MAXIM MAX2265EVKIT

19-1524; Rev 2; 11/99
MAX2264/MAX2265/MAX2266 Evaluation Kits
Each kit is assembled with either the MAX2264, MAX2265
or MAX2266 and incorporates input and output matching
components optimized for the 824MHz to 849MHz RF frequency band. These EV kits are capable of operating at
RF frequencies from 750MHz to 1000MHz with the appropriate matching components.
Features
♦ Easy Evaluation of MAX2264/MAX2265/MAX2266
♦ +2.7V to +5V Single-Supply Operation
♦ RF Input/Output Matched for 824MHz to 849MHz
Operation
♦ All Matching Components Included
Ordering Information
TEMP. RANGE
IC PACKAGE
MAX2264EVKIT
PART
-40°C to +85°C
16 TSSOP-EP*
MAX2265EVKIT
-40°C to +85°C
16 TSSOP-EP*
MAX2266EVKIT
*Exposed Paddle
-40°C to +85°C
16 TSSOP-EP*
MAX2264 EV Kit Component List
DESIGNATION QTY
DESCRIPTION
DESCRIPTION
C26
1
100pF ±5% ceramic capacitors (0402)
Murata GRM36COG101J50 or
Taiyo Yuden UMK105CH101JW
GND, VCC
2
Test points
IN, OUT
2
SMA connectors (PC edge mount)
EF Johnson 142-0701-801
0.01µF ±5% ceramic capacitors (0402)
Murata GRM36X7R103J16 or
Taiyo Yuden EMK105B103KW
JU1, JU2
2
3-pin headers
L1
1
3.9nH ±0.3nH inductor (0603)
Murata LQG11A3N9S00
L2
1
5.6nH ±2% inductor
Coilcraft 1606-6G
L3
1
12nH ±5% inductor (0603)
Murata LQG11A12NJ00
L4
1
39nH ±5% inductor (0603)
Murata LQG11A39NJ00
L5
1
1.2nH ±0.3nH inductor (0603)
Murata LQG11A1N2S00
Q1
R1, R3
R2
1
2
1
0Ω resistor (0805)
51kΩ ±5% resistors (0603)
30.1kΩ ±1% resistor (0603)
C1
1
C2, C4, C6,
C7, C9,
C14, C17
7
C3, C5, C8,
C13, C16
5
C10
1
5.1pF ±0.1pF porcelain capacitor
ATC 100A5R1BW150X
1
10pF ±0.1pF porcelain capacitor
ATC 100A100FW150X
Mounted with top side aligned six tick
marks from the zero tick mark (ruler located to the right of C11; see Figure 3)
C11
DESIGNATION QTY
470pF ±5% ceramic capacitor (0603)
Murata GRM39COHG471J50
6.2pF ±0.25pF ceramic capacitor (0603)
Murata GRM39COG6R2C50
C12
1
4.7pF ±0.1pF ceramic capacitor (0402)
Murata GRM39COG4R7B50V
C15
0
Not installed
C18
1
220pF ±5% ceramic capacitor (0603)
Murata GRM39COG221J050
1
7.5kΩ ±1% resistor (0603)
1
10µF ±20%, 16V tantalum capacitor
AVX TAJB106M016
R4
C19
R5
1
24.3kΩ ±1% resistor (0603)
0.01µF ±5% ceramic capacitor (0603)
Murata GRM39X7R103J50
R7
1
33.2kΩ ±1% resistor (0603)
R8, R9, R10
3
0Ω resistors (0603)
U1
1
MAX2264EUE (16-pin TSSOP-EP)
None
2
Shunts (JU1, JU2)
None
1
MAX226X PC board
None
1
MAX2264/5/6 data sheet
None
1
MAX2264/5/6 EV kits data sheet
C20
C21
C22–C25
1
1
100pF ±5% ceramic capacitor (0603)
Murata GRM39COG101J50
4
0.1µF ±10% ceramic capacitors (0603)
Murata GRM39X7R104K50V or
Taiyo Yuden EMK107BJ104KA
________________________________________________________________ Maxim Integrated Products
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.
For small orders, phone 1-800-835-8769.
Evaluate: MAX2264/MAX2265/MAX2266
General Description
The MAX2264/MAX2265/MAX2266 evaluation kits (EV
kits) simplify evaluation of the MAX2264/MAX2265/
MAX2266 power amplifiers (PAs), which are designed for
operation in IS-98-based CDMA, IS-136-based TDMA,
and PDC cellular phones operating in the 900MHz range.
