SILABS SI8410

Si8410/20/21
S I N G L E & D U A L - C H A N N E L D I G I TA L I S O L A T O R S
Features
High-speed operation
Pin Assignments
2500 VRMS isolation
DC – 150 Mbps
Narrow Body SOIC
Transient Immunity
Low propagation delay
>25 kV/µs
<10 ns
DC correct
No start-up initialization required
<10 µs Startup Time
High temperature operation
Wide Operating Supply Voltage:
2.375–5.5 V
Low power
I1 + I2 < 12 mA/channel at
100 Mbps
125 °C at 100 Mbps
100 °C at 150 Mbps
Precise timing
Si841x
VDD1
A1
VDD1
GND1
Narrow body SOIC-8 package
2 ns pulse width distortion
1 ns channel-channel matching
2 ns pulse width skew
8
7
6
5
1
2
3
4
VDD2
GND2
B1
GND2
Top View
Si842x
VDD1
Applications
A1
Isolated switch mode supplies
Isolated ADC, DAC
Motor control
Power factor correction systems
Safety Regulatory Approvals
A2
GND1
8
7
6
5
1
2
3
4
VDD2
B1
B2
GND2
Top View
UL recognition:2500 Vrms for 1
Minute per UL1577
CSA component acceptance
notice
IEC certification conformity
IEC 60747-5-2
(VDE0884 Part 2)
Description
The Silicon Laboratories family of digital isolators are CMOS devices that
employ an RF coupler to transmit digital information across an isolation
barrier. Very high speed operation at low power levels is achieved. These
parts are available in an 8-pin narrow-body SOIC package. Three speed
grade options (1, 10, and 150 Mbps) are available and achieve typical
propagation delays of less than 10 ns.
Block Diagram
Si8410
A1
Si8420
B1
Preliminary Rev. 0.1 5/07
A1
A2
Si8421
B1
A1
B1
B2
A2
B2
Copyright © 2007 by Silicon Laboratories
Si8410/20/21
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Si8410/20/21
2
Preliminary Rev. 0.1
Si8410/20/21
TA B L E O F C O N T E N TS
Section
Page
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2. Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3. Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2. Eye Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4. Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1. Supply Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2. Input and Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3. RF Radiated Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4. RF Immunity and Common Mode Transient Immunity . . . . . . . . . . . . . . . . . . . . . . . 22
5. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7. Package Outline: 8-Pin SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Preliminary Rev. 0.1
3
Si8410/20/21
1. Electrical Specifications
Table 1. Electrical Characteristics
(VDD1 = 5 V, VDD2 = 5 V, TA = –40 to 125 ºC)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
High Level Input Voltage
VIH
2.0
—
—
V
Low Level Input Voltage
VIL
—
—
0.8
V
