RFMD RF2643

RF2643
Preliminary
6
3V DUAL-BAND UPCONVERTER
AND DRIVER AMPLIFIER
Typical Applications
• TDMA/AMPS Cellular Systems
• PCS Systems
• CDMA/AMPS Cellular Systems
• Portable Battery-Powered Equipment
Product Description
1.00
0.90
0.60
0.24 typ
0.65
0.30
4 PLCS
2.10
sq.
3 0.20
6
0.75
0.50
12°
MAX
0.05
0.23
0.13
0.50
MIXERS
The RF2643 is a complete upconverter, dual-power
amplifier driver and attenuator designed for Cellular and
PCS systems. It is designed to upconverter and amplifies
RF signals while providing 22dB of linear gain control
range. It features digital control for the mixer and drivers.
The device features balanced IF inputs, single-ended LO
input and dual RF output for Cellular and PCS Systems
respectively. The IC is manufactured on an advanced Silicon Bi-CMOS process and packaged in a 20-pin,
4mmx4mm, leadless chip carrier with an exposed die
flag.
4.00
sq.
4 PLCS
Dimensions in mm.
Note orientation of package.
NOTES:
1 Shaded lead is Pin 1.
2 Pin 1 identifier must exist on top surface of package by identification
mark or feature on the package body. Exact shape and size is optional.
3
Dimension applies to plated terminal: to be measured between 0.02 mm
and 0.25 mm from terminal end.
4 Package Warpage: 0.05 mm max.
5 Die Thickness Allowable: 0.305 mm max.
Optimum Technology Matching® Applied
*
20
SiGe HBT
Si CMOS
19
18
17
16
CELL
ATT GND
14
CELL OUT
13
VGC
4
12
PCS OUT
5
11
PCS
ATT GND
IF-
*
6
7
8
9
10
PCS IN
IF+
PCS VCC
3
VCC
BYPASS
Bias Circuit
2
VCC MIX
LO
Logic
PCS
MIXOUT
1
*
• Gain Control Range of 22dB
• Driver Amplifier Select Pin (RF Output
Select)
• High Linearity in Mixer and Driver Amp
Ordering Information
RF2643
RF2643 PCBA
3V Dual-Band Upconverter and Driver Amplifier
Fully Assembled Evaluation Board
* Represents "GND".
Functional Block Diagram
Rev A1 010717
Features
• Power Down Control
*
15
PD
Package Style: LCC, 20-Pin, 4x4
• Single Supply 3.0V Operation
CELL IN
CELL GND
GaAs MESFET
CELL VCC
CELL
MIXOUT
üSi Bi-CMOS
GaAs HBT
SEL
Si BJT
RF Micro Devices, Inc.
7628 Thorndike Road
Greensboro, NC 27409, USA
Tel (336) 664 1233
Fax (336) 664 0454
http://www.rfmd.com
6-37
RF2643
Preliminary
Absolute Maximum Ratings
Parameter
Supply Voltage
Input RF Power
Operating Ambient Temperature
Storage Temperature
Parameter
Rating
Unit
-0.5 to +3.6
+3
-30 to +80
-30 to +150
VDC
dBm
°C
°C
Specification
Min.
Typ.
Max.
Caution! ESD sensitive device.
RF Micro Devices believes the furnished information is correct and accurate
at the time of this printing. However, RF Micro Devices reserves the right to
make changes to its products without notice. RF Micro Devices does not
assume responsibility for the use of the described product(s).
Unit
Condition
Upconverter
Unless stated otherwise, all data in this section is for both Cellular and PCS bands.
T=25°C, VCC =2.75V.
