IRF IR2302S

Data Sheet No. PD60207 Rev.A
IR2302(S) & (PbF)
HALF-BRIDGE DRIVER
Packages
Features
• Floating channel designed for bootstrap operation
•
•
•
•
•
•
•
•
•
•
•
Fully operational to +600V
Tolerant to negative transient voltage
dV/dt immune
Gate drive supply range from 5 to 20V
Undervoltage lockout for both channels
3.3V, 5V and 15V input logic compatible
Cross-conduction prevention logic
Matched propagation delay for both channels
High side output in phase with IN input
Logic and power ground +/- 5V offset.
Internal 540ns dead-time
Lower di/dt gate driver for better noise
immunity
Shut down input turns off both channels
8-Lead SOIC also available LEAD-FREE (PbF).
8-Lead SOIC
IR2302(S)
(Also available LEAD-FREE (PbF))
8-Lead PDIP
IR2302
2106/2301//2108//2109/2302/2304 Feature Comparison
#$%$
#$%$
9
"
*
*"
=
="
Description
7"
:;7"<7µ
7"
!
&''!
!
&''!
!
&''!
$'
9
The IR2302(S) are high voltage, high speed
:;7"<7µ
power MOSFET and IGBT drivers with depen9
#$%$
"
!
dent high and low side referenced output
channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction.
The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers
feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can
be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to
600 volts.
Typical Connection
&
&
&
&>
$
$
#
'
'
&'
!
%
(Refer to Lead Assignments for
correct configuration). This/
These diagram(s) show electrical connections only. Please refer to our Application Notes
and DesignTips for proper circuit board layout.
www.irf.com
%?
IR2302
1
IR2302(S) & (PbF)
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured
under board mounted and still air conditions.
Symbol
Definition
Min.
Max.
Units
VB
High side floating absolute voltage
-0.3
625
VS
High side floating supply offset voltage
VB - 25
VB + 0.3
VHO
High side floating output voltage
VS - 0.3
VB + 0.3
VCC
Low side and logic fixed supply voltage
-0.3
25
VLO
Low side output voltage
-0.3
VCC + 0.3
VIN
Logic input voltage (IN & SD)
COM - 0.3
VCC + 0.3
dVS/dt
PD
RthJA
Allowable offset supply voltage transient
Package power dissipation @ TA ≤ +25°C
Thermal resistance, junction to ambient
—
50
(8 Lead PDIP)
—
1.0
(8 Lead SOIC)
—
0.625
(8 Lead PDIP)
—
125
(8 Lead SOIC)
—
200
TJ
Junction temperature
—
150
TS
Storage temperature
-50
150
TL
Lead temperature (soldering, 10 seconds)
—
300
V
V/ns
W
°C/W
°C
Recommended Operating Conditions
The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the
recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential.
Symbol
Min.
Max.
VB
High side floating supply absolute voltage
Definition
VS + 5
VS + 20
VS
High side floating supply offset voltage
Note 1
600
VS
VB
5
20
VHO
High side floating output voltage
VCC
Low side and logic fixed supply voltage
VLO
Low side output voltage
VIN
Logic input voltage (IN & SD)
TA
Ambient temperature
0
VCC
COM
VCC
-40
150
Units
V
°C
Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip
DT97-3 for more details).
2
www.irf.com
IR2302(S) & (PbF)
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, CL = 1000 pF, and TA = 25°C unless otherwise specified.
Symbol
Definition
Min.
ton
Turn-on propagation delay
550
750
950
VS = 0V
toff
Turn-off propagation delay
—
200
280
VS = 0V or 600V
tsd
Shut-down propagation delay
—
200
280
MT
Delay matching, HS & LS turn-on/off
—
0
50
Turn-on rise time
—
130
220
tr
tf
DT
MDT
Typ.