High Level Output Voltage
VOH
loh = –4 mA
VDD1,VDD2 – 0.4
4.8
—
V
Low Level Output Voltage
VOL
lol = 4 mA
—
0.2
0.4
V
—
—
±10
µA
Input Leakage Current
IL
DC Supply Current (All inputs 0 V or at Supply)
Si8410-A,-B,-C, VDD1
All inputs 0 DC
—
7
10
mA
Si8410-A,-B,-C, VDD2
All inputs 0 DC
—
3
5
mA
Si8410-A,-B,-C, VDD1
All inputs 1 DC
—
9
14
mA
Si8410-A,-B,-C, VDD2
All inputs 1 DC
—
3
5
mA
Si8420-A,-B,-C, VDD1
All inputs 0 DC
—
7
10
mA
Si8420-A,-B,-C, VDD2
All inputs 0 DC
—
4
7
mA
Si8420-A,-B,-C, VDD1
All inputs 1 DC
—
11
15
mA
Si8420-A,-B,-C, VDD2
All inputs 1 DC
—
4
6
mA
Si8421-A,-B,-C, VDD1
All inputs 0 DC
—
9
12
mA
Si8421-A,-B,-C, VDD2
All inputs 0 DC
—
9
12
mA
Si8421-A,-B,-C, VDD1
All inputs 1 DC
—
10
14
mA
Si8421-A,-B,-C, VDD2
All inputs 1 DC
—
10
14
mA
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)
Si8410-B,-C, VDD1
—
8
12
mA
Si8410-B,-C, VDD2
—
5
7
mA
Si8420-B,-C, VDD1
—
9
13
mA
Si8420-B,-C, VDD2
—
9
12
mA
Si8421-B,-C, VDD1
—
12
16
mA
Si8421-B,-C, VDD2
—
12
16
mA
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)
Si8410-C, VDD1
—
8
12
mA
Si8410-C, VDD2
—
15
22
mA
Si8420-C, VDD1
—
9
13
mA
Si8420-C, VDD2
—
30
39
mA
Si8421-C, VDD1
—
21
27
mA
Si8421-C, VDD2
—
21
27
mA
4
Preliminary Rev. 0.1
Si8410/20/21
Table 1. Electrical Characteristics (Continued)
(VDD1 = 5 V, VDD2 = 5 V, TA = –40 to 125 ºC)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Maximum Data Rate
0
—
1
Mbps
Minimum Pulse Width
—
—
1000
ns
Timing Characteristics
Si841x/2x-A
Propagation Delay
tPHL, tPLH
See Figure 1
25
40
75
ns
PWD
See Figure 1
—
—
30
ns
tPSK(P-P)
—
—
50
ns
tPSK
—
—
40
ns
Maximum Data Rate
0
—
10
Mbps
Minimum Pulse Width
—
—
100
ns
Pulse Width Distortion
|tPLH - tPHL|
Propagation Delay Skew1
Channel-Channel Skew
Si841x/2x-B
Propagation Delay
tPHL, tPLH
See Figure 1
10
20
35
ns
PWD
See Figure 1
—
—
7.5
ns
tPSK(P-P)
—
—
25
ns
tPSK
—
—
5
ns
Maximum Data Rate
0
—
150
Mbps
Minimum Pulse Width
—
—
6.6
ns
Pulse Width Distortion
|tPLH - tPHL|
Propagation Delay Skew1
Channel-Channel Skew
Si841x/2x-C
Propagation Delay
Pulse Width Distortion
|tPLH - tPHL|
Propagation Delay Skew1
Channel-Channel Skew
tPHL, tPLH
See Figure 1
4
6.5
9.5
ns
PWD
See Figure 1
—
—
3.5
ns
tPSK(P-P)
—
—
5.5
ns
tPSK
—
—
3
ns
Preliminary Rev. 0.1
5
Si8410/20/21
Table 1. Electrical Characteristics (Continued)
(VDD1 = 5 V, VDD2 = 5 V, TA = –40 to 125 ºC)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
For All Models
Output Rise Time
tr
CL = 15 pF
—
2
—
ns
Output Fall Time
tf
CL = 15 pF
—
2
—
ns
CTMI
VI = VDD or 0 V
25
30
—
kV/µs
—
3
—
µs
Common Mode Transient
Immunity
Start-up Time2
tSU
Notes:
1. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at
the same supply voltages, load, and ambient temperature.