The kits enable testing of the devices’ RF performance
and require no additional support circuitry. The EV kits’
signal inputs and outputs use SMA connectors to facilitate the connection of RF test equipment.
Evaluate: MAX2264/MAX2265/MAX2266
MAX2264/MAX2265/MAX2266 Evaluation Kits
MAX2265 EV Kit Component List
DESIGNATION QTY
C1
C2, C4, C6,
C7, C9
C3, C5, C8
C10
C11
C12–C18,
C24, C25
C19
5.1pF ±0.25pF ceramic capacitor (0603)
Murata GRM39COG5R1C050
GND, VCC
2
IN, OUT
2
5
100pF ±5% ceramic capacitors (0402)
Murata GRM36COG101J50 or
Taiyo Yuden UMK105CH101JW
SMA connectors (PC edge mount)
EF Johnson 142-0701-801
JU1, JU2
2
3-pin headers
L1
1
L2
1
L3, L5
0
L4
1
39nH ±5% inductor (0603)
Murata LQG11A39NJ00
L6
1
2.2nH ±0.3nH inductor (0603)
Coilcraft 0402CS-2N2XJBG
Q1, R4, R5
0
Not installed
R1, R3
2
51kΩ ±5% resistors (0603)
R2
1
35.7kΩ ±1% resistor (0603)
R7
1
33.2kΩ ±1% resistor (0603)
R9, R10
2
0Ω resistors (0603)
U1
1
MAX2265EUE (16-pin TSSOP-EP)
None
2
Shunts (JU1, JU2)
None
1
MAX226X PC board
None
1
MAX2264/5/6 data sheet
None
1
MAX2264/5/6 EV kits data sheet
3
0.01µF ±5% ceramic capacitors (0402)
Murata GRM36X7R103J16 or
Taiyo Yuden EMK105B103KW
1
0.01µF ±20% high-Q ceramic capacitor
ATC 200A103MW50
1
9.1pF ±0.1pF porcelain capacitor
ATC 100A9R1BW150X
0
1
Not installed
10µF ±20%, 16V tantalum capacitor
AVX TAJB106M016
0.01µF ±5% ceramic capacitor (0603)
Murata GRM39X7R103J50
100pF ±5% ceramic capacitor (0603)
Murata GRM39COG101J50
2
0.1µF ±10% ceramic capacitors (0603)
Murata GRM39X7R104K50V or
Taiyo Yuden EMK107BJ104KA
C26
1
470pF ±5% ceramic capacitor (0603)
Murata GRM39COG471J50
C27
1
3.3pF ±5% ceramic capacitor (0402)
Murata GRM36COG220J050 or
Taiyo Yuden UMK1O5CH220JW
C22, C23
DESCRIPTION
1
1
C21
DESIGNATION QTY
Test points
Mouser 151-203
1
C20
DESCRIPTION
5.6nH ±0.3nH inductor (0603)
Murata LQG11A5N6S00
5.6nH ±2% inductor
Coilcraft 1606-6G
Not installed
Component Suppliers
SUPPLIER
2
PHONE
FAX
WEB
ATC
516-622-4700
516-622-4748
www.atceramics.com
AVX
803-946-0690
803-626-3123
www.avx-corp.com
Coilcraft
847-639-6400
847-639-1469
www.coilcraft.com
EF Johnson
402-474-4800
402-474-4858
www.efjohnson.com
Kamaya
219-489-1533
219-489-2261
www.kamaya.com
Murata Electronics
800-831-9172
814-238-0490
www.murata.com
NEC
408-243-2111
408-243-2410
www.cel.com
ROHM
408-433-2225
408-434-0531
www.rohm.com
Taiyo Yuden
408-573-4150
408-573-4159
www.t-yuden.com
_______________________________________________________________________________________
MAX2264/MAX2265/MAX2266 Evaluation Kits
DESIGNATION QTY
DESCRIPTION
2
JU1, JU2
2
3-pin headers
L1
1
3.9nH ±0.3nH inductor (0603)
Murata LQG11A3N9S00
L2
1
5.6nH ±2% inductor
Coilcraft 1606-6G
3.9pF ±0.1pF porcelain capacitor
ATC 100A3R9BW150X
L3
1
4.7nH ±5% inductor (0603)
Murata LQG11A4N7J00
7.5pF ±0.1pF porcelain capacitor
ATC 100A7R5FW150X
Mounted with top side aligned six tick
marks from the zero tick mark (ruler located to the right of C11; see Figure 3)
L4
1
39nH ±5% inductor (0603)
Murata LQG11A39NJ00
L5
1
1.2nH ±0.3nH inductor (0603)
Murata LQG11A1N2S00
L6
1
100nH ±5% inductor (0603)
Murata LQG11AR10J00
Q2
1
Open collector inverter
ROHM DTC143ZE
R1, R3
R2
2
1
51kΩ ±5% resistors (0603)