Both Bands
MIXERS
6
IF Frequency Range
LO Input Level
RF to LO Isolation
IF to RF Isolation
IF to LO Isolation
IF Input Impedance Differential
IF Input Return Loss Differential
LO Input Impedance
Single-Ended
LO Input Return Loss
Single-Ended
RF Output Impedance
Single-Ended
RF Output Return Loss
Single-Ended
100
-9
20
40
34
-6
30
250
-2
260
10
50
10
MHz
dBm
dBm
dBm
dBm
Ω
dB
Ω
dB
Ω
50
10
dB
Cellular Band
RF=835MHz, LO=990MHz @-3dBm
RF Output Frequency
LO Frequency Range
IF-RF Conversion Gain
Noise Figure
824
909
-2
Output IP3 (Linearity)
Output P1dB
LO to RF Output Leakage
10.5
-3
0
12
13
13.0
-1
-30
849
1099
2
13
14
MHz
MHz
dB
dB
dBm
dBm
dBm
PCS Band
RF Output Frequency
LO Frequency Range
IF-RF Conversion Gain
Noise Figure
Output IP3 (Linearity)
Output P1dB
LO to RF Output Leakage
6-38
Room Temp.
Over Temp.
See Note 1 (end of parameter table).
RF=1880MHz, LO =2030MHz@-3dBm
1850
1950
-2
8.5
-4
0
14.0
15.0
12.0
-2
-17
1910
2160
2
14.5
16.5
MHz
MHz
dB
dB
dBm
dBm
dBm
Room Temp.
Over Temp.
See Note 1 (end of parameter table).
Rev A1 010717
RF2643
Preliminary
Parameter
Specification
Min.
Typ.
Max.
Unit
Condition
Amplifiers/Attenuators
Unless stated otherwise, all data in this section is for both Cellular and PCS bands.
T=25°C, VCC =2.75V.
Both Bands
Gain Control Range
Gain Control Voltage
Gain Control Slope
Input Impedance
Single-Ended
Input Return Loss
Single-Ended
Output Impedance
Single-Ended
Output Return Loss
Single-Ended
RF Output Collector Current
Consumption
Upconverter Output to
Amplifier Input
17
0.8
20
15
50
1.9
35
10
dB
V
dB/V
Ω
dB
Ω
50
10
dB
10
mA
35
40
dB
824
5
7
-1
1
1850
4
6
-1
0
6
Any load.
RF Frequency Range
Maximum Gain
Noise Figure at Maximum Gain
Noise Figure Increase with
Attenuation
Input IP3 (Linearity)
849
9
2.5
0.75
MHz
dB
dB
dB/dB
dBm
MIXERS
Cellular Band
Amplifier + Attenuator
Amplifier + Attenuator
@ all gain levels
See Note 1 (end of parameter table).
PCS Band
RF Frequency Range
Maximum Gain
Noise Figure at Maximum Gain
Noise Figure Increase with
Attenuation
Input IP3 (Linearity)
1910
8
3.5
0.75
MHz
dB
dB
dB/dB
dBm
Control and Power
Consumption
Operating Voltage
Power Down Control
2.7
3.0
2.1
0.5
Power Down Pin Impedance
Band-Select Control (BS)
20
2.1
0.5
Band Select Pin Impedance
Device OFF Current
Total Current (PD =HIGH)
20
30
33
10
37
42
Amplifier + Attenuator
Amplifier + Attenuator
See Cellular Band Input IP3 Conditions.
Unless otherwise stated, all data in this section is for both Cellular and PCS bands.
V
V
V
kΩ
V
V
kΩ
uA
mA
mA
HIGH (Device ON)
LOW (Device OFF)
PCS (HIGH)
Cellular (LOW)
PD =LOW
Cellular, BS=LOW
PCS, BS=HIGH
NOTE 1: OIP3 was measured using a two-tone test. Each injected tone had an input power (at the RF output of the
upconverter) of -18dBm with a frequency spacing of 100kHz.
Rev A1 010717
6-39
RF2643
Pin
1
Function
PD
2
LO
Preliminary
Description
Interface Schematic
Power Down Control. When Logic “high” (greater than 2.1V) the device
is active and all circuits are operating. When logic “low” (less than 0.5V)
the device is inactive and all circuits are turned off.
VCC
Single-ended LO input pin. This pin is internally DC biased and should
be DC blocked if it is connected to a device with a DC level present.