2. Start-up time is the time period from the application of power to valid data at the output.
50%
Typical
Input
tPLH
tPHL
90%
90%
10%
10%
50%
Typical
Output
tr
tf
Figure 1. Propagation Delay Timing
6
Preliminary Rev. 0.1
Si8410/20/21
Table 2. Electrical Characteristics
(VDD1 = 3.3 V, VDD2 = 3.3 V, TA = –40 to 125 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
High Level Input Voltage
VIH
2.0
—
—
V
Low Level Input Voltage
VIL
—
—
0.8
V
High Level Output Voltage
VOH
loh = –4 mA
VDD1,VDD2 – 0.4
3.1
—
V
Low Level Output Voltage
VOL
lol = 4 mA
—
0.2
0.4
V
—
—
±10
µA
Input Leakage Current
IL
DC Supply Current (All inputs 0 V or at supply)
Si8410-A,-B,-C, VDD1
All inputs 0 DC
—
6
9
mA
Si8410-A,-B,-C, VDD2
All inputs 0 DC
—
2
4
mA
Si8410-A,-B,-C, VDD1
All inputs 1 DC
—
8
13
mA
Si8410-A,-B,-C, VDD2
All inputs 1 DC
—
2
4
mA
Si8420-A,-B,-C, VDD1
All inputs 0 DC
—
7
9
mA
Si8420-A,-B,-C, VDD2
All inputs 0 DC
—
4
6
mA
Si8420-A,-B,-C, VDD1
All inputs 1 DC
—
10
14
mA
Si8420-A,-B,-C, VDD2
All inputs 1 DC
—
4
6
mA
Si8421-A,-B,-C, VDD1
All inputs 0 DC
—
8
11
mA
Si8421-A,-B,-C, VDD2
All inputs 0 DC
—
8
11
mA
Si8421-A,-B,-C, VDD1
All inputs 1 DC
—
9
13
mA
Si8421-A,-B,-C, VDD2
All inputs 1 DC
—
9
13
mA
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)
Si8410-B,-C, VDD1
—
7
11
mA
Si8410-B,-C, VDD2
—
4
6
mA
Si8420-B,-C, VDD1
—
8
12
mA
Si8420-B,-C, VDD2
—
8
12
mA
Si8421-B,-C, VDD1
—
10
14
mA
Si8421-B,-C, VDD2
—
10
14
mA
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)
Si8410-C, VDD1
—
7
11
mA
Si8410-C, VDD2
—
10
16
mA
Si8420-C, VDD1
—
8
12
mA
Si8420-C, VDD2
—
20
26
mA
Si8421-C, VDD1
—
17
21
mA
Si8421-C, VDD2
—
17
21
mA
Preliminary Rev. 0.1
7
Si8410/20/21
Table 2. Electrical Characteristics (Continued)
(VDD1 = 3.3 V, VDD2 = 3.3 V, TA = –40 to 125 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Maximum Data Rate
0
—
1
Mbps
Minimum Pulse Width
—
—
1000
ns
Timing Characteristics
Si841x/2x-A
Propagation Delay
tPHL, tPLH
See Figure 1
25
40
75
ns
PWD
See Figure 1
—
—
30
ns
tPSK(P-P)
—
—
50
ns
tPSK
—
—
40
ns
Maximum Data Rate
0
—
10
Mbps
Minimum Pulse Width
—
—
100
ns
Pulse Width Distortion
|tPLH – tPHL|
Propagation Delay Skew1
Channel-Channel Skew
Si841x/2x-B
Propagation Delay
tPHL, tPLH
See Figure 1
10
20
35
ns
PWD
See Figure 1
—
—
7.5
ns
tPSK(P-P)
—
—
25
ns
tPSK
—
—
5
ns
Maximum Data Rate
0
—
150
Mbps
Minimum Pulse Width
—
—
6.6
ns
Pulse Width Distortion
|tPLH – tPHL|
Propagation Delay Skew1
Channel-Channel Skew
Si841x/2x-C
Propagation Delay
Pulse Width Distortion
|tPLH – tPHL|
Propagation Delay Skew1
Channel-Channel Skew
8
tPHL, tPLH
See Figure 1
4
7.5
10
ns
PWD
See Figure 1
—
—
3.5
ns
tPSK(P-P)
—
—
5.5
ns
tPSK
—
—
3
ns
Preliminary Rev. 0.1
Si8410/20/21
Table 2. Electrical Characteristics (Continued)
(VDD1 = 3.3 V, VDD2 = 3.3 V, TA = –40 to 125 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
For All Models
Output Rise Time
tr
CL = 15 pF
—
2
—
ns
Output Fall Time
tf
CL = 15 pF
—
2
—
ns
CTMI
VI = VDD or 0 V
25
30
—
kV/µs
—
3
—
µs
Common Mode Transient
Immunity
Start-up Time2
tSU
Notes:
1. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at
the same supply voltages, load, and ambient temperature.
