states as shown in Figure 14.
Figure 13 : PLL and Serial Output Control Block
PCY PCX
TN1
TRP
PHASE
COMPARATOR
FV RSE
VCO
PCK
1/10 DIVIDER
”0”
LST
Q
D
Q
D
SX
Serial Clock
12/17
NRZ To NRZI
CONVERSION
SCRAMBLER
1601A-23.EPS
SY
STV1601A
Figure 16 : (x9 + x 4 +1) Basic Scrambling Circuit
Figure 14 : 8-bit Parallel Input Data (ECL level)
D1
6
21
D1X
D1Y
D0X
D0Y
22
23
24
25
D2
D3
D4
D5
D6
D7
D8
D9
1601A-26.EPS
STV1601A
Figure 17 : (x9 + x4 +1) Basic Scrambling Circuit
1601A-24.EPS
D1
V EE
D2
D3
D4
D6
D7
D8
D9
1601A-27.EPS
10k Ω
8-bit Parallel Data
D5
The conversion algorithm detects 2 successive
000H words and sets the two LSBs of the previous
word, which is supposed to be FF, according to the
standard.
To eliminate signal polarity of scrambled data, conversion from NRZ to NRZI is performed (Figures18
and 19).
Figure 10 : Conversion from 8-bit TRS to
10-bit TRS
Therefore, the polarity for output distribution or
receiving is not needed. This allows easy system
design. The NRZ to NRZI polynominal is x + 1.
Input Data
Fixed Data
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
Input Parallel Data
MSB
LSB
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
Parallel Data after Conversion
Conversion in the case of more than three successive ”000H” words.
If more than 3 consecutive words of 000 in D1
standard, or 4 consecutive words of 000 in D2
standard occur at the parallel input (illegal according to the standard), thus no proper operation is
possible.
5. Scrambling and NRZ to NRZI conversion
Figures 16 and 17 show the scrambling circuit, the
scrambling polynomial is as follows : x9 + x4 + 1.
1601A-25.EPS
Input Order
VCO temperature compensation and oscillation
frequency adjustment
VCO oscillation frequency depends on the temperature as shown in Figures 22 and 23 ”Representative characteristics examples”. Within the
normal range of operation, frequency increases
with temperature. FV voltage remains almost constant regardless of temperature. Figure 20 shows
an example of a temperature compensation circuit
using a diode (transistor with C-B diode short-circuited) and a resistor connected between FV and
VEE. Examplesof representativecharacteristics for
various temperatures are shown in Figures 22 and
23 concerning oscillation frequency and PLL pull-in
range (signal frequency 270, 177 and 143MHz).
VCO free running frequency adjustment
VCO free running frequency adjustment is performed at room temperature.
If TN1 is set High, VCO free runs. Wait for 5 to
10 minutes after turning power supply ON (warm
up time). While monitoring PCK output (Pin 36)
adjust the signal frequency (within ± 1%) with the
variable resistor connected between FV and VEE.
13/17
STV1601A
Figure 19 : Relation between NRZ and NRZI Signals
Time scale
NRZ signal
NRZI signal
NRZ to NRZI conversion
NRZI signal
1601A-29.EPS
NRZI inverted signal
NRZ to NRZI conversion
Figure 20 : VCO Temperature Compensation and Free Running Adjustment
STV1601A
TN1
TRP
FV
PCK
35
34
33
36
C1
10µF
Small signal
transistor
22kΩ
Frequency monitor
1kΩ
1601A-30.EPS
L1
10kΩ
V EE
Jitter trap
Since the internally generated serial clock is locked
to the incoming parallel clock, there exists periodic
jitter components which are generated from the
phase comparison process of the PLL.
A serial resonant circuit (trap) connected between
TRP (Pin 34) and VEE tuned at the parallel clock
frequency reduces effectively the fundamental
component of the jitter well below the specification
(±0.25ns).
Recommended values of C1 and L1 are given in
the following table.
14/17
RECOMMENDED VALUES OF THE TRAP CIRCUIT
COMPONENT
C1 (pF)
L1 (µH)
D1
150
0.2
STANDARD
D2
PAL
NTSC
240
300
0.3
0.4
An important remark in a practical implementation
is that TRP node is an input of a very sensitive
voltage-frequency converter (VCO) which can be
easily disturbed by any pick-up noise.