The single-ended input impedance is 50Ω.
Bias
Bias
LO+
3
4
BYPASS
IF+
MIXERS
6
5
6
IFPCS
MIXOUT
LO-
Bypass pin for internal bias circuitry. Bypass with 10nF capacitor.
Balanced IF input pin. This pin is internally DC biased and should be
DC blocked if connected to a device with a DC level present. The differential input impedance is 260Ω. For single ended input operation, one
pin is used as an input and the other IF input is AC coupled to ground.
IF+
IF-
Bypass
Same as pin 4, except complementary input.
RF mixer output pin for the PCS system. PCS Mixout output impedance depends on the LC match and it is influenced by the bypass
capacitor at VCC2.
VCC MIX
PCS MIXOUT
7
VCC MIX
8
VCC
9
PCS VCC
Supply voltage pin for the mixer. External bypassing is required. The
trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect
immediately to ground plane.
Supply voltage pin for all the control and bias circuitry. A bias choke
inductor and RF bypass capacitor is required.
Supply voltage pin for the PCS driver. This pin is an open collector and
it will need a bias choke inductor and RF bypass. A parallel resistor to
the inductor improves stability of the driver amplifier.
PCS VCC
PCS IN
10
PCS IN
11
PCS
ATT GND
12
6-40
PCS OUT
Single-ended input for the PCS driver and attenuator. External matching is required. This pin is internally DC biased and should be DC
blocked if it is connected to a device with a DC level present.
PCS attenuator ground pin. This pin should be AC ground. The trace
length between the pin and the bypass capacitors should be minimized.
The value of the capacitor is chosen to resonate in the PCS band.
PCS
Attenuator
PCS OUT
PCS ATT-GND
PCS RF output pin. External matching is required. This pin is internally
DC biased and should be DC blocked if it is connected to a device with
a DC level present.
Rev A1 010717
RF2643
Preliminary
Pin
13
Function
VGC
14
CELL OUT
15
CELL
ATT GND
Description
Analog gain control for the driver amplifier. Valid control voltage ranges
from 0.8VDC to 1.9VDC.
Cellular RF output pin. External matching is required. External matching is required. This pin is internally DC biased and should be DC
blocked if it is connected to a device with a DC level present.
Cell attenuator ground pin. This pin should be AC ground. The trace
length between the pin and the bypass capacitors should be minimized.
The value of the capacitor is chosen to resonate in the PCS band.
16
CELL IN
Singled end input for the cellular driver and attenuator. External matching is required. This pin is internally DC biased and should be DC
blocked if it is connected to a device with a DC level present.
17
CELL GND
18
CELL VCC
19
SEL
This pin should be choke to ground. The inductor is used to adjust the
linearity of the cellular driver.
Supply voltage pin for the cell driver. This pin is an open collector and it
will need a bias choke inductor and RF bypass. A parallel resistor to the
inductor improves stability of the driver amplifier.
Band select control pin for the drivers. When Logic "high" (greater than
2.1V) the PCS band is active. When logic "low" (less than 0.5V) the
Cellular Band is active.
Interface Schematic
VGC
Cell
Attenuator
CELL OUT
CELL ATT-GND
CELL VCC
6
20
CELL
MIXOUT
RF mixer output pin for the PCS system. PCS Mixout output impedance depends on the LC match and it is influenced by the bypass
capacitor at VCC2.
MIXERS
CELL GND
SEL
VCC MIX
CELL MIXOUT
Pkg
Base
GND
Rev A1 010717
Ground connection. The backside of the package should be soldered to
a top side ground pad, which is connected to the ground plane. Additional ground connections are offered at each corner of the package for
flexibility in layout design.