Max. Units Test Conditions
Turn-off fall time
—
50
80
Deadtime: LO turn-off to HO turn-on(DTLO-HO) &
HO turn-off to LO turn-on (DTHO-LO)
400
540
680
Deadtime matching = DTLO - HO - DTHO-LO
—
0
60
nsec
VS = 0V
VS = 0V
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15V and TA = 25°C unless otherwise specified. The VIL, VIH and IIN parameters are referenced to
COM and are applicable to the respective input leads: IN and SD. The VO, IO and Ron parameters are referenced to COM
and are applicable to the respective output leads: HO and LO.
Symbol
Definition
VIH
Logic “1” input voltage for HO & logic “0” for LO
VIL
Min. Typ. Max. Units Test Conditions
2.9
—
—
VCC = 10V to 20V
Logic “0” input voltage for HO & logic “1” for LO
—
—
0.8
VCC = 10V to 20V
VSD,TH+
SD input positive going threshold
2.9
—
—
VCC = 10V to 20V
VSD,TH-
SD input negative going threshold
—
—
0.8
VOH
High level output voltage, VBIAS - VO
—
0.8
1.4
VOL
Low level output voltage, VO
—
0.3
0.6
IO = 20 mA
ILK
Offset supply leakage current
—
—
50
VB = VS = 600V
IQBS
Quiescent VBS supply current
20
60
100
IQCC
Quiescent VCC supply current
0.4
1.0
1.6
IIN+
Logic “1” input bias current
—
5
20
IIN-
Logic “0” input bias current
—
—
2
VCCUV+
VCC and VBS supply undervoltage
3.3
4.1
5
VBSUV+
positive going threshold
VCCUV-
VCC and VBS supply undervoltage
3
3.8
4.7
VBSUV-
negative going threshold
VCCUVH
Hysteresis
0.1
0.3
—
IO+
Output high short circuit pulsed vurrent
120
200
—
IO-
Output low short circuit pulsed current
250
350
—
V
VCC = 10V to 20V
IO = 20 mA
µA
mA
µA
VIN = 0V or 5V
VIN = 0V or 5V
IN = 5V, SD = 0V
IN = 0V, SD = 5V
V
VBSUVH
www.irf.com
mA
VO = 0V, PW ≤ 10 µs
VO = 15V,PW ≤ 10 µs
3
IR2302(S) & (PbF)
Functional Block Diagrams
VB
UV
DETECT
HO
R
VSS/COM
LEVEL
SHIFT
IN
HV
LEVEL
SHIFTER
R
PULSE
FILTER
S
VS
PULSE
GENERATOR
VCC
DEADTIME
UV
DETECT
+5V
SD
4
Q
VSS/COM
LEVEL
SHIFT
DELAY
LO
COM
www.irf.com
IR2302(S) & (PbF)
Lead Definitions
Symbol Description
IN
Logic input for high and low side gate driver outputs (HO and LO), in phase with HO
SD
VB
High side floating supply
Logic input for shutdown
HO
High side gate drive output
VS
High side floating supply return
VCC
Low side and logic fixed supply
LO
Low side gate drive output
COM
Low side return
Lead Assignments
1
VCC
VB
2
IN
HO
7
3
SD
VS
6
COM
LO
5
4
www.irf.com
8
VCC
VB
8
2
IN
HO
7
3
SD
VS
6
4
COM
LO
5
1
8 Lead PDIP
8 Lead SOIC
(Also available LEAD-FREE (PbF)
IR2302
IR2302S
5
IR2302(S) & (PbF)
$
$_%`
7]
7]
'
$_#`
qq
=]
#
%
#
%
Figure 1. Input/Output Timing Diagram
q
=]
]
]
Figure 2. Switching Time Waveform Definitions
7]
7]
$
=]
'
#
7]
%
%#
]
#%
=]
#
%
Figure 3. Shutdown Waveform Definitions
6
]
=]
!^
%#
#%
Figure 4. Deadtime Waveform Definitions
www.irf.com
IR2302(S) & (PbF)
$ _%`
7]
7]
$ _#`
%
#
]
!
