MAXIM MAX2032ETP+T

KIT
ATION
EVALU
E
L
B
AVAILA
19-4965; Rev 0; 9/09
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
Features
The MAX2032 high-linearity passive upconverter or
downconverter mixer is designed to provide +33dBm
IIP3, 7dB NF, and 7dB conversion loss for a 650MHz to
1000MHz RF frequency range to support a multitude of
base-station applications. With a 650MHz to 1250MHz
LO frequency range, this particular mixer is ideal for
high-side LO injection architectures. For a pin-to-pincompatible mixer meant for low-side LO injection, refer
to the MAX2029.
♦ 650MHz to 1000MHz RF Frequency Range
♦ 650MHz to 1250MHz LO Frequency Range
♦ 570MHz to 900MHz LO Frequency Range
(Refer to the MAX2029 Data Sheet)
♦ DC to 250MHz IF Frequency Range
♦ 7dB Conversion Loss
♦ +33dBm Input IP3
♦ +24dBm Input 1dB Compression Point
♦ 7dB Noise Figure
♦ Integrated LO Buffer
♦ Integrated RF and LO Baluns
♦ Low -3dBm to +3dBm LO Drive
♦ Built-In SPDT LO Switch with 49dB LO1 to LO2
Isolation and 50ns Switching Time
♦ Pin Compatible with the MAX2039/MAX2041
1700MHz to 2200MHz Mixers
♦ External Current-Setting Resistor Provides Option
for Operating Mixer in Reduced-Power/ReducedPerformance Mode
Predistortion Receivers
Microwave and Fixed
Broadband Wireless
Access
Wireless Local Loop
Digital and SpreadSpectrum Communication
Systems
PIN-PACKAGE
MAX2032ETP+
-40°C to +85°C
20 Thin QFN-EP*
MAX2032ETP+T
-40°C to +85°C
20 Thin QFN-EP*
+Denotes a lead(Pb)-free/RoHS-compliant package.
T = Tape and reel.
*EP = Exposed pad.
Pin Configuration/
Functional Diagram
TOP VIEW
+
VCC
1
RF
2
TAP
3
GND
4
GND
WCDMA/LTE and
cdma2000 ® Base
Stations
GSM 850/GSM 900 2G
and 2.5G EDGE Base
Stations
Integrated Digital
Enhanced Network
(iDEN®) Base Stations
WiMAXTM Base Stations
and Customer Premise
Equipment
TEMP RANGE
GND
Applications
PART
IF-
The MAX2032 is available in a compact 20-pin thin
QFN package (5mm x 5mm) with an exposed pad.
Electrical performance is guaranteed over the extended
-40°C to +85°C temperature range.
Ordering Information
IF+
The MAX2032 is pin compatible with the MAX2039/
MAX2041 1700MHz to 2200MHz mixers, making this
family of passive upconverters and downconverters
ideal for applications where a common PCB layout is
used for both frequency bands.
GND
In addition to offering excellent linearity and noise performance, the MAX2032 also yields a high level of component integration. This device includes a doublebalanced passive mixer core, a dual-input LO selectable switch, and an LO buffer. On-chip baluns are also
integrated to allow for a single-ended RF input for
downconversion (or RF output for upconversion) and
single-ended LO inputs. The MAX2032 requires a nominal LO drive of 0dBm, and supply current is guaranteed
to be below 100mA.
20
19
18
17
16
MAX2032
15
LO2
14
VCC
13
GND
12
GND
11
LO1
EP
6
7
8
9
10
LOBIAS
VCC
LOSEL
GND
cdma2000 is a registered trademark of Telecommunications
Industry Association.
iDEN is a registered trademark of Motorola, Inc.
WiMAX is a trademark of WiMAX Forum.
5
VCC
GND
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
1
MAX2032
General Description
MAX2032
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
ABSOLUTE MAXIMUM RATINGS
VCC to GND ...........................................................-0.3V to +5.5V
RF (RF is DC shorted to GND through a balun)..................50mA
LO1, LO2 to GND ..................................................-0.3V to +0.3V
IF+, IF- to GND ...........................................-0.3V to (VCC + 0.3V)
TAP to GND ...........................................................-0.3V to +1.4V
LOSEL to GND ...........................................-0.3V to (VCC + 0.3V)
LOBIAS to GND..........................................-0.3V to (VCC + 0.3V)
RF, LO1, LO2 Input Power (Note 1) ...............................+20dBm
Continuous Power Dissipation (Note 2)....................................5W
θJA (Notes 3, 4)..............................................................+38°C/W
θJC (Notes 2, 3)..............................................................+13°C/W
Operating Temperature Range (Note 5) .....TC = -40°C to +85°C
Junction Temperature ......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Note 1: Maximum, reliable, continuous input power applied to the RF and IF port of this device is +12dBm from a 50Ω source.
Note 2: Based on junction temperature TJ = TC + (θJC x VCC x ICC). This formula can be used when the temperature of the exposed
pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction
temperature must not exceed +150°C.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Note 4: Junction temperature TJ = TA + (θJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150°C.
Note 5: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = 4.75V to 5.25V, no RF signals applied, TC = -40°C to +85°C. IF+ and IF- are DC grounded through an
IF balun. Typical values are at VCC = 5V, TC = +25°C, unless otherwise noted.)