6-41
RF2643
Preliminary
Application Schematic
Cell RF Filter
SEL
VCC1
2 pF
1.5 nH
10 nF
R*
390 Ω
VCC2
15 nH
12 nH
R*
91 Ω
0.1 uF
Die
Flag
10 nF
*
PD
20
19
18
17
16
Logic
1
*
13 pF
15
100 pF
3.3 nH
LO
Bias Circuit
6
2
10 nF
MIXERS
3
IF Filter
1 nF
14
CELL OUT
13
VGC
4.7 nH
4
12
5
11
1 nF
PCS OUT
C*
IF+
IF-
*
6
7
8
9
10
3 pF
*
C*
0.5 pF
* Represents "GND".
3 pF
10 nF
VCC2
3.9 nH
CC
0.1 uF
2.2 nH
R*
R*
240 Ω
33 nF
VCC MIX
10 nH
VCC1
33 nF
VCC
10 nF
PCS RF Filter
NOTES:
1. All components marked with "R*" are De-Q resistors.
2. All components marked with "C*" should be present, if IF SAW filter has a direct path to ground.
6-42
Rev A1 010717
RF2643
Preliminary
Evaluation Board Schematic
IF=155MHz
(Download Bill of Materials from www.rfmd.com.)
P1-1
P1-3
C19 +
1 uF
C20
33 nF
P1
1
VCC
2
GND
3
VCC MIX
P2-1
J8
CELL MIXOUT
P2-3
C21
33 nF
CON3
50 Ω µstrip
C24
DNI
P2
1
PD
2
GND
3
SEL
P3-1
CON3
SEL
C22 +
1 uF
P3
1
VGC
2
GND
3
GND
P4-1
P4-3
C23 +
1 uF
CON3
P4
1
VCC1
2
GND
3
VCC2
CON3
VCC1
C15
2 pF
L6
1.5 nH
C16
10 nF
R5
390 Ω
L7
15 nH
R1
91 Ω
C14
0.1 uF
50 Ω µstrip
VCC2
*
PD
50 Ω µstrip
J1
LO
C1
100 pF
20
19
1
T1
16
13
C13
1 nF
50 Ω µstrip
L4
4.7 nH
C11
1 nF
50 Ω µstrip
C9
0.1 uF
50 Ω µstrip
7
8
R4
DNI
R3
0Ω
9
10
*
C10
3 pF
2643400-
L8
2.2 nH
C26
33 nF
R2
240 Ω
C25
33 nF
C7
10 nF
J5
PCS OUT
11
6
C27
0.5 pF
L2
3.9 nH
CC
VGC
12
C4
10 nF
C6
3 pF
L5
3.3 nH
14
5
50 Ω µstrip
J6
CELL OUT
C12
13 pF
*
15
4
C3
10 nF
*
J3
PCS MIXOUT
17
2
C2
10 nF
50 Ω µstrip
18
Logic
3
J2
IF
6
Die
Flag
Bias Circuit
C17
10 nF
L1
12 nH
J7
CELL IN
MIXERS
C18 +
1 uF
J4
PCS IN
L3
10 nH
VCC1
C8
10 nF
VCC2
* Represents "GND".
