MITSUBISHI RA45H7687M1

MITSUBISHI RF MOSFET MODULE
ELECTROSTATIC SENSITIVE DEVICE
OBSERVE HANDLING PRECAUTIONS
RA45H7687M1
RoHS Compliance, 764-870MHz 45W 12.8V, 2 Stage Amp. For MOBILE RADIO
DESCRIPTION
The RA45H7687M1 is a 45-watt RF MOSFET Amplifier
Module for 12.8-volt mobile radios that operate in the 764- to
870-MHz range.
The battery can be connected directly to the drain of the
enhancement-mode MOSFET transistors. Without the gate
voltage 1 and the gate voltage 2(VGG1=VGG2=0V), only a small
leakage current flows into the drain and the nominal output
signal (Pout=45W) attenuates up to 60 dB. When fixed i.e. 3.4V, is
supplied to the gate voltage 1, the output power and the drain
current increase as the gate voltage 2 increases. The output
power and the drain current increase substantially with the gate
voltage 2 around 0V (minimum) under the condition when the
gate voltage 1 is kept in 3.4V. The nominal output power
becomes available at the state that VGG2 is 4V (typical) and 5V
(maximum). At this point, VGG1 has to be kept in 3.4V.
At VGG1=3.4V & VGG2=5V, the typical gate currents are 0.4mA.
This module is designed for non-linear FM modulation, but may
also be used for linear modulation by setting the drain quiescent
current with the gate voltages and controlling the output power
with the input power.
FEATURES
• Enhancement-Mode MOSFET Transistors
(IDD≅0 @ VDD=12.8V, VGG=0V)
BLOCK DIAGRAM
2
3
1
4
5
1
RF Input added Gate Voltage 1(Pin&VGG1)
2
Gate Voltage 2(VGG2), Power Control
3
Drain Voltage (VDD), Battery
4
RF Output (Pout)
5
RF Ground (Case)
• Pout>45W, ηT>33% @VDD=12.8V, VGG1=3.4V, VGG2=5V, Pin=50mW
• Broadband Frequency Range: 764-870MHz
• Metal cap structure that makes the improvements of RF
radiation simple
• Low-Power Control Current IGG1+IGG2=0.4mA (typ) @ VGG1=3.4V, VGG2=5V
• Module Size: 67 x 18 x 9.9 mm
• Linear operation is possible by setting the quiescent drain
current with the gate voltages and controlling the output power
with the input power.
PACKAGE CODE: H2M
RoHS COMPLIANCE
• RA45H7687M1 is a RoHS compliant product.
• RoHS compliance is indicate by the letter “G” after the Lot Marking.
• This product include the lead in the Glass of electronic parts and the
lead in electronic Ceramic parts.
How ever, it is applicable to the following exceptions of RoHS Directions.
1.Lead in the Glass of a cathode-ray tube, electronic parts, and
fluorescent tubes.
2.Lead in electronic Ceramic parts.
ORDERING INFORMATION:
ORDER NUMBER
SUPPLY FORM
RA45H7687M1-101
Antistatic tray,
10 modules/tray
RA45H7687M1
MITSUBISHI ELECTRIC
1/9
th
18 Jan 2007
MITSUBISHI RF POWER MODULE
ELECTROSTATIC SENSITIVE DEVICE
OBSERVE HANDLING PRECAUTIONS
RoHS COMPLIANCE
RA45H7687M1
MAXIMUM RATINGS (Tcase=+25°C, ZG=ZL=50Ω, unless otherwise specified)
SYMBOL PARAMETER
CONDITIONS
RATING
UNIT
VDD
Drain Voltage
VGG1=3.4V ± 7%, VGG2<5V, Pin=0W
17
V
VGG1
Gate Voltage 1
VGG2<5V, VDD<12.8V, Pin=50mW
4.5
V
VGG2
Gate Voltage 2
VGG1=3.4V ± 7%, VDD<12.8V, Pin=50mW
6
V
100
mW
60
W
-30 to +100
°C
-40 to +110
°C
Pin
Input Power
Pout
Output Power
Tcase(OP)
Tstg
f=764-870MHz,
VGG1=3.4V ± 7%, VGG2<5V
Operation Case Temperature Range
Storage Temperature Range
The above parameters are independently guaranteed.