2. Start-up time is the time period from the application of power to valid data at the output.
Preliminary Rev. 0.1
9
Si8410/20/21
Table 3. Electrical Characteristics
(VDD1 = 2.5 V, VDD2 = 2.5 V, TA = –40 to 100 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
High Level Input Voltage
VIH
2.0
—
—
V
Low Level Input Voltage
VIL
—
—
0.8
V
High Level Output Voltage
VOH
loh = –4 mA
VDD1,VDD2 – 0.4
2.3
—
V
Low Level Output Voltage
VOL
lol = 4 mA
—
0.2
0.4
V
—
—
±10
µA
Input Leakage Current
IL
DC Supply Current (All inputs 0 V or at supply)
Si8410-A,-B,-C, VDD1
All inputs 0 DC
—
5
7
mA
Si8410-A,-B,-C, VDD2
All inputs 0 DC
—
2
3
mA
Si8410-A,-B,-C, VDD1
All inputs 1 DC
—
7
9
mA
Si8410-A,-B,-C, VDD2
All inputs 1 DC
—
2
3
mA
Si8420-A,-B,-C, VDD1
All inputs 0 DC
—
6
7
mA
Si8420-A,-B,-C, VDD2
All inputs 0 DC
—
4
5
mA
Si8420-A,-B,-C, VDD1
All inputs 1 DC
—
9
11
mA
Si8420-A,-B,-C, VDD2
All inputs 1 DC
—
3
5
mA
Si8421-A,-B,-C, VDD1
All inputs 0 DC
—
7
9
mA
Si8421-A,-B,-C, VDD2
All inputs 0 DC
—
7
9
mA
Si8421-A,-B,-C, VDD1
All inputs 1 DC
—
8
10
mA
Si8421-A,-B,-C, VDD2
All inputs 1 DC
—
8
10
mA
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)
Si8410-B,-C, VDD1
—
6
8
mA
Si8410-B,-C, VDD2
—
3
5
mA
Si8420-B,-C, VDD1
—
7
9
mA
Si8420-B,-C, VDD2
—
6
8
mA
Si8421-B,-C, VDD1
—
8
11
mA
Si8421-B,-C, VDD2
—
8
11
mA
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)
Si8410-C, VDD1
—
6
8
mA
Si8410-C, VDD2
—
7
10
mA
Si8420-C, VDD1
—
7
9
mA
Si8420-C, VDD2
—
12
15
mA
Si8421-C, VDD1
—
12
15
mA
Si8421-C, VDD2
—
12
15
mA
10
Preliminary Rev. 0.1
Si8410/20/21
Table 3. Electrical Characteristics (Continued)
(VDD1 = 2.5 V, VDD2 = 2.5 V, TA = –40 to 100 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Maximum Data Rate
0
—
1
Mbps
Minimum Pulse Width
—
—
1000
ns
Timing Characteristics
Si841x/2x-A
Propagation Delay
tPHL, tPLH
See Figure 1
25
40
75
ns
PWD
See Figure 1
—
—
30
ns
tPSK(P-P)
—
—
50
ns
tPSK
—
—
40
ns
Maximum Data Rate
0
—
10
Mbps
Minimum Pulse Width
—
—
100
ns
Pulse Width Distortion
|tPLH - tPHL|
Propagation Delay Skew1
Channel-Channel Skew
Si841x/2x-B
Propagation Delay
tPHL, tPLH
See Figure 1
10
20
35
ns
PWD
See Figure 1
—
—
7.5
ns
tPSK(P-P)
—
—
25
ns
tPSK
—
—
5
ns
Maximum Data Rate
0
—
100
Mbps
Minimum Pulse Width
—
—
10
ns
Pulse Width Distortion
|tPLH - tPHL|
Propagation Delay Skew1
Channel-Channel Skew
Si841x/2x-C
Propagation Delay
Pulse Width Distortion
|tPLH - tPHL|
Propagation Delay Skew1
Channel-Channel Skew
tPHL, tPLH
See Figure 1
5
10
17
ns
PWD
See Figure 1
—
—
7
ns
tPSK(P-P)
—
—
12
ns
tPSK
—
—
4
ns
Preliminary Rev. 0.1
11
Si8410/20/21
Table 3. Electrical Characteristics (Continued)
(VDD1 = 2.5 V, VDD2 = 2.5 V, TA = –40 to 100 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
For All Models
Output Rise Time
tr
CL = 15 pF
—
2
—
ns
Output Fall Time
tf
CL = 15 pF
—
2
—
ns
CTMI
VI = VDD or 0 V
25
30
—
kV/µs
—
3
—
µs
Common Mode Transient
Immunity
Start-up Time2
tSU
Notes:
1. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the
same supply voltages, load, and ambient temperature.