!
=]
%
#
1300
Turn-on Propagation Delay (ns)
Turn-on Propagation Delay (ns)
Figure 5. Delay Matching Waveform Definitions
1100
900
700
500
M ax.
Typ.
M in.
300
-50
-25
0
25
50
75
100 125
Temperature (oC)
Figure 6A. Turn-on Propagation Delay
vs. Tem perature
www.irf.com
1500
1300
M ax.
1100
Typ.
900
700
M in.
500
300
5
10
15
20
Supply Voltage (V)
Figure 6B. Turn-on Propagation Delay
vs. Supply Voltage
7
1300
Turn-off Propagation Delay (ns)
Turn-on Propagation Delay (ns)
IR2302(S) & (PbF)
1100
M ax.
900
Typ.
700
M in.
500
300
3
6
9
12
500
400
300
M ax.
200
Typ.
100
15
0
-50
-25
0
700
600
M ax.
400
Typ.
300
200
100
10
15
Supply Voltage (V)
Figure 7B. Turn-off Propagation Delay
vs. Supply Voltage
8
75
100 125
Figure 7A. Turn-off Propagation Delay
vs. Tem perature
Turn-off Propagation Delay (ns)
Turn-off Propagation Delay (ns)
Figure 6C. Turn-on Propagation Delay
vs. Input Voltage
5
50
Temperature (oC)
Input Voltage (V)
500
25
20
400
350
300
M ax.
250
Typ.
200
150
100
3
6
9
12
15
Input Voltage (V)
Figure 7C. Turn-off Propagation Delay
vs. Input Voltage
www.irf.com
Shut-down Propagation Delay (ns)
Shut-down Propagation Delay (ns)
IR2302(S) & (PbF)
500
400
300
M ax.
200
Typ.
100
0
-50
-25
0
25
50
75
700
600
500
M ax.
400
300
Typ.
200
100
100 125
5
10
Temperature (oC)
Figure 8A. Shut-dow n Propagation Delay
vs. Tem perature
20
Figure 8B. Shut-dow n Propagation Delay
vs. Supply Voltage
400
500
Turn-on Rise Time (ns)
Shut-down Propagation Delay (ns)
15
Supply Voltage (V)
350
300
M ax.
250
Typ.
200
150
100
3
6
9
12
15
Input Voltage (V)
Figure 8C. Shut-dow n Propagation Delay
vs. Input Voltage
www.irf.com
400
300
200
M ax.
100
Typ.
0
-50
-25
0
25
50
75
100 125
Temperature (oC)
Figure 9A. Turn-on Rise Tim e
vs. Tem perature
9
IR2302(S) & (PbF)
200
600
500
Turn-off Fall Time (ns)
Turn-on Rise Time (ns)
700
M ax.
400
300
Typ.
200
100
10
15
100
M ax.
50
Typ.
0
-50
0
5
150
20
-25
25
50
75
100 125
o
Temperature ( C)
Supply Voltage (V)
Figure 9B. Turn-on Rise Tim e
vs. Supply Voltage
Figure 10A. Turn-off Fall Time
vs. Tem perature
200
1000
150
Deadtime (ns)
Turn-off Fall Time (ns)
0
M ax.
100
Typ.
50
0
5
10
15
20
800
M ax.
600
Typ.
400
M in.
200
-50 -25
0
25
50
75
100 125
o
Supply Voltage (V)
Figure 10B. Turn-off Fall Tim e
vs. Supply Voltage
10
Temperature ( C)
Figure 11A. Deadtim e
vs. Tem perature
www.irf.com
IR2302(S) & (PbF)
7
1000
Deadtime ( s)
Deadtime (ns)
6
M ax.
800
Typ.
600
M in.
400
200
M in.