ELECTRICAL CHARACTERISTICS (Tcase=+25°C, ZG=ZL=50Ω, unless otherwise specified)
SYMBOL PARAMETER
F
CONDITIONS
Frequency Range
MIN
764
TYP
MAX
UNIT
870
MHz
Pout1
Output Power 1
VDD=12.8V, VGG1=3.4V, VGG2=5V, Pin=50mW
45
W
ηT
Total Efficiency
VDD=12.8V
33
%
2fo
nd
Harmonic
VGG1=3.4V
-40
dBc
nd
Harmonic
VGG2=5V
-35
dBc
3:1
—
1
mA
1.5
W
2
3fo
3
ρin
Input VSWR
Pin=50mW
IDD
Leakage Current
VDD=17V, VGG1=VGG2=0V, Pin=0W
Pout2
Output Power 2*
—
Stability
—
Load VSWR Tolerance
VDD=15.2V, VGG1=3.4V, VGG2=1V, Pin=2dBm
VDD=10.0-15.2V, Pin=1-100mW,
1.5<Pout <50W (VGG2 control, VGG1=3.4V),
Load VSWR=3:1
VDD=15.2V, Pin=50mW,
Pout=45W (VGG2 control, VGG1=3.4V),
Load VSWR=20:1
No parasitic oscillation
—
No degradation or destroy
—
*: This is guaranteed as design value.
All parameters, conditions, ratings, and limits are subject to change without notice.
RA45H7687M1
MITSUBISHI ELECTRIC
2/9
th
18 Jan 2007
MITSUBISHI RF POWER MODULE
ELECTROSTATIC SENSITIVE DEVICE
OBSERVE HANDLING PRECAUTIONS
RoHS COMPLIANCE
RA45H7687M1
nd
O UT PUT PO WER, T O T AL EFFICIENCY,
v e rsus FREQ UENCY
2 ,3
80
-30
70
P out
60
50
ηT
40
rd
30
V DD =12.8V
V GG1 =3.4V
V GG2 =5V
P in=50m W
20
HARM O NICS v e rsus FREQ UENCY
V DD =12.8V
V GG1 =3.4V
V GG2 =5V
P in=50m W
-40
HARMONICS (dBc)
TOTAL EFFICIENCY(%)
OUTPUT POWER Pout (W)
TYPICAL PERFORMANCE (Tcase=+25°C, ZG=ZL=50Ω, unless otherwise specified)
3 rd
-50
2 nd
-60
-70
-80
10
760
780
800
820
840
FREQUENCY f(M Hz)
860
760
880
780
800
820
840
FREQUENCY f(MHz)
860
880
INPUT VSWR v e rsus FREQ UENCY
INPUT VSWR ρ in (-)
5
V DD =12.8V
V GG1 =3.4V
V GG2 =5V
P in=50m W
4
3
2
ρ in
1
800
820
840
FREQUENCY f(MHz)
860
880
OUTPUT POWER, POWER GAIN and
DRAIN CURRENT versus INPUT POWER
OUTPUT POWER, POWER GAIN and
DRAIN CURRENT versus INPUT POWER
24
20
Gp
40
16
30
12
20
10
0
-10
-5
0
5
8
f=764M Hz
V DD=12.8V
V GG1 =3.4V
V GG2 =5V
IDD
10
15
4
POWER GAIN Gp(dB)
50
60
OUTPUT POWER Pout (dBm)
Pout
DRAIN CURRENT DI D (A)
POWER GAIN Gp(dB)
OUTPUT POWER Pout (dBm)
60
24
Pout
50
Gp
40
16
30
12
20
10
-10
20
-5
OUTPUT POWER, POWER GAIN and
DRAIN CURRENT versus INPUT POWER
20
16
Gp
30
12
20
8
10
f=870M Hz
V DD=12.8V
V GG1=3.4V
V GG2=5V
0
-10
-5
0
5
10
0
20
15
4
0
20
18
f=764M Hz
V GG1 =3.4V
V GG2 =5V
Pin=50m W
80
70
60
16
14
12
50
10
40
8
IDD
30
6
Pout
20
4
10
2
0
0
2
INPUT POW ER P in(dBm)
RA45H7687M1
15
90
OUTPUT POWER Pout (W)
Pout
DRAIN CURRENT DI D (A)
POWER GAIN Gp(dB)