VCC MIX
Rev A1 010717
VCC
6-43
RF2643
Preliminary
Evaluation Board Layout
Board Size 2.0” x 2.0”
Board Thickness 0.064”, Board Material FR-4, Multi-Layer
Assembly
Top
Inner 1 - Ground Plane 1
Inner 2 - Power Plane 1
MIXERS
6
6-44
Rev A1 010717
RF2643
Preliminary
Inner 3 - Ground Plane 2
Inner 4 - Power Plane 2
6
MIXERS
Back
Rev A1 010717
6-45
RF2643
Preliminary
Power Down Current
Cellular Current
1.4
32.0
Icc, -30º
31.8
Icc, 25º
1.2
Icc, 85º
31.6
31.4
Current (mA)
ICC (uA)
1.0
0.8
Icc, -30º
0.6
Icc, 25º
31.2
31.0
30.8
Icc, 85º
30.6
0.4
30.4
0.2
30.2
0.0
30.0
2.7
2.8
2.9
3.0
3.1
3.2
3.3
2.7
2.8
2.9
VCC (V)
6
Cellular Mixer Conversion Gain
@ LO = -10 dBm
3.1
3.2
3.3
3.2
3.3
Cellular Mixer Conversion Gain
@ LO = -3 dBm
1.5
1.5
Gain, -30º
Gain, -30º
MIXERS
3.0
VCC (V)
Gain, 25º
Gain, 25º
1.0
1.0
Gain, 85º
Gain, 85º
Conversion Gain (dB)
Conversion Gain (dB)
0.5
0.0
-0.5
0.5
0.0
-0.5
-1.0
-1.0
-1.5
-2.0
-1.5
2.7
2.8
2.9
3.0
3.1
3.2
3.3
2.7
2.8
2.9
VCC (V)
Cellular LO to RF Leakage
@ LO = -10 dBm
-32.5
-26.6
-33.0
-26.8
-27.0
-34.0
LO to RF Leakage (dBm)
LO to RF Leakage (dBm)
3.1
Cellular LO to RF Leakage
@ LO = -3 dBm
-33.5
-34.5
-35.0
-35.5
LO2RF, -30º
-36.0
LO2RF, 25º
-36.5
-27.2
-27.4
LO2RF, -30º
-27.6
LO2RF, 25º
-27.8
LO2RF, 85º
-28.0
LO2RF, 85º
-28.2
-37.0
-28.4
-37.5
-38.0
-28.6
2.7
2.8
2.9
3.0
VCC (V)
6-46
3.0
VCC (V)
3.1
3.2
3.3
2.7
2.8
2.9
3.0
3.1
3.2
3.3
VCC (V)
Rev A1 010717
RF2643
Preliminary
Cellular Mixer OIP3
@ LO = -10 dBm
Cellular Mixer OIP3
@ LO = -3 dBm
14.5
14.5
OIP3, -30º
14.0
14.0
OIP3, 25º
OIP3, 85º
13.5
13.5
13.0
OIP3 (dBm)
OIP3 (dBm)
13.0
12.5
12.0
12.5
12.0
11.5
11.5
11.0
11.0
10.5
10.5
10.0
10.0
OIP3, -30º
OIP3, 25º
OIP3, 85º
2.7
2.8
2.9
3.0
3.1
3.2
3.3
2.7
2.8
2.9
VCC (V)
3.0
3.1
3.2
3.3
VCC (V)
Cellular Mixer Noise Figure
@ LO = -10 dBm
6
Cellular Mixer Noise Figure
@ LO = -3 dBm
14.0
MIXERS
13.0
13.5
12.5
13.0
NF, 25º
12.5
Noise Figure (dB)
NF, 25º
Noise Figure (dB)
NF, -30º
NF, -30º
NF, 85º
12.0
11.5
NF, 85º
12.0
11.5
11.0
11.0
10.5
10.5
10.0
10.0
2.7
2.8
2.9
3.0
3.1
3.2
3.3
2.7
2.8
2.9
VCC (V)
Cellular Mixer Gain
@ 25°C
3.1
3.2
3.3
Cellular Mixer OIP3
@ 25°C
0.5
14.0
0.0
13.5
-0.5
13.0
-1.0
12.5
OIP3 (dBm)
Conversion Gain (dB)