3
2
0
5
10
15
0
20
50
100
150
Supply Voltage (V)
RDT (KΩ)
Figure 11B. Deadtim e
vs. Supply Voltage
Figure 11C. Deadtime vs. RDT
6
200
6
Logic "1" Input Voltage (V)
Logic "1" Input Voltage (V)
Typ.
4
1
0
5
4
M ax.
3
2
1
0
-50
M ax.
5
5
4
M ax.
3
2
1
0
-25
0
25
50
75
100
Temperature ( oC)
Figure 12A. Logic "1" Input Voltage
vs. Tem perature
www.irf.com
125
5
10
15
20
Supply Voltage (V)
Figure 12B. Logic "1" Input Voltage
vs. Supply Voltage
11
IR2302(S) & (PbF)
6
Logic "0" Input Voltage (V)
Logic "0" Input Voltage (V)
6
5
4
3
2
1
M in.
0
-50
5
4
3
2
1
M in.
0
-25
0
25
50
75
100
5
125
10
Figure 13B. Logic "0" Input Voltage
vs. Supply Voltage
6
5
4
M ax.
2
1
0
-25
0
25
50
75
100
125
Temperature ( oC)
Figure 14A. SD Input Positive Going Threshold
vs. Tem perature
12
SD Input Positive Going Threshold (V
SD Input Positive Going Threshold (V
Figure 13A. Logic "0" Input Voltage
vs. Temperature
-50
20
Supply Voltage (V)
Temperature (oC)
3
15
6
5
4
M ax.
3
2
1
0
5
10
15
20
Supply Voltage (V)
Figure 14B. SD Input Positive Going Threshold
vs. Supply Voltage
www.irf.com
6
5
4
3
2
M in.
1
0
-50
-25
0
25
50
75
100
125
Temperature (oC)
4
3
2
M ax.
1
Typ.
0
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 16A. High Level Output Voltage
vs. Tem perature
www.irf.com
6
5
4
3
2
1
M in.
0
5
10
15
20
Supply Voltage (V)
Figure 15B. SD Input Negative Going Threshold
vs. Supply Voltage
High Level Output Voltage (V)
High Level Output Voltage (V)
Figure 15A. SD Input Negative Going Threshold
vs. Tem perature
SD Input Negative Going Threshold (V
SD Input Negative Going Threshold (V)
IR2302(S) & (PbF)
6
5
4
M ax.
3
2
Typ.
1
0
5
10
15
20
Supply Voltage (V)
Figure 16B. High Level Output Voltage
vs. Supply Voltage
13
2.0
Low Level Output Voltage (V)
Low Level Output Voltage (V)
IR2302(S) & (PbF)
1.5
1.0
0.5
M ax.
Typ.
0.0
-50
-25
0
25
50
75
2.0
1.5
M ax.
1.0
0.5
Typ.
0.0
5
100 125
10
Figure 17A. Low Level Output Voltage
vs. Tem perature
Figure 17B. Low Level Output Voltage
vs. Supply Voltage
500
400
300
200
100
M ax.
0
-50
-25
0
25
50
75
100 125
Figure 18A. Offset Supply Leakage Current
vs. Tem perature
Offset Supply Leakage Current (mA)
Offset Supply Leakage Current ( A)
20
Supply Voltage (V)
Temperature (oC)
14
15
Temperature ( C)
o
500
400
300
200
100
M ax.
0
100
200
300
400
500
600
Offset Supply Voltage (V)
Figure 18B. Offset Supply Leakage Current
vs. Offset Supply Voltage
www.irf.com
200
150
100
M ax.
50
Typ.
M in.
0
-50
-25
0
25
50
75
100 125
Quiescent V BS Supply Current ( A)
Quiescent VBS Supply Current ( A)
IR2302(S) & (PbF)
200
150
100
M ax.
50
Typ.
M in.
0
5
10
Temperature ( C)
3.0
2.5
2.0
M ax
1.5
Typ.