PARAMETER
SYMBOL
Supply Voltage
VCC
Supply Current
ICC
LOSEL Input Logic-Low
VIL
LOSEL Input Logic-High
VIH
CONDITIONS
MIN
TYP
MAX
UNITS
4.75
5.00
5.25
V
85
100
mA
0.8
V
2
V
RECOMMENDED AC OPERATING CONDITIONS
PARAMETER
SYMBOL
CONDITIONS
Components tuned for the 700MHz band
(Table 1), C1 = 7pF, C5 = 3.3pF (Notes 6, 7)
RF Frequency
fRF
MIN
TYP
650
MAX
UNITS
850
MHz
Components tuned for the 800MHz/900MHz
cellular band (Table 1), C1 = 82pF,
C5 = 2.0pF (Note 6)
800
1000
650
1250
MHz
LO Frequency
fLO
(Notes 6, 7)
IF Frequency
fIF
IF frequency range depends on external IF
transformer selection
0
250
MHz
(Note 6)
-3
+3
dBm
LO Drive Level
2
PLO
_______________________________________________________________________________________
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
(Typical Application Circuit, optimized for the 800MHz/900MHz cellular band (see Table 1), C1 = 82pF, C5 = 2pF, L1 and C4 not
used, VCC = 4.75V to 5.25V, RF and LO ports driven from 50Ω sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 815MHz to
1000MHz, fLO = 960MHz to 1180MHz, fIF = 160MHz, fLO > fRF, TC = -40°C to +85°C, unless otherwise noted. Typical values are at
VCC = 5V, PRF = 0dBm, PLO = 0dBm, fRF = 910MHz, fLO = 1070MHz, fIF = 160MHz, TC = +25°C, unless otherwise noted.) (Note 8)
PARAMETER
Conversion Loss
SYMBOL
CONDITIONS
MIN
LC
Flatness over any one of three frequency
bands (fIF = 160MHz):
fRF = 827MHz to 849MHz
fRF = 869MHz to 894MHz
fRF = 880MHz to 915MHz
Conversion Loss Flatness
TYP
MAX
UNITS
7.0
dB
±0.18
dB
TC = +25°C to -40°C
-0.3
TC = +25°C to +85°C
0.2
P1dB
(Note 9)
24
dBm
Input Third-Order Intercept Point
IIP3
fRF1 = 910MHz, fRF2 = 911MHz,
PRF = 0dBm/tone, fLO = 1070MHz,
PLO = 0dBm, TC = +25°C (Note 10)
33
dBm
Input IP3 Variation Over
Temperature
IIP3
2LO - 2RF Spurious Response at IF
2x2
3LO - 3RF Spurious Response at IF
3x3
Conversion Loss Variation Over
Temperature
Input 1dB Compression Point
Noise Figure
NF
Noise Figure Under Blocking
(Note 11)
LO1-to-LO2 Isolation (Note 10)
29
TC = +25°C to -40°C
0.3
TC = +25°C to +85°C
-0.3
dB
dB
65
dBc
75
dBc
Single sideband
7.0
dB
PBLOCKER = +8dBm
18
PBLOCKER = +12dBm
22
LO2 selected, PLO = +3dBm, TC = +25°C
42
51
LO1 selected, PLO = +3dBm, TC = +25°C
42
49
dB
dB
Maximum LO Leakage at RF Port
PLO = +3dBm
-27
dBm
Maximum LO Leakage at IF Port
PLO = +3dBm
-35
dBm
LO Switching Time
50% of LOSEL to IF, settled within 2 degrees
50
ns
Minimum RF-to-IF Isolation
45
dB
RF Port Return Loss
17
dB
LO Port Return Loss
IF Port Return Loss
LO1/LO2 port selected, LO2/LO1, RF, and IF
terminated into 50Ω
28
LO1/LO2 port unselected, LO2/LO1, RF, and
IF terminated into 50Ω
30
LO driven at 0dBm, RF terminated into 50Ω
17
dB
dB
_______________________________________________________________________________________
3
MAX2032
AC ELECTRICAL CHARACTERISTICS (800MHz/900MHz CELLULAR BAND DOWNCONVERTER OPERATION)
MAX2032
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
AC ELECTRICAL CHARACTERISTICS (700MHz BAND DOWNCONVERTER OPERATION)
(Typical Application Circuit, optimized for the 700MHz band (see Table 1), C1 = 7pF, C5 = 3.3pF, L1 and C4 are not used, VCC =
4.75V to 5.25V, RF and LO ports driven from 50Ω sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 650MHz to 850MHz, fLO =
790MHz to 990MHz, fIF = 140MHz, fLO > fRF, TC = +25°C, unless otherwise noted. Typical values are at VCC = 5V, PRF = 0dBm,
PLO = 0dBm, fRF = 750MHz, fLO = 890MHz, fIF = 140MHz, TC = +25°C, unless otherwise noted.) (Notes 8, 10)
PARAMETER
Conversion Loss
SYMBOL
CONDITIONS
LC
Input 1dB Compression Point
P1dB
fRF = 750MHz, PRF = 0dBm, PLO = 0dBm
Input Third-Order Intercept Point
IIP3
fRF1 = 749MHz, fRF2 = 750MHz,
fLO = 890MHz, PRF = 0dBm/tone,
PLO = 0dBm
MIN
TYP
MAX
UNITS
6.1
6.9
8.1
dB
29
24
dBm
33
dBm
LO Leakage at IF Port
PLO = +3dBm
-33
dBm
LO Leakage at RF Port
PLO = +3dBm
-20
dBm
RF-to-IF Isolation
49
dB
2LO - 2RF Spurious Response
2x2
36
65
dBc
3LO - 3RF Spurious Response
3x3
75
dBc
AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION)
(Typical Application Circuit, L1 = 4.7nH, C4 = 6pF, C1 = 82pF, C5 not used, VCC = 4.75V to 5.25V, RF and LO ports are driven from
50Ω sources, PLO = -3dBm to +3dBm, PIF = 0dBm, fRF = 815MHz to 1000MHz, fLO = 960MHz to 1180MHz, fIF = 160MHz, fLO > fRF,
TC = -40°C to +85°C, unless otherwise noted. Typical values are at VCC = 5V, PIF = 0dBm, PLO = 0dBm, fRF = 910MHz, fLO =
1070MHz, fIF = 160MHz, TC = +25°C, unless otherwise noted.) (Note 8)
PARAMETER
Conversion Loss
SYMBOL
CONDITIONS
MIN
LC
TYP
MAX
UNITS
7.4
dB
Flatness over any one of three frequency
bands (fIF = 160MHz):
fRF = 827MHz to 849MHz
fRF = 869MHz to 894MHz
fRF = 880MHz to 915MHz
±0.3
dB
TC = +25°C to -40°C
-0.3
TC = +25°C to +85°C
0.4
P1dB
(Note 9)
24
dBm
Input Third-Order Intercept Point
IIP3
fIF1 = 160MHz, fIF2 = 161MHz,
PIF = 0dBm/tone, fLO = 1070MHz,
PLO = 0dBm, TC = +25°C (Note 10)
31
dBm
Input IP3 Variation Over
Temperature
IIP3
Conversion Loss Flatness
Conversion Loss Variation Over
Temperature
Input 1dB Compression Point
28
TC = +25°C to -40°C
1.2
TC = +25°C to +85°C
-0.9
dB
dB
LO ± 2IF Spur
64
LO ± 3IF Spur
83
dBc
-167
dBm/Hz
Output Noise Floor
Note 6:
Note 7:
Note 8:
Note 9:
Note 10:
Note 11:
4
POUT = 0dBm (Note 11)
dBc
Operation outside this range is possible, but with degraded performance of some parameters.
Not production tested.
All limits include external component losses. Output measurements are taken at IF or RF port of the Typical Application Circuit.
Compression point characterized. It is advisable not to continuously operate the mixer RF/IF inputs above +12dBm.
Guaranteed by design.
Measured with external LO source noise filtered, so its noise floor is -174dBm/Hz. This specification reflects the effects of all
SNR degradations in the mixer, including the LO noise as defined in Application Note 2021: Specifications and Measurement
of Local Oscilator Noise in Integrated Circuit Base Station Mixers.