26.1kΩ ±1% resistor (0603)
R4
1
7.5kΩ ±1% resistor (0603)
1
1
24.3kΩ ±1% resistor (0603)
10kΩ ±5% resistor (0603)
1
C2, C4, C6,
C7, C9,
C14, C17
7
100pF ±5% ceramic capacitors (0402)
Murata GRM36COG101J50 or
Taiyo Yuden UMK105CH101JW
C3, C5, C8,
C13, C16
5
0.01µF ±5% ceramic capacitors (0402)
Murata GRM36X7R103J16 or
Taiyo Yuden EMK105B103KW
C10
1
1
C12
1
DESCRIPTION
IN, OUT
C1
C11
DESIGNATION QTY
SMA connectors (PC edge mount)
EF Johnson 142-0701-801
6.2pF ±0.25pF ceramic capacitor (0603)
Murata GRM39COG6R2C50
5.1pF ±0.1pF ceramic capacitor (0402)
Murata GRM39COG5R1B50V
C15, C27–C30
0
Not installed
C18
1
220pF ±5% ceramic capacitor (0603)
Murata GRM39COG221J050
C19
1
10µF ±20%, 16V tantalum capacitor
AVX TAJB106M016
R5
R6
1
33.2kΩ ±1% resistor (0603)
1
0.01µF ±5% ceramic capacitor (0603)
Murata GRM39X7R103J50
R7
C20
R8, R9, R10
3
0Ω resistors (0603)
C21
1
100pF ±5% ceramic capacitor (0603)
Murata GRM39COG101J50
R11
1
510Ω ±5% resistor (0603)
U1
1
MAX2266EUE (16-pin TSSOP-EP)
1
NEC UPG152TA
4
0.1µF ±10% ceramic capacitors (0603)
Murata GRM39X7R104K50V or
Taiyo Yuden EMK107BJ104KA
U2
C22–C25
None
2
Shunts (JU1, JU2)
None
1
MAX226Z PC board
470pF ±5% ceramic capacitor (0603)
Murata GRM39COHG471J50
None
1
MAX2264/5/6 data sheet
None
1
MAX2264/5/6 EV kits data sheet
C26
GND, VCC
1
2
Test points
_______________________________________________________________________________________
3
Evaluate: MAX2264/MAX2265/MAX2266
MAX2266 EV Kit Component List
Evaluate: MAX2264/MAX2265/MAX2266
MAX2264/MAX2265/MAX2266 Evaluation Kits
_________________________Quick Start
The MAX2264/MAX2265/MAX2266 EV kits are fully
assembled and factory tested. Follow the instructions in
the Connections and Setup section for proper device
evaluation.
Test Equipment Required
This section lists the test equipment recommended to
verify operation of the MAX2264/MAX2265/MAX2266. It is
intended as a guide only, and some substitutions are
possible.
• An RF signal generator capable of delivering at least
+10dBm of output power at the operating frequency
with CDMA modulation (HP E4433G or equivalent)
• An RF power sensor capable of handling at least
+20dBm of output power at the operating frequency
(HP 8482A, or equivalent)
• A 20dB high-power attenuator
• An RF power meter capable of measuring up to
+20dBm of output power at the operating frequency
(HP EPM-441A or equivalent)
• An RF spectrum analyzer capable of measuring
ACPR and covering the MAX2264/MAX2265/
MAX2266’s operating frequency range (Rhodes at
Schwartz FSEA20, for example)
• A power supply capable of up to 1A at +2.7V to +5V
• A high-impedance voltmeter for measuring the actual
operating voltage
• An ammeter for measuring the supply current
(optional)
• Two 50Ω SMA cables
• A network analyzer (HP 8753D, for example) to measure small-signal return loss and gain (optional)
Connections and Setup
This section provides a step-by-step guide to operating
the EV kits and testing the devices’ functions. Do not
turn on the DC power or RF signal generator until all
connections are made.
1) Connect a 20dB high-power attenuator to the OUT
SMA connector on the EV kit. This will prevent overloading the power sensor and the power meter.