OUTPUT POWER Pout (dBm)
24
IDD
10
OUTPUT POWER and DRAIN CURRENT
versus DRAIN VOLTAGE
60
40
5
4
INPUT POW ER P in(dBm)
INPUT POW ER P in(dBm)
50
0
8
f=806M Hz
V DD=12.8V
V GG1 =3.4V
V GG2 =5V
IDD
0
0
20
DRAIN CURRENTIDD(A)
780
DRAIN CURRENT DI D (A)
760
MITSUBISHI ELECTRIC
3/9
4
6
8
10
12
DRAIN VOLTAGE V D D (V)
14
16
th
18 Jan 2007
MITSUBISHI RF POWER MODULE
ELECTROSTATIC SENSITIVE DEVICE
OBSERVE HANDLING PRECAUTIONS
RA45H7687M1
RoHS COMPLIANCE
TYPICAL PERFORMANCE (Tcase=+25°C, ZG=ZL=50Ω, unless otherwise specified)
O U T PU T PO WER and D R AIN C U R R EN T
v e rsus D R AIN VO LT AG E
80
14
12
50
10
40
8
ID D
6
P out
20
4
10
2
0
0
2
4
6
8
10
12
14
70
60
10
40
2
0
4
6
6
4
ID D
f=764M Hz
V DD =12.8V
V GG1 =3.4V
P in=50m W
2
3
4
GA TE V OLTA GE V GG 2 (V )
2
OUTPUT POWER Pout (W) (dBm)
30
DRAIN CURRENT IDD (A)
OUTPUT POWER Pout (W) (dBm)
10
8
1
0
6
4
f=870M Hz
V DD =12.8V
V GG1 =3.4V
P in=50m W
0
0
1
2
3
4
GA TE V OLTA GE V GG2 (V )
2
OUTPUT POWER Pout(W) (dBm)
8
ID D
DRAIN CURRENT DI D (A)
OUTPUT POWER Pout(W) (dBm)
40
10
0
30
6
ID D
20
P out (W)
1
8
30
6
4
ID D
10
2
OUTPUT POWER Pout(W) (dBm)
10
P out (dBm )
2
3
4
GA TE V OLTA GE V GG 2 (V )
0
0
2
3
4
0
5
12
f=764M Hz
V DD =12.8V
V GG1 =3.4V
P in=2dBm
50
40
10
8
P out (dBm )
30
20
6
4
ID D
10
2
P out (W)
0
2
3
4
GATE V OLTA GE V GG2 (V )
5
60
12
f=870M Hz
V DD =12.8V
V GG1 =3.4V
P in=2dBm
50
40
10
8
P out (dBm )
30
5
6
20
4
ID D
10
2
P out (W)
0
0
1
GA TE V OLTA GE V GG2 (V )
RA45H7687M1
2
60
P out (W)
1
4
f=806M Hz
V DD =12.8V
V GG1 =3.4V
P in=50m W
10
1
DRAIN CURRENT DI D (A)
OUTPUT POWER Pout(W) (dBm)
8
0
12
f=806M Hz
V DD =12.8V
V GG1 =3.4V
P in=2dBm
20
10
P out (d Bm )
O UT PUT PO WER and DRAIN CURRENT
v e rsus G AT E VO LT AG E2
60
40
16
40
5
O UT PUT PO WER and DRAIN CURRENT
v e rsus G AT E VO LT AG E2
50
50
0
10
P out (dBm )
P out (W)
14
12
0
12
20
12
O UT PUT PO WER and DRAIN CURRENT
v e rsus G AT E VO LT AG E2
60
30
10
60
5
O UT PUT PO WER and DRAIN CURRENT
v e rsus G AT E VO LT AG E2
50
8
O U T PU T PO WER and D R AIN C U R R EN T
v e rsus G AT E VO LT AG E2
40
0
4
10
DRA IN V OLTA GE V D D (V )
P out (d Bm )
0
6
P out
20
2
12
P out (W)
8
ID D
30
16
60
10
12
0
O U T PU T PO WER and D R AIN C U R R EN T
v e rsus G AT E VO LT AG E2
20
14
50
DRA IN V OLTA GE V D D (V )
50
16
DRAIN CURRENT DI D (A)
30
18
f=870M Hz
V GG1 =3.4V
V GG2 =5V
P in=50m W
DRAIN CURRENT DI D (A)
60
90
16
DRAIN CURRENT DI D (A)