_______________________________________________________________________________________
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
Downconverter Curves
TC = +25°C
7
7
5
950
1000
800
RF FREQUENCY (MHz)
TC = +85°C, +25°C
33
35
INPUT IP3 (dBm)
800
1000
31
TC = -40°C
29
TC = -25°C
PRF = 0dBm/TONE
PLO = +3dBm
PLO = 0dBm
PLO = -3dBm
29
VCC = 4.75V
25
25
23
23
800
NOISE FIGURE vs. RF FREQUENCY
TC = +25°C
1000
9
1000
10
9
NOISE FIGURE (dB)
TC = +85°C
7
8
7
PLO = -3dBm, 0dBm, +3dBm
TC = -40°C
8
7
VCC = 4.75V, 5.0V, 5.25V
6
6
6
TC = -25°C
5
5
5
850
850
900
950
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
NOISE FIGURE vs. RF FREQUENCY
8
800
800
MAX2032 toc08
9
850
900
950
RF FREQUENCY (MHz)
10
MAX2032 toc07
10
VCC = 5.0V
29
25
1000
VCC = 5.25V
31
27
850
900
950
RF FREQUENCY (MHz)
1000
33
27
800
950
PRF = 0dBm/TONE
35
27
23
900
INPUT IP3 vs. RF FREQUENCY
37
33
31
850
RF FREQUENCY (MHz)
NOISE FIGURE (dB)
INPUT IP3 (dBm)
35
NOISE FIGURE (dB)
950
INPUT IP3 vs. RF FREQUENCY
37
MAX2032 toc04
PRF = 0dBm/TONE
900
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
37
850
INPUT IP3 (dBm)
900
MAX2032 toc05
850
MAX2032 toc03
5
5
800
7
6
6
TC = -40°C
VCC = 4.75V, 5.0V, 5.25V
8
MAX2032 toc09
6
PLO = -3dBm, 0dBm, +3dBm
8
9
CONVERSION LOSS (dB)
TC = -25°C
10
MAX2032 toc02
MAX2032 toc01
TC = +85°C
8
9
CONVERSION LOSS (dB)
CONVERSION LOSS (dB)
9
CONVERSION LOSS vs. RF FREQUENCY
CONVERSION LOSS vs. RF FREQUENCY
10
MAX2032 toc06
CONVERSION LOSS vs. RF FREQUENCY
10
900
950
RF FREQUENCY (MHz)
1000
800
850
900
950
RF FREQUENCY (MHz)
1000
800
850
900
950
1000
RF FREQUENCY (MHz)
_______________________________________________________________________________________
5
MAX2032
Typical Operating Characteristics
(Typical Application Circuit, optimized for the 800MHz/900MHz cellular band (see Table 1), C1 = 82pF, C5 = 2pF, L1 and C4 not used,
VCC = 5.0V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 160MHz, TC = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit, optimized for the 800MHz/900MHz cellular band (see Table 1), C1 = 82pF, C5 = 2pF, L1 and C4 not used,
VCC = 5.0V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 160MHz, TC = +25°C, unless otherwise noted.)
Downconverter Curves
2LO - 2RF RESPONSE
vs. RF FREQUENCY
TC = +85°C
65
55
TC = -25°C
TC = -40°C
850
900
950
65
PLO = +3dBm
55
45
850
900
55
VCC = 5.25V
45
950
1000
800
850
900
950
3LO - 3RF RESPONSE
vs. RF FREQUENCY
3LO - 3RF RESPONSE
vs. RF FREQUENCY
65
PLO = 0dBm
3LO - 3RF RESPONSE (dBc)
3LO - 3RF RESPONSE (dBc)
75
PRF = 0dBm
85
95
MAX2032 toc14
95
75
PLO = -3dBm
65
1000
800
RF FREQUENCY (MHz)
900
950
27
INPUT P1dB (dBm)
25
TC = -25°C, +85°C
TC = +25°C
23
21
RF FREQUENCY (MHz)
1000
900
950
1000
INPUT P1dB vs. RF FREQUENCY
MAX2032 toc17
29
VCC = 5.25V
27
25
PLO = -3dBm
25
VCC = 4.75V
23
VCC = 5.0V
21
21
950
850
RF FREQUENCY (MHz)
23
900
800
1000
PLO = 0dBm, +3dBm
27
850
VCC = 4.75V
INPUT P1dB vs. RF FREQUENCY
29
MAX2032 toc16
TC = -40°C
VCC = 5.0V
65
RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
29
850
INPUT P1dB (dBm)
950
75
55
55
900
VCC = 5.25V
PLO = +3dBm
55
850
PRF = 0dBm
85
1000
MAX2032 toc15
3LO - 3RF RESPONSE
vs. RF FREQUENCY
TC = -40°C, -25°C
6
65
RF FREQUENCY (MHz)
TC = +85°C
800
75
RF FREQUENCY (MHz)
TC = +25°C
800
VCC = 4.75V, 5.0V
RF FREQUENCY (MHz)
PRF = 0dBm
85
PRF = 0dBm
35
800
1000
MAX2032 toc13
800
3LO - 3RF RESPONSE (dBc)
75
85
35
35
95
PLO = 0dBm P = -3dBm
LO
MAX2032 toc18
45
PRF = 0dBm
MAX2032 toc12
75
85
2LO - 2RF RESPONSE (dBc)
TC = +25°C
MAX2032 toc10
PRF = 0dBm
2LO - 2RF RESPONSE (dBc)
2LO - 2RF RESPONSE (dBc)
85
2LO - 2RF RESPONSE
vs. RF FREQUENCY
MAX2032 toc11
2LO - 2RF RESPONSE
vs. RF FREQUENCY
INPUT P1dB (dBm)
MAX2032
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
800
850
900
950
RF FREQUENCY (MHz)
1000
800
850
900
950
RF FREQUENCY (MHz)
_______________________________________________________________________________________
1000
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
Downconverter Curves
LO SWITCH ISOLATION
vs. LO FREQUENCY
TC = -40°C, -25°C
50
TC = +85°C
45
TC = +25°C
40
950
1050
1150
50
PLO = -3dBm, 0dBm, +3dBm
45
1250
950
1050
1150
850
1250
950
1050
1150
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-40
PLO = -3dBm, 0dBm, +3dBm
-50
-60
-60
1010
1060
1110
960
1160
1010
1060
1110
MAX2032 toc24
MAX2032 toc23
-30
VCC = 5.25V
-30
-40
VCC = 4.75V
VCC = 5.0V
-50
-60
1160
960
1010
1060
1110
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-30
TC = +85°C
-35
TC = +25°C
-40
-25
-30
PLO = -3dBm, 0dBm, +3dBm
-35
-40
950
1050
1150
LO FREQUENCY (MHz)
1250
-20
VCC = 5.25V
-25
-30
VCC = 4.75V
-35
VCC = 5.0V
-40
-45
-45
-45
MAX2032 toc27
-20
1160
-15
LO LEAKAGE AT RF PORT (dBm)
-25
MAX2032 toc26
TC = -40°C, -25°C
-15
LO LEAKAGE AT RF PORT (dBm)
MAX2032 toc25
-15
1250
-20
LO LEAKAGE AT IF PORT (dBm)
-50
-20
LO LEAKAGE AT IF PORT (dBm)
MAX2032 toc22
TC = +85°C
850
MAX2032 toc21
40
850
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
TC = +25°C
-20
VCC = 4.75V, 5.0V, 5.25V