2) Connect a DC supply set to +3.3V (through an
ammeter if desired), and connect the voltmeter to
the EV kit’s VCC and GND terminals.
3) Connect an RF signal generator to the IN SMA connector. Set the generator for an 836MHz output frequency at a 0dBm power level.
4
4) Connect the power sensor to the power meter.
Calibrate the power sensor for 836MHz. Set the
power meter offset to compensate the 20dB attenuator plus any cable loss (between 0.5dB and 2dB),
and circuit board losses (approximately 0.1dB).
5) Connect a power sensor to the 20dB high-power
attenuator.
6) Place the HIGH/LOW jumper (JU1) in the HIGH
position and the ON/OFF jumper (JU2) in the ON
position.
7) Turn on the DC supply. The supply current should
read approximately 80mA to 90mA.
8) Activate the RF generator’s output. Set the RF generator’s output to produce a reading of +28dBm on
the power meter. Verify that the voltmeter reads
+3.3V. Iteratively adjust the power supply’s output
and the RF generator’s output to produce a +3.3V
reading on the voltmeter and a reading of 28dBm
on the power meter.
a)
For the MAX2264, the supply current should
increase to approximately 580mA.
b) For the MAX2265, the supply current should
increase to approximately 520mA.
c) For the MAX2266, the supply current should
increase to approximately 580mA.
9) For the MAX2264/MAX2266 EV kits:
a)
b)
c)
d)
e)
Adjust the RF generator’s output to -10dBm.
Turn off the RF generator’s output.
Place the HIGH/LOW jumper (JU1) in the
LOW position.
The supply current reading should drop to
approximately 34mA.
Activate the RF generator’s output.
Adjust the RF generator’s output for a +16.5dBm
power meter reading. Iteratively adjust the
power supply’s output and the RF generator’s
output to produce a reading of +3.3V on the
voltmeter and a +16.5dBm reading on the
power meter. The supply current should
increase to approximately 105mA/70mA
(MAX2264/MAX2266).
_______________________________________________________________________________________
_______________________________________________________________________________________
VCC
LOW
HIGH
C23
0.1µF
OFF
ON
JU2
R9
0Ω
VCC
VCC
JU1
R10
0Ω
C22
0.1µF
C26
470pF
C9
100pF
VCC
C7
100pF
L4
39nH
BIAS1H
VCC
PWR
IN1
5 V
CC
4
3
2
1
L2
5.6nH
SMA
OUT
U1
MAX2264
C10
5.1pF
7
BIAS2L
8
OUT1
6 SHDN
C5
0.01µF
C3
0.01µF
R4
7.5k 1%
C8
0.01µF
R3
51k
C6
100pF
R2
30.1k 1%
C4
100pF
C2
100pF
R1
51k
C12
4.7pF
C11
10pF
OUT1
BIAS1L
OUT0
NFP
GND
VCC
BIA62H
IN0
L1
3.9nH
9
10
11
12
13
14
15
16
Q1
0Ω
R5
24.3k 1%
N.C.
C16
0.01µF
R7
33.2k 1%
L5
1.2nH
C17
100pF
C18
220pF
C13
0.01µF
L3
12nH
C25
0.1µF
R8
0Ω
VCC
C14
100pF
C21
100pF
VCC
C24
0.1µF
C20
0.01µF
C19
10µF
16V
GND
VCC
Evaluate: MAX2264/MAX2265/MAX2266
VCC
C1
6.2pF
SMA
IN
MAX2264/MAX2265/MAX2266 Evaluation Kits
Figure 1. MAX2264 EV Kit Schematic
5
6
VCC
LOW
HIGH
R9
0Ω
JU1
C23
0.1µF
OFF
ON
VCC
VCC
JU2
R10
0Ω
C22
0.1µF
C26
470pF
C9
100pF
VCC
C7
100pF
L4
39nH
C8
0.01µF
R3
51k
C6
100pF
C4
100pF
R2
35.7k 1%
C2
100pF
R1
51k
C1
5.1pF
BIAS1
VCC
SHDN
IN1
5 V
CC
4
L2
5.6nH
8
7
SMA
OUT
U1
MAX2265
C10
0.01µF
OUT1
N.C.
6 SHDN
C5
0.01µF
C3
0.01µF
3
2
1
SMA
IN
C11
9.1pF
L6
2.2nH
OUT1
N.C.
N.C.
NFP
GND
N.C.
BIAS2H
N.C.