2. Start-up time is the time period from the application of power to valid data at the output.
12
Preliminary Rev. 0.1
Si8410/20/21
Table 4. Absolute Maximum Ratings
Parameter
Symbol
Min
Typ
Max
Unit
TSTG
–65
—
150
C°
TA
–40
—
125
C°
VDD1, VDD2
–0.5
—
6
V
Input Voltage
VI
–0.5
—
VDD + 0.5
V
Output Voltage
VO
–0.5
—
VDD + 0.5
V
Output Current Drive Channel
LO
—
—
10
mA
Lead Solder Temperature (10s)
—
—
260
C°
Maximum Isolation Voltage
—
—
4000
VDC
Storage Temperature
Operating Temperature
Supply Voltage
Note: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation
should be restricted to conditions as specified in the operational sections of this data sheet.
Table 5. Recommended Operating Conditions
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Ambient Operating Temperature*
TA
100 Mbps, 15 pF, 5 V
–40
25
125
C°
150 Mbps, 15 pF, 5 V
0
25
100
C°
VDD1
2.375
—
5.5
V
VDD2
2.375
—
5.5
V
Supply Voltage
*Note: The maximum ambient temperature is dependent upon data frequency, output loading, the number of operating
channels, and supply voltage.
Preliminary Rev. 0.1
13
Si8410/20/21
Table 6. Regulatory Information
CSA
The Si84xx is certified under CSA Component Acceptance Notice. For more details, see File 232873.
VDE
The Si84xx is certified according to IEC 60747-5-2. For more details, see File 5006301-4880-0001.
UL
The Si84xx is certified under UL1577 component recognition program to provide basic insulation to 2500 VRMS
(1 minute). It is production tested > 3000 VRMS for 1 second. For more details, see File E257455.
Table 7. Insulation and Safety-related Specifications
Parameter
Symbol
Test Condition
Value
Unit
Minimum Air Gap (Clearance)
L(IO1)
5.0 min
mm
Minimum External Tracking (Creepage)
L(IO2)
4.60
mm
0.008
min
mm
>175
V
1012
Ω
1.4
pF
4.0
pF
Minimum Internal Gap (Internal Clearance)
Tracking Resistance (Comparative Tracking
Index)
CTI
Resistance (Input-Output)1
RIO
1
Capacitance (Input-Output)
Input Capacitance2
DIN IEC 60112/VDE 0303 Part 1
CIO
CI
f = 1 MHz
Notes:
1. To determine resistance and capacitance, the Si84xx is converted into a 2-terminal device. Pins 1–4 are shorted
together to form the first terminal and pins 5–8 are shorted together to form the second terminal. The parameters are
then measured between these two terminals.
2. Measured from input pin to ground.
14
Preliminary Rev. 0.1
Si8410/20/21
Table 8. IEC 60664-1 (VDE 0844 Part 2) Ratings
Parameter
Basic isolation group
Installation Classification
Test Conditions
Specification
Material Group
IIIa
Rated Mains Voltages < 150 VRMS
I-IV
Rated Mains Voltages < 300 VRMS
I-III
Rated Mains Voltages < 400 VRMS
I-II
Table 9. IEC 60747-5-2 Insulation Characteristics*
Parameter
Maximum Working Insulation Voltage
Input to Output Test Voltage
Highest Allowable Overvoltage (Transient
Overvoltage, tTR = 10 sec)
Symbol
Test Condition
VIORM
VPR
Characteristic
Unit
560
V peak
Method a
After Environmental Tests
Subgroup 1
(VIORM x 1.6 = VPR, tm = 60 sec,
Partial Discharge < 5 pC)
896
Method b1
(VIORM x 1.875 = VPR, 100%
Production Test, tm = 1 sec,
Partial Discharge < 5 pC)
1050
After Input and/or Safety Test
Subgroup 2/3
(VIORM x 1.2 = VPR, tm = 60 sec,
Partial Discharge < 5 pC)
672
4000
VTR
Pollution Degree (DIN VDE 0110, Table 1)
Insulation Resistance at TS, VIO = 500 V
V peak
V peak
2
>109
RS
Ω
*Note: The Si84xx is suitable for basic electrical isolation a climate classification of 40/125/21.