70
18
OUTPUT POWER Pout (W)
f=806M Hz
V GG1 =3.4V
V GG2 =5V
P in=50m W
80
DRAIN CURRENT DI D (A)
OUTPUT POWER Pout (W)
90
DRAIN CURRENT DI D (A)
O U T PU T PO WER and D R AIN C U R R EN T
v e rsus D R AIN VO LT AG E
MITSUBISHI ELECTRIC
4/9
2
3
4
GA TE V OLTA GE V GG2 (V )
5
th
18 Jan 2007
MITSUBISHI RF POWER MODULE
ELECTROSTATIC SENSITIVE DEVICE
OBSERVE HANDLING PRECAUTIONS
RoHS COMPLIANCE
RA45H7687M1
OUTLINE DRAWING (mm)
67±1
④
18±1
10.7±1
③
15±1
① ②
4±0.5
49.8±1
2-R2±0.5
19.4±1
(3.26)
60±1
12.5±1
0.6±0.2
17±1
44±1
(2.6)
(9.9)
3.1+0.6/-0.4
7.3±0.5
56±1
1 RF Input added Gate Voltage 1(Pin & VGG1)
2 Gate Voltage 2(VGG2)
3 Drain Voltage (VDD)
4 RF Output (Pout)
5 RF Ground (Case)
RA45H7687M1
MITSUBISHI ELECTRIC
5/9
th
18 Jan 2007
MITSUBISHI RF POWER MODULE
ELECTROSTATIC SENSITIVE DEVICE
OBSERVE HANDLING PRECAUTIONS
RoHS COMPLIANCE
RA45H7687M1
TEST BLOCK DIAGRAM
+
DC Pow er
Supply V GG1
Signal
Generator
Attenuator
Preamplifier
Attenuator
Pow er
Meter
Directional
Coupler
DUT
R1
C1
1
2
3
C3
VA
GG1
Directional
Coupler
Attenuator
Pow er
Meter
C4
+
DC Pow er
Supply V DD
+
DC Pow er
Supply V GG2
C1: 4700pF, C2: 1000pF, R1: suitable. Please refer the detail below.
4
ZL=50Ω
ZG=50Ω
C2
Spectrum
Analyzer
5
1 RF Input added Gate Voltage 1(Pin & VGG1)
C3, C4: 4700pF, 22uF in parallel
2 Gate Voltage 2(VGG2)
VGG1=3.4V
3 Drain Voltage (VDD)
4 RF Output (Pout)
5 RF Ground (Case)
EQUIVALENT CIRCUIT
3
4
1
5
2
NOTE: Resistance between Gate Voltage 1, where RF is input, and ground equals to 15k ohm.
External resistance connected to VGG1; impedance between Pin&VGG1 and ground needs to make high impedance
that doesn't prevent RF characteristic on this module.
RA45H7687M1
MITSUBISHI ELECTRIC
6/9
th
18 Jan 2007
MITSUBISHI RF POWER MODULE
ELECTROSTATIC SENSITIVE DEVICE
OBSERVE HANDLING PRECAUTIONS
RoHS COMPLIANCE
RA45H7687M1
PRECAUTIONS, RECOMMENDATIONS, and APPLICATION INFORMATION:
Construction:
This module consists of a glass-epoxy substrate soldered onto a copper flange. For mechanical protection, a metal
cap is attached (which makes the improvement of RF radiation easy). The MOSFET transistor chips are die
bonded onto metal, wire bonded to the substrate, and coated with resin. Lines on the substrate (eventually
inductors), chip capacitors, and resistors form the bias and matching circuits. Wire leads soldered onto the
glass-epoxy substrate provide the DC and RF connection.