Hence, the trap circuit should be carefully located
and be kept as short as possible from the Pin 34 in
order to avoid noise problems.
1601A-31.EPS
Parallel Data IN
(ECL Balanced Pair)
18 D3X
17 D4Y
16 D4X
15 D5Y
14 D5X
13 D6Y
12 D6X
11 D7Y
10 D7X
D2X
20
19
D8X
D8Y
D3Y
8
9
STV1601A
GND
5
SY
4
D1X
22
21
23
D1Y
24
D0X
(ENCODERMODULE)
D9X
6
D2Y
D9Y
7
25
D0Y
SX
3
36
VCC 29
PCX 30
PCY 31
GND 32
FV 33
TRP 34
TN1 35
PCK
N.C. 37
VEE
27
26
RSE 28
(Rate select)
LST
1
V EE
GND
2
-5V
LOW
HIGH
4.7kΩ
10kΩ
C1
51 Ω
0.1
Q1
-5V
-5V
-5V
150Ω
D2
D1
Unit
PAL NTSC
C1 151 210 300 nF
L1 0.2 0.3 0.4 µH
Recommended values
Parallel
Clock In
51Ω
0.1
150Ω
-5V
0.1µF
STV1389AQ
0.1µF
0.1µ F
220Ω
(Return)
220Ω
-5V ((115mA typical)
D2 NTSC
D1, D2 PAL
2.2kΩ
L1
22kΩ
-5V
Test
Jumper
10kΩ
10µF/16V
1kΩ
Parallel Clock
Test Ponit
220Ω
0.1µF
1kΩ
0.1µF
220Ω
220Ω
For coaxial cable
processing
68Ω
68Ω
For signal
Processig
STV1601A
Figure 21 : Application Circuit Example
15/17
STV1601A
EXAMPLE OF REPRESENTATIVE CHARACTERISTICS
Figure 23 : VCO Oscillation Frequency versus
FV Pin Voltage
260
220
180
140
0.80
0.90
1.00
1.10
1.20
1.30
FV pin Voltage (V)
Figure 24 : Pull in Range and Free Run Frequency (270Mb/s)
VCO oscillationfrequency (MHz)
300
5°C
140
85°C
-15°C
130
120
110
100
0.90
1.00
1.10
1.20
1.30
21
27
Free run
26
25
Low pull in
5
25
45
65
85
Ambient temperature (°C)
Figure 26 : Pull in Range and Free Run Frequency (143Mb/s)
18
High pull in
17
16
15
Free run
14
13
12
5
25
45
65
Ambient temperature (°C)
85
1601A-36.EPS
Low pull in
11
-15
19
18
Free run
17
16
Low pull in
15
23
-15
High pull in
20
14
-15
5
25
45
Ambient temperature (°C)
65
85
1601A-35.EPS
Frequency (MHz)
28
1601A-34.EPS
Frequency (MHz)
65°C
Figure 25 : Pull in Range and Free Run Frequency (177Mb/s)
High pull in
29
24
Frequency (MHz)
150
RSE : ”L”
FV pin Voltage (V)
30
16/17
25°C
45°C
1601A-33.EPS
RSE: ”H”
25°C 5°C
45°C
65°C
-15°C
85°C
1601A-32.EPS
VCO oscillationfrequency (MHz)
Figure 22 : VCO Oscillation Frequency versus
FV Pin Voltage
STV1601A
PACKAGE MECHANICAL DATA
37 PINS - CERAMIC PGA
Dimensions in mm
3.8
25.4
0.5
0.2
Seating plane
1.15
0.15
1.2
0.46
0.1
0.05
4.2
2.54 x 9 = 22.86
0.25
Pin 28
Pin 36
Pin 37
2.032 max.
2.54
2.54
PM-PGA37.EPS
Pin 10
Bottom
View
25.4
2.54 x 9 = 22.86
0.5
0.25
Pin 19
Pin 1
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility
for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result
from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics.
Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all
information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life
support devices or systems without express written approval of SGS-THOMSON Microelectronics.
 1994 SGS-THOMSON Microelectronics - All Rights Reserved
Purchase of I2C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips
I2C Patent. Rights to use these components in a I2C system, is granted provided that the system conforms to
the I2C Standard Specifications as defined by Philips.
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
17/17