Table 10. IEC Safety Limiting Values
Parameter
Symbol
Case Temperature
TS
Safety input, output, or supply current
IS
Test Condition
θJA = 210 °C/W,
VI = 5.5 V,
TJ = 150 °C,
TA = 25 °C
Min
Typ
Max
Unit
—
—
150
°C
—
—
105
mA
*Note: Maximum value allowed in the event of a failure; also see the thermal derating curve in Figure 2.
Preliminary Rev. 0.1
15
Si8410/20/21
Table 11. Thermal Characteristics
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
IC Junction-to-Case Thermal Resistance
θJC
Thermocouple
located at center of
package
—
100
—
°C/W
IC Junction-to-Air Thermal Resistance
θJA
—
210
—
°C/W
Device Power Dissipation*
PD
—
—
250
mW
78
75
121
128
100
106
Safety-Limiting Current (mA)
*Note: The Si8420-C-IS is tested with VDD1 = VDD2 = 5.5 V, TJ = 150 °C, CL = 15 pF, input a 150 Mbps 50% duty cycle
square wave.
2.75 V
5.5 V
50
3.6 V
25
0
0
50
100
150
Case Temperature (ºC)
200
Figure 2. Thermal Derating Curve, Dependence of Safety Limiting Values
with Case Temperature per DIN EN 60747-5-2
16
Preliminary Rev. 0.1
Si8410/20/21
2. Typical Performance Characteristics
10
20
5V
5V
Current (mA)
Current (mA)
9
8
3.3V
7
2.5V
6
5
0
10
20
30
40
50
60
70
80
90
15
3.3V
10
2.5V
5
0
100
0
10
20
30
Data Rate (Mbps)
40
50
60
70
80
90
100
Data Rate (Mbps)
Figure 3. Si8410 Typical VDD1 Supply Current
vs. Data Rate 5, 3.3, and 2.5 V Operation
Figure 6. Si8420 Typical VDD2 Supply Current
vs. Data Rate 5, 3.3, and 2.5 V Operation
(15 pF Load)
12
5V
19
3.3V
8
6
2.5V
4
2
0
0
10
20
30
40
50
60
70
80
90
5V
17
Current (mA)
Current (mA)
10
100
Data Rate (Mbps)
15
3.3V
13
11
2.5V
9
7
5
0
10
20
30
40
50
60
70
80
90
100
Data Rate (Mbps)
Figure 4. Si8410 Typical VDD2 Supply Current
vs. Data Rate 5, 3.3, and 2.5 V Operation
(15 pF Load)
Figure 7. Si8421 Typical VDD1 or VDD2 Supply
Current vs. Data Rate 5, 3.3, and 2.5 V
Operation (15 pF Load)
15
Current (mA)
13
11
5V
9
3.3V
7
2.5V
5
0
10
20
30
40
50
60
70
80
90
100
Data Rate (Mbps)
Figure 5. Si8420 Typical VDD1 Supply Current
vs. Data Rate 5, 3.3, and 2.5 V Operation
Preliminary Rev. 0.1
17
Si8410/20/21
10
Delay (ns)
9
8
Falling Edge
7
6
Rising Edge
5
-40
-20
0
20
40
60
80
100
120
Temperature (Degrees C)
Figure 8. Propagation Delay
vs. Temperature 5 V Operation
10
Delay (ns)
9
Rising Edge
8
Falling Edge
7
6
5
-40
-20
0
20
40
60
80
100
120
Temperature (Degrees C)
Figure 9. Propagation Delay
vs. Temperature 3.3 V Operation
15
Delay (ns)
13
Rising Edge
11
Falling Edge
9
7
5
-40
-20
0
20
40
60
80
100
120
Temperature (Degrees C)
Figure 10. Propagation Delay
vs. Temperature 2.5 V Operation
18
Preliminary Rev. 0.1
Si8410/20/21
3. Application Information
3.1. Theory of Operation
The operation of an Si841x or Si842x channel is analogous to that of an opto coupler, except that an RF carrier is
modulated instead of light. This simple architecture provides a robust isolated data path and requires no special
considerations or initialization at startup. A simplified block diagram for a single Si8410 channel is shown in
Figure 11. A channel consists of an RF transmitter and receiver separated by a transformer.