3.0
VCC (V)
-1.5
-2.0
12.0
11.5
-2.5
11.0
-3.0
2.7 V
2.7 V
3V
-3.5
3V
10.5
3.3 V
-4.0
-10.0
-9.0
-8.0
-7.0
-6.0
VCC (V)
Rev A1 010717
-5.0
-4.0
-3.0
3.3 V
-2.0
10.0
-10.0
-9.0
-8.0
-7.0
-6.0
-5.0
-4.0
-3.0
-2.0
LO (dBm)
6-47
RF2643
Preliminary
Cellular Mixer Noise Figure
@ 25°C
Cellular Gain Driver
@ 25°C
12.2
10.0
2.7 V
2.7 V
3V
3V
5.0
3.3 V
12.0
3.3 V
0.0
Gain (dB)
Noise Figure (dB)
12.1
11.9
-5.0
11.8
-10.0
11.7
-15.0
11.6
-10.0
-20.0
-9.0
-8.0
-7.0
-6.0
-5.0
-4.0
-3.0
-2.0
0.7
0.9
1.1
1.3
LO (dBm)
6
1.5
1.7
Cellular Driver IIP3
@ 25°C
Cellular Noise Figure Driver
@ 25°C
9.0
18.0
2.7 V
2.7 V
MIXERS
8.0
16.0
3V
3.3 V
7.0
Noise Figure (dB)
IIP3 (dBm)
3V
3.3 V
14.0
6.0
5.0
4.0
3.0
12.0
10.0
8.0
6.0
2.0
4.0
1.0
2.0
0.0
0.0
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1
0.7
0.9
1.1
1.3
VGC (V)
1.5
1.7
1.9
2.1
1.7
1.9
2.1
VGC (V)
Cellular Gain Driver
@ 2.7 V
Cellular Driver IIP3
@ 2.7 V
10.0
9.0
Gain, -30º
IIP3, -30º
8.0
Gain, 25º
5.0
IIP3, 25º
Gain, 85º
IIP3, 85º
7.0
0.0
6.0
IIP3 (dBm)
Gain (dB)
1.9
VGC (V)
-5.0
-10.0
5.0
4.0
3.0
2.0
-15.0
1.0
-20.0
0.0
0.5
1.0
1.5
VGC (V)
6-48
2.0
0.7
0.9
1.1
1.3
1.5
VGC (V)
Rev A1 010717
RF2643
Preliminary
Cellular Driver Noise Figure
@ 2.7 V
PCS Current
18.0
33.5
Icc, -30º
NF, -30º
16.0
33.3
NF, 25º
Icc, 85º
33.1
NF, 85º
14.0
Icc, 25º
Current (mA)
Noise Figure (dB)
32.9
12.0
10.0
8.0
32.7
32.5
32.3
6.0
32.1
4.0
31.9
2.0
31.7
0.0
31.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1
2.7
2.8
2.9
VGC (V)
3.0
3.1
3.2
3.3
VCC (V)
PCS Mixer Conversion Gain
@ LO = -10 dBm
6
PCS Mixer Conversion
@ LO = -3 dBm
1.0
MIXERS
1.5
1.5
1.0
0.5
Conversion Gain (dB)
Conversion Gain (dB)
0.5
0.0
-0.5
Gain, -30º
-1.0
Gain, 25º
Gain, 85º
0.0
-0.5
Gain, -30º
Gain, 25º
Gain, 85º
-1.0
-1.5
-1.5
-2.0
-2.5
-2.0
2.7
2.8
2.9
3.0
3.1
3.2
2.7
3.3
2.8
2.9
VCC (V)
3.0
3.1
3.2
3.3
3.20
3.30
VCC (V)
PCS LO to RF Leakage
@ LO = -10 dBm
PCS LO to RF Leakage
@ LO = -3 dBm
-21.3
-17.65
-21.4
-17.70
-21.5
-17.75
-21.6
LO to RF Leakage (dBm)
LO to RF Leakage (dBm)
LO2RF, -30º
LO2RF, -30º
-21.7
LO2RF, 25º
-21.8
LO2RF, 85º
-21.9
-22.0
-22.1
-17.85
-17.90
-17.95
-18.00
-18.05
-18.10
-22.3
-18.15
2.7
2.8
2.9
3.0
VCC (V)
Rev A1 010717
3.1
3.2
3.3