45
LO FREQUENCY (MHz)
TC = -40°C, -25°C
960
50
LO FREQUENCY (MHz)
-30
-40
55
LO FREQUENCY (MHz)
-20
LO LEAKAGE AT IF PORT (dBm)
55
40
850
LO LEAKAGE AT RF PORT (dBm)
LO SWITCH ISOLATION (dB)
55
60
MAX2032 toc20
MAX2032 toc19
60
LO SWITCH ISOLATION (dB)
LO SWITCH ISOLATION (dB)
60
LO SWITCH ISOLATION
vs. LO FREQUENCY
LO SWITCH ISOLATION
vs. LO FREQUENCY
850
950
1050
1150
LO FREQUENCY (MHz)
1250
850
950
1050
1150
1250
LO FREQUENCY (MHz)
_______________________________________________________________________________________
7
MAX2032
Typical Operating Characteristics (continued)
(Typical Application Circuit, optimized for the 800MHz/900MHz cellular band (see Table 1), C1 = 82pF, C5 = 2pF, L1 and C4 not used,
VCC = 5.0V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 160MHz, TC = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit, optimized for the 800MHz/900MHz cellular band (see Table 1), C1 = 82pF, C5 = 2pF, L1 and C4 not used,
VCC = 5.0V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 160MHz, TC = +25°C, unless otherwise noted.)
Downconverter Curves
RF-TO-IF ISOLATION
vs. RF FREQUENCY
TC = +85°C
45
TC = -40°C, -25°C
35
50
45
40
PLO = -3dBm
PLO = 0dBm
35
30
850
900
950
1000
MAX2032 toc30
VCC = 4.75V, 5.0V, 5.25V
40
30
800
850
900
950
800
1000
850
900
950
1000
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF PORT RETURN LOSS
vs. RF FREQUENCY
IF PORT RETURN LOSS
vs. IF FREQUENCY
IF PORT RETURN LOSS
vs. IF FREQUENCY
15
20
PLO = -3dBm, 0dBm, +3dBm
25
15
20
VCC = 4.75V, 5.0V, 5.25V
25
30
35
40
10
850
900
950
1000
1050
20
PLO = -3dBm, 0dBm, +3dBm
25
30
35
40
50
50
800
15
45
45
30
INCLUDES IF TRANSFORMER
5
IF PORT RETURN LOSS (dB)
10
IF PORT RETURN LOSS (dB)
10
INCLUDES IF TRANSFORMER
5
0
MAX2032 toc32
0
MAX2032 toc31
5
0
100
200
300
400
0
500
100
200
300
400
RF FREQUENCY (MHz)
IF FREQUENCY (MHz)
IF FREQUENCY (MHz)
LO SELECTED RETURN LOSS
vs. LO FREQUENCY
LO UNSELECTED RETURN LOSS
vs. LO FREQUENCY
SUPPLY CURRENT
vs. TEMPERATURE (TC)
15
PLO = +3dBm
PLO = 0dBm
20
25
30
35
10
PLO = -3dBm, 0dBm, +3dBm
20
30
40
500
MAX2032 toc36
100
VCC = 5.25V
SUPPLY CURRENT (mA)
10
0
MAX2032 toc35
5
LO UNSELECTED RETURN LOSS (dB)
MAX2032 toc34
0
90
80
VCC = 5.0V
VCC = 4.75V
70
50
PLO = -3dBm
60
40
800
900
1000
1100
LO FREQUENCY (MHz)
8
45
RF FREQUENCY (MHz)
0
750
50
35
30
800
RF PORT RETURN LOSS (dB)
PLO = +3dBm
55
MAX2032 toc33
40
55
RF-TO-IF ISOLATION (dB)
TC = +25°C
60
MAX2032 toc29
MAX2032 toc28
60
RF-TO-IF ISOLATION (dB)
RF-TO-IF ISOLATION (dB)
55
50
RF-TO-IF ISOLATION
vs. RF FREQUENCY
RF-TO-IF ISOLATION
vs. RF FREQUENCY
60
LO SELECTED RETURN LOSS (dB)
MAX2032
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
1200
1300
60
800
900
1000
1100
LO FREQUENCY (MHz)
1200
1300
-40
-15
10
35
TEMPERATURE (°C)
_______________________________________________________________________________________
60
85
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
Downconverter Curves
6
TC = +25°C
TC = -40°C
5
8
7
PLO = -3dBm, 0dBm, +3dBm
6
800
850
650
RF FREQUENCY (MHz)
MAX2032 toc39
VCC = 4.75V, 5.0V, 5.25V
6
750
800
650
850
PRF = 0dBm/TONE
34
INPUT IP3 (dBm)
34
TC = +25°C
TC = +85°C
30
32
30
750
800
850
INPUT IP3 vs. RF FREQUENCY
36
MAX2032 toc40
PRF = 0dBm/TONE
700
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
INPUT IP3 vs. RF FREQUENCY
TC = +25°C
7
RF FREQUENCY (MHz)
36
32
700
36
PRF = 0dBm/TONE
34
INPUT IP3 (dBm)
750
MAX2032 toc41
700
8
5
5
650
INPUT IP3 (dBm)
CONVERSION LOSS (dB)
7
9
MAX2032 toc38
MAX2032 toc37
CONVERSION LOSS (dB)
CONVERSION LOSS (dB)
TC = +85°C
8
CONVERSION LOSS vs. RF FREQUENCY
CONVERSION LOSS vs. RF FREQUENCY
9
PLO = -3dBm, 0dBm, +3dBm
MAX2032 toc42
CONVERSION LOSS vs. RF FREQUENCY
9
VCC = 5.25V
32
VCC = 5.0V
30
VCC = 4.75V
26
700
750
800
650
850
700
750
800
700
750
800
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
2LO - 2RF RESPONSE
vs. RF FREQUENCY
2LO - 2RF RESPONSE
vs. RF FREQUENCY
2LO - 2RF RESPONSE
vs. RF FREQUENCY
80
PRF = 0dBm
TC = +85°C
60
TC = +25°C
50
70
PLO = +3dBm
60
PLO = 0dBm
50
PLO = -3dBm
TC = -40°C
40
750
800
RF FREQUENCY (MHz)
850
850
70
60
50
VCC = 4.75V, 5.0V, 5.25V
40
40
700
PRF = 0dBm
2LO - 2RF RESPONSE (dBc)
70
80
MAX2032 toc44
PRF = 0dBm
2LO - 2RF RESPONSE (dBc)
80
650
650
850
RF FREQUENCY (MHz)
MAX2032 toc43
650
MAX2032 toc45
26
26
2LO - 2RF RESPONSE (dBc)
28
28
TC = -40°C
28
650
700
750
800
RF FREQUENCY (MHz)
850
650
700
750
800
850
RF FREQUENCY (MHz)
_______________________________________________________________________________________
9
MAX2032
Typical Operating Characteristics (continued)
(Typical Application Circuit, optimized for the 700MHz band (see Table 1), C1 = 7pF, C5 = 3.3pF, L1 and C4 are not used, VCC =
5V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 140MHz, TC = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit, optimized for the 700MHz band (see Table 1), C1 = 7pF, C5 = 3.3pF, L1 and C4 are not used, VCC =
5V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 140MHz, TC = +25°C, unless otherwise noted.)