1.0
0.0
-50
M in.
-25
0
25
50
75
100 125
Temperature (oC)
Figure 20A. Quiescent V CC Supply Current
vs. Tem perature
www.irf.com
20
Figure 19B. Quiescent V BS Supply Current
vs. V BS Supply Voltage
Quiescent VCC Supply Current (mA)
Quiescent VCC Supply Current (mA)
Figure 19A. Quiescent V BS Supply Current
vs. Tem perature
0.5
15
V BS Supply Voltage (V)
o
3
2.5
2
1.5
1
M ax.
Typ.
0.5
M in.
0
5
10
15
V CC Supply Voltage (V)
20
Figure 20B. Quiescent V CC Supply Current
vs. V CC Supply Voltage
15
Logic "1" Input Bias Current (mA)
Logic "1" Input Bias Current ( A)
IR2302(S) & (PbF)
60
50
40
30
20
M ax.
10
Typ.
0
-50
-25
0
25
50
75
50
40
30
M ax.
20
10
Typ.
0
100 125
5
10
Temperature (oC)
5
4
3
M ax.
2
1
-25
0
25
50
75
100
125
Temperature ( oC)
Figure 22A. Logic "0" Input Bias Current
vs. Tem perature
16
20
Figure 21B. Logic "1" Input Bias Current
vs. Supply Voltage
Logic "0" Input Bias Current (mA)
Logic "0" Input Bias Current ( A)
Figure 21A. Logic "1" Input Bias Current
vs. Tem perature
0
-50
15
Supply Voltage (V)
5
4
3
M ax.
2
1
0
5
10
15
Supply Voltage (V)
20
Figure 22B. Logic "0" Input Bias Current
vs. Supply Voltage
www.irf.com
6
M ax.
5
Typ.
4
M in.
3
2
-50
-25
0
25
50
75
100 125
o
Temperature ( C)
V CC and VBS Undervoltage Threshold (-)
(V)
V CC and VBS Undervoltage Threshold (+)
(V)
IR2302(S) & (PbF)
6
M in.
3
2
-50
Typ.
200
M in.
100
0
-50
0
25
50
75
100 125
o
Temperature ( C)
400
300
200
100
Typ.
M in.
0
-25
0
25
50
75
100 125
Temperature (oC)
Figure 25A. Output Source Current
vs. Tem perature
www.irf.com
-25
Figure 24. V CC and V BS Undervoltage
Threshold (-) vs. Tem perature
Output Source Current (mA)
Output Source Current (mA)
300
Typ.
4
Figure 23. V CC and V BS Undervoltage
Threshold (+) vs. Tem perature
400
M ax.
5
5
10
15
20
Supply Voltage (V)
Figure 25B. Output Source Current
vs. Supply Voltage
17
IR2302(S) & (PbF)
600
Output Sink Current (mA)
Output Sink Current (mA)
600
500
Typ.
400
300
M in.
200
100
0
-50
500
400
300
200
Typ.
100
M in.
0
-25
0
25
50
Temperature
75
100 125
5
( oC)
20
Figure 26B. Output Sink Current
vs. Supply Voltage
140
0
-2
120
Temprature (oC)
Maximum VS Negative Offset (V)
15
Supply Voltage (V)
Figure 26A. Output Sink Current
vs. Tem perature
Typ.