L1
5.6nH
C27
3.3pF
9
10
11
12
13
14
15
16
R7
33.2k 1%
VCC
C21
100pF
C20
0.01µF
C19
10µF
16V
GND
VCC
Evaluate: MAX2264/MAX2265/MAX2266
MAX2264/MAX2265/MAX2266 Evaluation Kits
Figure 2. MAX2265 EV Kit Schematic
_______________________________________________________________________________________
_______________________________________________________________________________________
VCC
C23
0.1µF
OFF
ON
VCC
VCC
JU2
C22
0.1µF
R9
0Ω
LOW
HIGH
VCC
R10
0Ω
JU1
C9
100pF
C3
0.01µF
R1
51k
L4
39nH
2
3
2
1
C28
4
5
L6
100nH
9
10
11
12
13
14
1
C29
C12
5.1pF
C11
7.5pF
OUTH
BIAS1L
OUTL
NOISE
GND
VCC
BIAS2
15
16
6
SMA
OUT
C10
3.9pF
MAX2266
U1
IN0
Q2
3
L2
5.6nH
7
BIAS2L
8
OUTH
6 SHDN
C5
0.01µF
R6
10k
BIAS1
VCC
PWR
IN1
5 V
CC
4
C30
100pF
VCC
R4
7.5k 1%
C8
0.01µF
R3
51k
C6
100pF
R2
26.1k 1%
C2
100pF
C7
100pF
C4
100pF
C26
470pF
L1
3.9nH
U2
UPG152TA
R11
510Ω
R5
24.3k 1%
N.C.
C16
0.01µF
R7
33.2k 1%
L5
1.2nH
3
2
1
C17
100pF
C18
220pF
C13
0.01µF
L3
4.7nH
C25
0.1µF
R8
0Ω
C21
100pF
VCC
C14
100pF
VCC
C20
0.01µF
C24
0.1µF
C19
10µF
16V
GND
VCC
Evaluate: MAX2264/MAX2265/MAX2266
VCC
C1
6.2pF
SMA
IN
MAX2264/MAX2265/MAX2266 Evaluation Kits
Figure 3. MAX2266 EV Kit Schematic
7
Evaluate: MAX2264/MAX2265/MAX2266
MAX2264/MAX2265/MAX2266 Evaluation Kits
Layout Issues
A good PC board is an essential part of an RF circuit
design. The EV kit PC board can serve as a guide for laying out a board using the MAX2264/MAX2265/MAX2266.
Keep traces carrying RF signals as short as possible to
minimize radiation and insertion loss due to the PC board.
Each VCC node on the PC board should have its own
decoupling capacitor. This minimizes supply coupling
from one section of the IC to another. Using a star topology for the supply layout, in which each VCC node on the
circuit has a separate connection to a central VCC node,
can further minimize coupling between sections of the IC.
1.0"
Figure 4. MAX2264/MAX2265 EV Kits—Component Placement
Guide
1.0"
Figure 5. MAX2264/MAX2265 EV Kits PC Board Layout—
Component Side
8
1.0"
Figure 6. MAX2264/MAX2265 EV Kits PC Board Layout—
Ground Plane
_______________________________________________________________________________________
MAX2264/MAX2265/MAX2266 Evaluation Kits
Evaluate: MAX2264/MAX2265/MAX2266
1.0"
1.0"
Figure 7. MAX2264/MAX2265 EV Kits PC Board Layout—
Power Plane
1.0"
Figure 8. MAX2264/MAX2265 EV Kits PC Board Layout—
Solder Side
1.0"
Figure 9. MAX2266 EV Kit—Component Placement Guide
Figure 10. MAX2266 EV Kit PC Board Layout—Component
Side
_______________________________________________________________________________________
9
Evaluate: MAX2264/MAX2265/MAX2266
MAX2264/MAX2265/MAX2266 Evaluation Kits
1.0"
1.0"
Figure 11. MAX2266 EV Kit PC Board Layout—Ground Plane
Figure 12. MAX2266 EV Kit PC Board Layout—Power Plane
1.0"
Figure 13. MAX2266 EV Kit PC Board Layout—Solder Side
10
______________________________________________________________________________________
MAX2264/MAX2265/MAX2266 Evaluation Kits
Evaluate: MAX2264/MAX2265/MAX2266
NOTES
______________________________________________________________________________________
11
Evaluate: MAX2264/MAX2265/MAX2266
MAX2264/MAX2265/MAX2266 Evaluation Kits
NOTES
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 1999 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products.