LO2RF, 85º
-17.80
-22.2
-22.4
LO2RF, 25º
-18.20
2.70
2.80
2.90
3.00
3.10
VCC (V)
6-49
RF2643
Preliminary
PCS Mixer OIP3
@ LO = -10 dBm
PCS Mixer OIP3
@ LO = -3 dBm
13.0
13.0
12.5
12.5
12.0
12.0
11.5
11.0
10.5
OIP3 (dBm)
OIP3 (dBm)
11.5
OIP3, -30º
OIP3, 25º
10.0
OIP3, -30º
11.0
OIP3, 25º
OIP3, 85º
10.5
OIP3, 85º
9.5
10.0
9.0
9.5
8.5
8.0
9.0
2.7
2.8
2.9
3.0
3.1
3.2
2.7
3.3
2.8
2.9
VCC (V)
6
3.0
3.1
3.2
3.3
VCC (V)
PCS Mixer Noise Figure
@ LO = -10 dBm
PCS Mixer Noise Figure
@ LO = -3 dBm
15.0
17.0
MIXERS
16.5
14.5
16.0
NF, -30º
Noise Figure (dB)
Noise Figure (dB)
15.5
NF, -30º
15.0
NF, 25º
14.5
NF, 85º
14.0
14.0
NF, 25º
NF, 85º
13.5
13.0
13.5
13.0
12.5
12.5
12.0
12.0
2.7
2.8
2.9
3.0
3.1
3.2
2.7
3.3
2.8
2.9
VCC (V)
3.0
3.1
3.2
3.3
VCC (V)
PCS Mixer Conversion Gain
@ 25°C
PCS Mixer OIP3
@ 25°C
0.0
12.6
2.7 V
12.4
-0.1
3V
3.3 V
12.2
12.0
OIP3 (dBm)
Conversion Gain (dB)
-0.2
-0.3
-0.4
11.8
11.6
-0.5
11.4
2.7 V
-0.6
3V
11.2
3.3 V
-0.7
-10.0
-9.0
-8.0
-7.0
-6.0
LO (dBm)
6-50
-5.0
-4.0
-3.0
-2.0
11.0
-10.0
-9.0
-8.0
-7.0
-6.0
-5.0
-4.0
-3.0
-2.0
LO (dBm)
Rev A1 010717
RF2643
Preliminary
PCS Mixer Noise Figure
@ 25°C
PCS Gain Driver
@ 25°C
14.3
10.0
2.7 V
14.2
2.7 V
3V
3V
5.0
3.3 V
14.1
3.3 V
0.0
13.9
Gain (dB)
Noise Figure (dB)
14.0
13.8
13.7
13.6
-5.0
-10.0
13.5
13.4
-15.0
13.3
13.2
-10.0
-20.0
-9.0
-8.0
-7.0
-6.0
-5.0
-4.0
-3.0
-2.0
0.7
0.9
1.1
LO (dBm)
1.3
1.5
1.7
1.9
2.1
VGC (V)
PCS IIP3 Driver
@ 25°C
6
PCS Noise Figure Driver
@ 25°C
14.0
18.0
3V
16.0
3V
12.0
MIXERS
2.7 V
2.7 V
3.3 V
3.3 V
14.0
Noise Figure (dB)
IIP3 (dBm)
10.0
8.0
6.0
12.0
10.0
8.0
6.0
4.0
4.0
2.0
2.0
0.0
0.0
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1
0.7
0.9
1.1
VGC (V)
1.5
1.7
1.9
2.1
1.7
1.9
2.1
VGC (V)
PCS Gain Driver
@ 2.7 V
PCS IIP3 Driver
@ 2.7 V
10.0
12.0
IIP3, -30º
Gain, -30º
IIP3, 25º
Gain, 25º
5.0
10.0
Gain, 85º
IIP3, 85º
8.0
IIP3 (dBm)
0.0
Gain (dB)
1.3
-5.0
6.0
-10.0
4.0
-15.0
2.0
-20.0
0.0
0.7
0.9
1.1
1.3
1.5
VGC (V)
Rev A1 010717
1.7
1.9
2.1
0.7
0.9
1.1
1.3
1.5
VGC (V)
6-51
RF2643
Preliminary
PCS Noise Figure Driver
@ 2.7 V
18.0
NF, -30º
16.0
NF, 25º
NF, 85º
Noise Figure (dB)
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1
VGC (V)
MIXERS
6
6-52
Rev A1 010717