Downconverter Curves
PRF = 0dBm
TC = +85°C
TC = -40°C
75
PLO = -3dBm, 0dBm, +3dBm
65
85
PRF = 0dBm
VCC = 5.25V
3LO - 3RF RESPONSE (dBc)
75
65
85
MAX2032 toc47
PRF = 0dBm
3LO - 3RF RESPONSE (dBc)
3LO - 3RF RESPONSE (dBc)
TC = +25°C
MAX2032 toc46
85
3LO - 3RF RESPONSE
vs. RF FREQUENCY
3LO - 3RF RESPONSE
vs. RF FREQUENCY
MAX2032 toc48
3LO - 3RF RESPONSE
vs. RF FREQUENCY
75
VCC = 5.0V
65
VCC = 4.75V
750
800
55
55
850
650
RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
800
650
850
24
INPUT P1dB (dBm)
TC = +25°C
PLO = +3dBm
23
TC = +85°C
750
800
850
INPUT P1dB vs. RF FREQUENCY
23
PLO = 0dBm
22
700
RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
25
MAX2032 toc49
24
INPUT P1dB (dBm)
750
RF FREQUENCY (MHz)
25
22
700
25
VCC = 5.25V
VCC = 5.0V
24
INPUT P1dB (dBm)
700
MAX2032 toc50
650
MAX2032 toc51
55
23
22
VCC = 4.75V
21
21
21
TC = -40°C
PLO = -3dBm
20
20
20
700
750
800
850
750
800
700
750
800
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-25
PLO = +3dBm
-35
PLO = 0dBm
PLO = -3dBm
840
890
940
LO FREQUENCY (MHz)
990
MAX2032 toc54
850
VCC = 5.25V
-25
-35
VCC = 5.0V
VCC = 4.75V
-45
-45
-45
-15
LO LEAKAGE AT IF PORT (dBm)
TC = +25°C
-15
MAX2032 toc53
MAX2032 toc52
TC = -40°C
-25
790
650
850
RF FREQUENCY (MHz)
TC = +85°C
10
700
RF FREQUENCY (MHz)
-15
-35
650
LO LEAKAGE AT IF PORT (dBm)
650
LO LEAKAGE AT IF PORT (dBm)
MAX2032
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
790
840
890
940
LO FREQUENCY (MHz)
990
790
840
890
940
LO FREQUENCY (MHz)
______________________________________________________________________________________
990
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
Downconverter Curves
TC = +85°C
TC = +25°C
-30
PLO = -3dBm
-25
PLO = 0dBm
-30
840
890
940
990
790
890
940
790
890
940
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
TC = +85°C
PLO = +3dBm
-25
-30
PLO = 0dBm
-35
PLO = -3dBm
-20
2LO LEAKAGE AT RF PORT (dBm)
TC = +25°C
-35
MAX2032 toc59
MAX2032 toc58
-30
890
940
840
790
990
RF-TO-IF ISOLATION vs. RF FREQUENCY
940
RF-TO-IF ISOLATION (dB)
-35
790
990
50
TC = +25°C
30
50
40
PLO = -3dBm, 0dBm, +3dBm
RF FREQUENCY (MHz)
850
890
940
990
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
50
VCC = 4.75V, 5.0V, 5.25V
40
30
30
800
840
LO FREQUENCY (MHz)
MAX2032 toc62
TC = +85°C
750
VCC = 4.75V
-30
RF-TO-IF ISOLATION vs. RF FREQUENCY
60
MAX2032 toc61
60
700
-25
LO FREQUENCY (MHz)
LO FREQENCY (MHz)
TC = -40°C
890
RF-TO-IF ISOLATION (dB)
840
VCC = 5.0V
VCC = 5.25V
990
-40
-40
-40
650
840
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
MAX2032 toc57
-30
990
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-25
40
VCC = 4.75V
-25
LO FREQUENCY (MHz)
TC = -40°C
790
VCC = 5.0V
LO FREQUENCY (MHz)
-20
RF-TO-IF ISOLATION (dB)
840
-20
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT (dBm)
790
2LO LEAKAGE AT RF PORT (dBm)
-20
VCC = 5.25V
-15
MAX2032 toc63
-25
PLO = +3dBm
-15
-10
MAX2032 toc60
-20
MAX2032 toc56
TC = -40°C
-15
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-10
LO LEAKAGE AT RF PORT (dBm)
MAX2032 toc55
LO LEAKAGE AT RF PORT (dBm)
-10
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT (dBm)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
650
700
750
800
RF FREQUENCY (MHz)
850
650
700
750
800
850
RF FREQUENCY (MHz)
______________________________________________________________________________________
11
MAX2032
Typical Operating Characteristics (continued)
(Typical Application Circuit, optimized for the 700MHz band (see Table 1), C1 = 7pF, C5 = 3.3pF, L1 and C4 are not used, VCC =
5V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 140MHz, TC = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit, optimized for the 700MHz band (see Table 1), C1 = 7pF, C5 = 3.3pF, L1 and C4 are not used, VCC =
5V, PLO = 0dBm, PRF = 0dBm, fLO > fRF, fIF = 140MHz, TC = +25°C, unless otherwise noted.)