Following conditions must be avoided:
a) Bending forces on the glass-epoxy substrate (for example, by driving screws or from fast thermal changes)
b) Mechanical stress on the wire leads (for example, by first soldering then driving screws or by thermal expansion)
c) Defluxing solvents reacting with the resin coating on the MOSFET chips (for example, Trichloroethylene)
d) Frequent on/off switching that causes thermal expansion of the resin
e) ESD, surge, overvoltage in combination with load VSWR, and oscillation
ESD:
This MOSFET module is sensitive to ESD voltages down to 1000V. Appropriate ESD precautions are required.
Mounting:
A thermal compound between module and heat sink is recommended for low thermal contact resistance and to
reduce the bending stress on the glass-epoxy substrate caused by the temperature difference to the heat sink.
The module must first be screwed to the heat sink, then the leads can be soldered to the printed circuit board.
M3 screws are recommended with a tightening torque of 0.4 to 0.6 Nm.
Soldering and Defluxing:
This module is designed for manual soldering.
The leads must be soldered after the module is screwed onto the heat sink.
The temperature of the lead (terminal) soldering should be lower than 350°C and shorter than 3 second.
Ethyl Alcohol is recommend for removing flux. Trichloroethylene solvents must not be used (they may cause
bubbles in the coating of the transistor chips which can lift off the bond wires).
Thermal Design of the Heat Sink:
At Pout=45W, VDD=12.8V and Pin=50mW each stage transistor operating conditions are:
Pin
Pout
Rth(ch-case)
IDD @ ηT=33%
VDD
Stage
(W)
(W)
(V)
(°C/W)
(A)
1st
0.05
3.0
3.5
0.62
12.8
2nd
3.0
45.0
0.6
9.96
The channel temperatures of each stage transistor Tch = Tcase + (VDD x IDD - Pout + Pin) x Rth(ch-case) are:
Tch1 = Tcase + (12.8V x 0.62A – 3.0W + 0.05W) x 3.5°C/W = Tcase + 17.5 °C
Tch2 = Tcase + (12.8V x 9.96A – 45.0W + 3.0W) x 0.6°C/W = Tcase + 51.3 °C
For long-term reliability, it is best to keep the module case temperature (Tcase) below 90°C. For an ambient
temperature Tair=60°C and Pout=45W, the required thermal resistance Rth (case-air) = ( Tcase - Tair) / ( (Pout / ηT ) Pout + Pin ) of the heat sink, including the contact resistance, is:
Rth(case-air) = (90°C - 60°C) / (45W/33% - 45W + 0.05W) = 0.33 °C/W
When mounting the module with the thermal resistance of 0.33 °C/W, the channel temperature of each stage
transistor is:
Tch1 = Tair + 47.5 °C
Tch2 = Tair + 81.3 °C
The 175°C maximum rating for the channel temperature ensures application under derated conditions.
RA45H7687M1
MITSUBISHI ELECTRIC
7/9
th
18 Jan 2007
MITSUBISHI RF POWER MODULE
ELECTROSTATIC SENSITIVE DEVICE
OBSERVE HANDLING PRECAUTIONS
RoHS COMPLIANCE
RA45H7687M1
Output Power Control:
Depending on linearity, the following three methods are recommended to control the output power:
a) Non-linear FM modulation at high power operating:
By the gate voltages (VGG1 and VGG2).
When the gate voltages are close to zero, the nominal output signal (Pout=45W) is attenuated up to 60 dB and
only a small leakage current flows from the battery into the drain.
(On the following, V GG1 has to be kept in 3.4V.)
Around VGG2=0V(minimum), the output power and drain current increases substantially.
Around VGG2=4V (typical) to VGG2=5V (maximum), the nominal output power becomes available.
b) Linear AM modulation:
By RF input power Pin.
(On the following, V GG1 has to be kept in 3.4V.)
VGG2 is used to set the drain’s quiescent current for the required linearity.
Oscillation:
To test RF characteristics, this module is put on a fixture with two bias decoupling capacitors each on gate and
drain, a 4.700 pF chip capacitor, located close to the module, and a 22 µF (or more) electrolytic capacitor.
When an amplifier circuit around this module shows oscillation, the following may be checked:
a) Do the bias decoupling capacitors have a low inductance pass to the case of the module?
b) Is the load impedance ZL=50Ω?
c) Is the source impedance ZG=50Ω?