-4
-6
-8
-10
100
80
140V
70V
60
0V
40
-12
5
10
15
V BS Floating Supply Voltage (V)
Figure 27. Maxim um V S Negative Offset
vs. V BS Floating Supply Voltage
18
10
20
20
1
10
100
1000
Frequency (KHz)
Figure 28. IR2302 vs. Frequency (IRFBC20),
Rgate=33Ω , VCC=15V
www.irf.com
140
140
120
120
100
140V
80
70V
60
0V
Temperature (oC)
Temperature (oC)
IR2302(S) & (PbF)
100
140V
80
70V
0V
60
40
40
20
20
1
10
100
1000
1
Frequency (KHz)
140
0V
120
Temperature (oC)
Temperature (oC)
1000
Figure 30. IR2302 vs. Frequency (IRFBC40),
Rgate=15Ω , VCC=15V
140V 70V
120
100
Frequency (KHz)
Figure 29. IR2302 vs. Frequency (IRFBC30),
Ω, VCC=15V
Rgate=22Ω
140
10
100
80
60
40
100
80
140V
70V
60
0V
40
20
20
1
10
100
1000
Frequency (KHz)
Figure 31. IR2302 vs. Frequency (IRFPE50),
Rgate=10Ω , V CC=15V
www.irf.com
1
10
100
1000
Frequency (KHz)
Figure 32. IR2302S vs. Frequency (IRFBC20),
Rgate=33Ω , VCC=15V
19
IR2302(S) & (PbF)
140V
100
70V
0V
80
60
Temperature (oC)
120
120
Temperature (oC)
140V 70V
140
140
0V
100
80
60
40
40
20
20
1
10
100
1000
1
10
100
1000
Frequency (KHz)
Frequency (KHz)
Figure 33. IR2302S vs. Frequency (IRFBC30),
Rgate=22Ω , V CC=15V
Figure 34. IR2302S vs. Frequency (IRFBC40),
Rgate=15Ω , VCC=15V
140V 70V 0V
140
Tempreture (oC)
120
100
80
60
40
20
1
10
100
1000
Frequency (KHz)
Figure 35. IR2302S vs. Frequency
(IRFPE50), Rgate=10Ω , V CC=15V
20
www.irf.com
IR2302(S) & (PbF)
Case Outlines
01-6014
01-3003 01 (MS-001AB)
8 Lead PDIP
D
DIM
B
5
A
FOOTPRINT
8
6
7
6
5
H
E
1
6X
2
3
0.25 [.010]
4
e
A
6.46 [.255]
3X 1.27 [.050]
e1
0.25 [.010]
A1
.0688
1.35
1.75
A1 .0040
.0098
0.10
0.25
b
.013
.020
0.33
0.51
c
.0075
.0098
0.19
0.25
D
.189
.1968
4.80
5.00
.1574
3.80
4.00
E
.1497
e
.050 BASIC
e1
MAX
1.27 BASIC
.025 BASIC
0.635 BASIC
H
.2284
.2440
5.80
6.20
K
.0099
.0196
0.25
0.50
L
.016
.050
0.40
1.27
y
0°
8°
0°
8°
y
0.10 [.004]
8X L
8X c
7
C A B
NOTES:
1. DIMENSIONING & TOLERANC ING PER ASME Y14.5M-1994.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INC HES].
4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA.
8 Lead SOIC
www.irf.com
MIN
.0532
K x 45°
A
C
8X b
8X 1.78 [.070]
MILLIMETERS
MAX
A
8X 0.72 [.028]
INCHES
MIN
5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO
A SUBSTRATE.
01-6027
01-0021 11 (MS-012AA)
21
IR2302(S) & (PbF)
LEADFREE PART MARKING INFORMATION
IRxxxxxx
Part number
YWW?
Date code
Pin 1
Identifier
?
P
MARKING CODE
Lead Free Released
Non-Lead Free
Released
IR logo
?XXXX
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code
Per SCOP 200-002
ORDER INFORMATION
Basic Part (Non-Lead Free)
8-Lead PDIP IR2302 order IR2302
8-Lead SOIC IR2302S order IR2302S
Leadfree Part
8-Lead PDIP R2302 not available
8-Lead SOIC IR2302S order IR2302SPbF
Thisproduct has been designed and qualified for the Automotive market.
Qualification Standards can be found on IR’s Web Site http://www.irf.com
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
8/16/2004
22
www.irf.com