Downconverter Curves
RF PORT RETURN LOSS
vs. RF FREQUENCY
10
15
800
VCC = 4.75V, 5.0V, 5.25V
25
1000
900
50
100
150
200
MAX2032 toc66
30
250
300
600
350
750
100
VCC = 5.25V
SUPPLY CURRENT (mA)
10
PLO = -3dBm, 0dBm, +3dBm
90
80
VCC = 5.0V
70
30
VCC = 4.75V
60
40
600
750
900
1050
LO FREQENCY (MHz)
1200
-40
900
1050
LO FREQUENCY (MHz)
SUPPLY CURRENT
vs. TEMPERATURE (TC)
MAX2032 toc67
0
LO UNSELECTED RETURN LOSS (dB)
20
IF FREQUENCY (MHz)
LO UNSELECTED RETURN LOSS
vs. LO FREQUENCY
12
PLO = +3dBm
40
RF FREQUENCY (MHz)
20
PLO = 0dBm
MAX2032 toc68
700
15
10
PLO = -3dBm
25
600
10
20
PLO = -3dBm, 0dBm, +3dBm
500
5
0
LO SELECTED RETURN LOSS (dB)
IF PORT RETURN LOSS (dB)
fLO = 890MHz
MAX2032 toc65
0
MAX2032 toc64
5
20
LO SELECTED RETURN LOSS
vs. LO FREQUENCY
IF PORT RETURN LOSS
vs. IF FREQUENCY
0
RF PORT RETURN LOSS (dB)
MAX2032
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
-15
10
35
60
85
TEMPERATURE (NC)
______________________________________________________________________________________
1200
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
Upconverter Curves
TC = -40°C
5
5
800
850
900
950
1000
MAX2032 toc71
VCC = 4.75V, 5.0V, 5.25V
6
5
3
750
1050
7
4
3
750
800
850
900
950
1000
750
1050
800
850
900
950
1000
1050
INPUT IP3 vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
INPUT IP3 vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
INPUT IP3 vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
35
35
35
PIF = 0dBm/TONE
TC = -25°C
TC = -40°C
PIF = 0dBm/TONE
33
TC = +85°C
TC = +25°C
27
29
INPUT IP3 (dBm)
INPUT IP3 (dBm)
29
PLO = -3dBm, 0dBm, +3dBm
27
29
VCC = 4.75V
25
25
23
23
23
21
21
750
800
850
900
950
1000
750
1050
VCC = 5.0V
27
25
21
VCC = 5.25V
31
31
31
PIF = 0dBm/TONE
33
MAX2032 toc74
RF FREQUENCY (MHz)
MAX2032 toc73
RF FREQUENCY (MHz)
MAX2032 toc72
RF FREQUENCY (MHz)
33
800
850
900
950
1000
750
1050
800
850
900
950
1000
1050
RF FREQUENCY (MHz)
LO + 2IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
LO + 2IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
LO + 2IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
80
80
80
PIF = 0dBm
TC = -40°C, -25°C
TC = +25°C
70
65
75
LO + 2IF REJECTION (dBc)
75
TC = +85°C
60
55
PIF = 0dBm
PLO = +3dBm
70
65
PLO = -3dBm
60
PLO = 0dBm
960
1010
1060
1110
LO FREQUENCY (MHz)
1160
1210
VCC = 5.25V
75
70
VCC = 5.0V
65
60
VCC = 4.75V
50
50
910
PIF = 0dBm
55
55
50
MAX2032 toc77
RF FREQUENCY (MHz)
MAX2032 toc75
RF FREQUENCY (MHz)
LO + 2IF REJECTION (dBc)
INPUT IP3 (dBm)
PLO = -3dBm, 0dBm, +3dBm
4
4
LO + 2IF REJECTION (dBc)
CONVERSION LOSS (dB)
TC = -25°C
7
6
8
MAX2032 toc76
CONVERSION LOSS (dB)
7
6
8
CONVERSION LOSS (dB)
TC = +85°C
9
MAX2032 toc70
TC = +25°C
8
9
MAX2032 toc69
9
CONVERSION LOSS vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
CONVERSION LOSS vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
CONVERSION LOSS vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
910
960
1010
1060
1110
LO FREQUENCY (MHz)
1160
1210
910
960
1010
1060
1110
1160
1210
LO FREQUENCY (MHz)
______________________________________________________________________________________
13
MAX2032
Typical Operating Characteristics (continued)
(Typical Application Circuit, L1 = 4.7nH, C4 = 6pF, C5 not used, VCC = 5.0V, PLO = 0dBm, PIF = 0dBm, fRF = fLO + fIF, fIF = 160MHz,
TC = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit, L1 = 4.7nH, C4 = 6pF, C5 not used, VCC = 5.0V, PLO = 0dBm, PIF = 0dBm, fRF = fLO + fIF, fIF = 160MHz,
TC = +25°C, unless otherwise noted.)