Frequent on/off switching:
In base stations, frequent on/off switching can cause thermal expansion of the resin that coats the transistor chips
and can result in reduced or no output power. The bond wires in the resin will break after long-term thermally
induced mechanical stress.
Quality:
Mitsubishi Electric is not liable for failures resulting from base station operation time or operating conditions
exceeding those of mobile radios.
This module technology results from more than 20 years of experience, field proven in tens of millions of mobile
radios. Currently, most returned modules show failures such as ESD, substrate crack, and transistor burnout,
which are caused by improper handling or exceeding recommended operating conditions. Few degradation failures
are found.
Keep safety first in your circuit designs!
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there
is always the possibility that trouble may occur. Trouble with semiconductors may lead to personal injury, fire or property
damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as
(i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material, or (iii) prevention against any malfunction or
mishap.
RA45H7687M1
MITSUBISHI ELECTRIC
8/9
th
18 Jan 2007
SALES CONTACT
JAPAN:
Mitsubishi Electric Corporation
Semiconductor Sales Promotion Department
2-2-3 Marunouchi, Chiyoda-ku
Tokyo, Japan 100
Email:
[email protected]
Phone: +81-3-3218-4854
Fax:
+81-3-3218-4861
GERMANY:
Mitsubishi Electric Europe B.V.
Semiconductor
Gothaer Strasse 8
D-40880 Ratingen, Germany
Email:
[email protected]
Phone: +49-2102-486-0
Fax:
+49-2102-486-4140
HONG KONG:
Mitsubishi Electric Hong Kong Ltd.
Semiconductor Division
41/F. Manulife Tower, 169 Electric Road
North Point, Hong Kong
Email:
[email protected]
Phone: +852 2510-0555
Fax:
+852 2510-9822
FRANCE:
Mitsubishi Electric Europe B.V.
Semiconductor
25 Boulevard des Bouvets
F-92741 Nanterre Cedex, France
Email:
[email protected]
Phone: +33-1-55685-668
Fax:
+33-1-55685-739
SINGAPORE:
Mitsubishi Electric Asia PTE Ltd
Semiconductor Division
307 Alexandra Road
#3-01/02 Mitsubishi Electric Building,
Singapore 159943
Email:
[email protected]
Phone: +65 64 732 308
Fax:
+65 64 738 984
ITALY:
Mitsubishi Electric Europe B.V.
Semiconductor
Centro Direzionale Colleoni,
Palazzo Perseo 2, Via Paracelso
I-20041 Agrate Brianza, Milano, Italy
Email:
[email protected]
Phone: +39-039-6053-10
Fax:
+39-039-6053-212
TAIWAN:
Mitsubishi Electric Taiwan Company, Ltd.,
Semiconductor Department
9F, No. 88, Sec. 6
Chung Shan N. Road
Taipei, Taiwan, R.O.C.
Email:
[email protected]
Phone: +886-2-2836-5288
Fax:
+886-2-2833-9793
U.K.:
Mitsubishi Electric Europe B.V.
Semiconductor
Travellers Lane, Hatfield
Hertfordshire, AL10 8XB, England
Email:
[email protected]
Phone: +44-1707-278-900
Fax:
+44-1707-278-837
U.S.A.:
Mitsubishi Electric & Electronics USA, Inc.
Electronic Device Group
1050 East Arques Avenue
Sunnyvale, CA 94085
Email:
[email protected]
Phone: 408-730-5900
Fax:
408-737-1129
AUSTRALIA:
Mitsubishi Electric Australia,
Semiconductor Division
348 Victoria Road
Rydalmere, NSW 2116
Sydney, Australia
Email: [email protected]
Phone: +61 2 9684-7210
+61 2 9684 7212
+61 2 9684 7214
+61 3 9262 9898
Fax:
+61 2 9684-7208
+61 2 9684 7245
CANADA:
Mitsubishi Electric Sales Canada, Inc.
4299 14th Avenue
Markham, Ontario, Canada L3R OJ2
Phone: 905-475-7728
Fax:
905-475-1918
RA45H7687M1
MITSUBISHI ELECTRIC
9/9
th
18 Jan 2007