Upconverter Curves
80
80
80
75
65
TC = +25°C
60
55
60
PLO = -3dBm
PLO = 0dBm
960
1010
1060
1110
1160
1210
VCC = 5.25V
70
VCC = 5.0V
65
60
VCC = 4.75V
55
50
910
50
910
960
1010
1060
1110
1160
910
1210
960
1010
1060
1110
1160
1210
LO + 3IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
LO + 3IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
LO + 3IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
90
90
90
80
TC = -40°C, -25°C, +25°C, +85°C
70
60
PIF = 0dBm
80
LO + 3IF REJECTION (dBc)
PIF = 0dBm
PLO = -3dBm, 0dBm, +3dBm
70
60
910
960
1010
1060
1110
1160
910
1210
PIF = 0dBm VCC = 5.25V
80
VCC = 4.75V, 5.0V
70
60
50
50
50
MAX2032 toc83
LO FREQUENCY (MHz)
MAX2032 toc82
LO FREQUENCY (MHz)
MAX2032 toc81
LO FREQUENCY (MHz)
LO + 3IF REJECTION (dBc)
960
1010
1060
1110
1160
910
1210
960
1010
1060
1110
1160
1210
LO FREQUENCY (MHz)
LO - 3IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
LO - 3IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
LO - 3IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
90
90
90
PIF = 0dBm
TC = -40°C, -25°C, +25°C
LO - 3IF REJECTION (dBc)
80
TC = +85°C
70
60
50
PIF = 0dBm
80
PLO = -3dBm, 0dBm, +3dBm
70
60
960
1010
1060
1110
LO FREQUENCY (MHz)
1160
1210
VCC = 5.25V
80
VCC = 4.75V
70
VCC = 5.0V
60
50
50
910
PIF = 0dBm
MAX2032 toc86
LO FREQUENCY (MHz)
MAX2032 toc84
LO FREQUENCY (MHz)
LO - 3IF REJECTION (dBc)
LO + 3IF REJECTION (dBc)
65
55
50
14
PLO = +3dBm
70
PIF = 0dBm
75
MAX2032 toc85
LO - 2IF REJECTION (dBc)
TC = +85°C
70
PIF = 0dBm
LO - 2IF REJECTION (dBc)
TC = -40°C, -25°C
LO - 2IF REJECTION (dBc)
PIF = 0dBm
MAX2032 toc80
LO - 2IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
MAX2032 toc79
LO - 2IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
MAX2032 toc78
LO - 2IF REJECTION vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
75
LO - 3IF REJECTION (dBc)
MAX2032
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
910
960
1010
1060
1110
LO FREQUENCY (MHz)
1160
1210
910
960
1010
1060
1110
LO FREQUENCY (MHz)
______________________________________________________________________________________
1160
1210
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
Upconverter Curves
-20
TC = -40°C, -25°C
-25
TC = +85°C
-30
TC = +25°C
-20
-25
PLO = -3dBm, 0dBm, +3dBm
-30
910
960
1010
1060
1110
1160
-20
VCC = 5.25V
-25
VCC = 4.75V
-30
VCC = 5.0V
-35
910
1210
MAX2032 toc89
-15
-35
-35
960
1010
1060
1110
1160
910
1210
960
1010
1060
1110
1160
1210
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
IF LEAKAGE AT RF PORT vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
IF LEAKAGE AT RF PORT vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
IF LEAKAGE AT RF PORT vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
-70
TC = +85°C
-80
-90
-100
PLO = 0dBm
-70
PLO = +3dBm
-80
-90
-70
VCC = 4.75V
-80
-90
1160
1210
______________________________________________________________________________________
15
1060
1110
1160
1210
910
960
LO FREQUENCY (MHz)
1010
1060
1110
1160
1210
910
960
1010
1060
1110
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
RF PORT RETURN LOSS vs. RF FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
0
MAX2032 toc93
1010
L1 AND C4 BPF
REMOVED
5
RF PORT RETURN LOSS (dB)
960
VCC = 5.25V
-100
-100
910
VCC = 5.0V
-60
MAX2032 toc92
PLO = -3dBm
-60
-50
IF LEAKAGE AT RF PORT (dBm)
TC = -40°C, -25°C
MAX2032 toc91
TC = +25°C
-60
-50
IF LEAKAGE AT RF PORT (dBm)
MAX2032 toc90
-50
IF LEAKAGE AT RF PORT (dBm)
MAX2032 toc88
-15
LO LEAKAGE AT RF PORT (dBm)
MAX2032 toc87
LO LEAKAGE AT RF PORT (dBm)
-15
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
LO LEAKAGE AT RF PORT (dBm)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(L-C BPF TUNED FOR 810MHz RF FREQUENCY)
L1 AND C4 BPF
INSTALLED
10
15
20
THE OPTIONAL L-C BPF
ENHANCES PERFORMANCE
IN THE UPCONVERTER
MODE, BUT LIMITS
RF BANDWIDTH
25
30
35
750
800
850
900
950
1000
1050
RF FREQUENCY (MHz)
MAX2032
Typical Operating Characteristics (continued)
(Typical Application Circuit, L1 = 4.7nH, C4 = 6pF, C5 not used, VCC = 5.0V, PLO = 0dBm, PIF = 0dBm, fRF = fLO + fIF, fIF = 160MHz,
TC = +25°C, unless otherwise noted.)
MAX2032
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
Pin Description
PIN
1, 6, 8, 14
NAME
VCC
FUNCTION
Power-Supply Connection. Bypass each VCC pin to GND with capacitors as shown in the Typical
Application Circuit.
2
RF
3
TAP
Single-Ended 50Ω RF Input/Output. This port is internally matched and DC shorted to GND through a balun.
Center Tap of the Internal RF Balun. Connect to ground.
4, 5, 10, 12,
13, 16, 17, 20
GND
Ground
7
LOBIAS Bias Resistor for Internal LO Buffer. Connect a 523Ω ±1% resistor from LOBIAS to the power supply.
9
LOSEL
11
LO1
15
LO2
18, 19
IF-, IF+
—
EP
Local Oscillator Select. Logic-control input for selecting LO1 or LO2.
Local Oscillator Input 1. Drive LOSEL low to select LO1.
Local Oscillator Input 2. Drive LOSEL high to select LO2.
Differential IF Input/Outputs
Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple
ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple ground
vias are also required to achieve the noted RF performance.
Detailed Description
The MAX2032 can operate either as a downconverter or
an upconverter mixer that provides approximately 7dB of
conversion loss with a typical 7dB noise figure. IIP3 is
+33dBm and +31dBm for downconversion and upconversion modes, respectively. The integrated baluns and
matching circuitry allow for 50Ω single-ended interfaces
to the RF port and the two LO ports. The RF port can be
used as an input for downconversion or an output for
upconversion. A single-pole, double-throw (SPDT) switch
provides 50ns switching time between the two LO inputs
with 49dB of LO-to-LO isolation. Furthermore, the integrated LO buffer provides a high drive level to the mixer
core, reducing the LO drive required at the MAX2032’s
inputs to a -3dBm to +3dBm range. The IF port incorporates a differential output for downconversion, which is
ideal for providing enhanced IIP2 performance. For
upconversion, the IF port is a differential input.
Specifications are guaranteed over broad frequency
ranges to allow for use in cellular band WCDMA,
cdmaOne™, cdma2000, and GSM 850/GSM 900 2.5G
EDGE base stations. The MAX2032 is specified to operate over a 650MHz to 1000MHz RF frequency range, a
650MHz to 1250MHz LO frequency range, and a DC to
250MHz IF frequency range. Operation beyond these
ranges is possible; see the Typical Operating Characteristics for additional details.
The MAX2032 is optimized for high-side LO injection architectures. However, the device can operate in low-side LO
injection applications with an extended LO range, but
performance degrades as fLO decreases. See the Typical
Operating Characteristics for measurements taken with
fLO below 960MHz. For a pin-compatible device that has
been optimized for LO frequencies below 960MHz, refer
to the MAX2029.
RF Port and Balun
For using the MAX2032 as a downconverter, the RF
input is internally matched to 50Ω, requiring no external
matching components. A DC-blocking capacitor is
required because the input is internally DC shorted to
ground through the on-chip balun. For upconverter
operation, the RF port is a single-ended output similarly
matched to 50Ω.
LO Inputs, Buffer, and Balun
The MAX2032 is optimized for high-side LO injection
architectures with a 650MHz to 1250MHz LO frequency
range. For a device with a 570MHz to 900MHz LO frequency range, refer to the MAX2029. As an added feature, the MAX2032 includes an internal LO SPDT switch
that can be used for frequency-hopping applications.
The switch selects one of the two single-ended LO
ports, allowing the external oscillator to settle on a particular frequency before it is switched in. LO switching
time is typically less than 50ns, which is more than adequate for nearly all GSM applications. If frequency hopping is not employed, set the switch to either of the LO
inputs. The switch is controlled by a digital input
(LOSEL): logic-high selects LO2, logic-low selects LO1.
cdmaOne is a trademark of CDMA Development Group.
16
______________________________________________________________________________________
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
High-Linearity Mixer
The core of the MAX2032 is a double-balanced, highperformance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer.
Differential IF
The MAX2032 mixer has a DC to 250MHz IF frequency
range. Note that these differential ports are ideal for providing enhanced IIP2 performance. Single-ended IF
applications require a 1:1 balun to transform the 50Ω differential IF impedance to 50Ω single-ended. Including
the balun, the IF return loss is better than 15dB. The differential IF is used as an input port for upconverter operation. The user can use a differential IF amplifier following
the mixer, but a DC block is required on both IF pins.
Applications Information
Input and Output Matching
The RF and LO inputs are internally matched to 50Ω. No
matching components are required. As a downconverter, the return loss at the RF port is typically better than
15dB over the entire input range (650MHz to 1000MHz),
and return loss at the LO ports are typically 15dB
(960MHz to 1180MHz). RF and LO inputs require only
DC-blocking capacitors for interfacing (see Table 1).
An optional L-C bandpass filter (BPF) can be installed at
the RF port to improve upconverter performance. See
the Typical Application Circuit and Typical Operating
Characteristics for upconverter operation with an L-C
BPF tuned for 810MHz RF frequency. Performance can
be optimized at other frequencies by choosing different
values for L1 and C4. Removing L1 and C4 altogether
results in a broader match, but performance degrades.
Contact factory for details.
The IF output impedance is 50Ω (differential). For evaluation, an external low-loss 1:1 (impedance ratio) balun
transforms this impedance to a 50Ω single-ended output (see the Typical Application Circuit).
Table 1. Typical Application Circuit Component List
DESIGNATION
QTY
DESCRIPTION
SUPPLIER
82pF microwave capacitor (0603). Use for 800MHz/
900MHz cellular band applications.
C1
1
Murata Electronics North America, Inc.
7pF microwave capacitor (0603). Use for 700MHz band
applications.
C2, C7, C8, C10,
C11, C12
6
82pF microwave capacitors (0603)
Murata Electronics North America, Inc.
C3, C6, C9
3
0.01µF microwave capacitors (0603)
Murata Electronics North America, Inc.
C4*
1
6pF microwave capacitor (0603)
—
2pF microwave capacitor (0603). Use for 800MHz/
900MHz cellular band applications.
C5**
Murata Electronics North America, Inc.
1
3.3pF microwave capacitor (0603). Use for 700MHz band
applications.
L1*
1
4.7nH inductor (0603)
R1
1
523Ω ±1% resistor (0603)
Digi-Key Corp.
—
T1
1
MABAES0029 1:1 transformer (50:50)
M/A-Com, Inc.
U1
1
MAX2032 IC (20 TQFN)
Maxim Integrated Products, Inc.
*C4 and L1 installed only when mixer is used as an upconverter.
**C5 installed only when mixer is used as a downconverter.
______________________________________________________________________________________
17
MAX2032
To avoid damage to the part, voltage MUST be applied
to VCC before digital logic is applied to LOSEL (see the
Absolute Maximum Ratings). LO1 and LO2 inputs are
internally matched to 50Ω, requiring an 82pF DC-blocking capacitor at each input.
A two-stage internal LO buffer allows a wide inputpower range for the LO drive. All guaranteed specifications are for a -3dBm to +3dBm LO signal power. The
on-chip low-loss balun, along with an LO buffer, drives
the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF outputs
are integrated on-chip.
MAX2032
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
Bias Resistor
Power-Supply Bypassing
Bias current for the LO buffer is optimized by fine tuning resistor R1. If reduced current is required at the
expense of performance, contact the factory for details.
If the ±1% bias resistor values are not readily available,
substitute standard ±5% values.
Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin with
the capacitors shown in the Typical Application Circuit.
See Table 1.
Layout Considerations
The exposed pad (EP) of the MAX2032’s 20-pin thin
QFN-EP package provides a low-thermal-resistance
path to the die. It is important that the PCB on which the
MAX2032 is mounted be designed to conduct heat
from the EP. In addition, provide the EP with a lowinductance path to electrical ground. The EP MUST be
soldered to a ground plane on the PCB, either directly
or through an array of plated via holes.
A properly designed PCB is an essential part of any
RF/microwave circuit. Keep RF signal lines as short as
possible to reduce losses, radiation, and inductance.
For the best performance, route the ground-pin traces
directly to the exposed pad under the package. The
PCB exposed pad MUST be connected to the ground
plane of the PCB. It is suggested that multiple vias be
used to connect this pad to the lower-level ground
planes. This method provides a good RF/thermal conduction path for the device. Solder the exposed pad on
the bottom of the device package to the PCB. The
MAX2032 evaluation kit can be used as a reference for
board layout. Gerber files are available upon request at
www.maxim-ic.com.
18
Exposed Pad RF/Thermal Considerations
______________________________________________________________________________________
High-Linearity, 650MHz to 1000MHz Upconversion/
Downconversion Mixer with LO Buffer/Switch
T1
1
4
3
5
IF
C3
RF
RF
C4
L1
19
17
GND
IF18
16
C12
VCC
C1
20
+
C2
IF+
GND
VCC
GND
C5
TAP
GND
GND
15
1
MAX2032
2
14
13
3
12
4
EP
11
5
LO2
LO2
VCC
VCC
C11
GND
GND
LO1
LO1
C10
10
GND
VCC
9
LOSEL
8
LOBIAS
7
VCC
6
R1
VCC
LOSEL
C6
C7
C8
VCC
NOTE: L1 AND C4 USED ONLY FOR UPCONVERTER OPERATION.
C5 USED ONLY FOR DOWNCONVERTER OPERATION.
C9
Package Information
Chip Information
PROCESS: SiGe BiCMOS
For the latest package outline information and land patterns, go to
www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the
package code indicates RoHS status only. Package drawings
may show a different suffix character, but the drawing pertains
to the package regardless of RoHS status.
PACKAGE TYPE
PACKAGE CODE
DOCUMENT NO.
20 Thin QFN-EP
T2055+3
21-0140
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 19
© 2009 Maxim Integrated Products
Maxim is a registered trademark of Maxim Integrated Products, Inc.
MAX2032
Typical Application Circuit