Referring to the transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying and
applies the resulting waveform to the primary of the transformer. The receiver contains a demodulator that decodes
the input state according to its RF energy content and applies the result to output B via the output driver.
TRANSMITTER
RF
OSCILLATOR
A
RECEIVER
MODULATOR
DEMODULATOR
B
Figure 11. Simplified Channel Diagram
3.2. Eye Diagram
Figure 12 illustrates an eye-diagram taken on an Si8410. The test used an Anritsu (MP1763C) Pulse Pattern
Generator for the data source. The output of the generator's clock and data from an Si8410 were captured on an
oscilloscope. The results illustrate that data integrity was maintained even at the high data rate of 150 Mbps. The
results also show that very low pulse width distortion and very little jitter were exhibited.
Figure 12. Eye Diagram
Preliminary Rev. 0.1
19
Si8410/20/21
4. Layout Recommendations
Dielectric isolation is a set of specifications produced by safety regulatory agencies from around the world, which
describes the physical construction of electrical equipment that derives power from high-voltage power systems,
such as 100–240 VAC systems or industrial power. The dielectric test (or HIPOT test) given in the safety
specifications places a very high voltage between the input power pins of a product and the user circuits and the
user-touchable surfaces of the product. For the IEC relating to products deriving their power from the 220–240 V
power grids, the test voltage is 2500 VAC (or 3750 VDC, the peak equivalent voltage).
There are two terms described in the safety specifications:
Creepage—the distance along the insulating surface an arc may travel.
Clearance—the shortest distance through air that an arc may travel.
Figure 13 illustrates the accepted method of providing the proper creepage distance along the surface. For a
220–240 V application, this distance is 8 mm, and the wide-body SOIC package must be used. There must be no
copper traces within this 8 mm exclusion area, and the surface should have a conformal coating, such as solder
resist. The digital isolator chip must straddle this exclusion area.
Figure 13. Creepage Distance
4.1. Supply Bypass
The Si841x and Si842x families require a 0.1 µF bypass capacitor between VDD1 and GND1 and VDD2 and GND2.
The capacitor should be placed as close as possible to the package.
20
Preliminary Rev. 0.1
Si8410/20/21
4.2. Input and Output Characteristics
The Si841x and Si842x inputs and outputs are standard CMOS drivers/receivers. Table 12 details powered and
unpowered operation of the Si84xx.
Table 12. Si84xx Operation Table
Comments
VI Input1,4 VDDI State1,2,3 VDDO State1,2,3 VO Output1,4
H
P
P
H
L
P
P
L
X
UP
P
L
Upon the transition of VDDI from unpowered to
powered, VO returns to the same state as VI in less
than 1 µs.
X
P
UP
L
Upon the transition of VDDI from unpowered to
powered, VO returns to the same state as VI in less
than 1 µs.
Normal operation.
Notes:
1. VDDI and VDDO are the input and output power supplies. VI and VO are the respective input and output terminals.
2. Powered (P) state is defined as 2.375 V < VDD < 5.5 V.
3. Unpowered (UP) state is defined as VDD = 0 V.
4. X = not applicable; H = Logic High; L = Logic Low.
4.3. RF Radiated Emissions
The Si841x and Si842x families use an RF carrier frequency of approximately 2.1 GHz. This will result in a small
amount of radiated emissions at this frequency and its harmonics. The radiation is not from the IC chip but, rather,
is due to a small amount of RF energy driving the isolated ground planes, which can act as a dipole antenna.
The unshielded Si8410 evaluation board passes FCC requirements. Table 13 shows measured emissions
compared to FCC requirements.
Radiated emissions can be reduced if the circuit board is enclosed in a shielded enclosure or if the PCB is a less
efficient antenna.
Table 13. Radiated Emissions
Frequency Measured
(GHz)
(dBµV/m)
FCC Spec
(dBµV/m)
Compared to
Spec (dB)
2.094
70.0
74.0
–4.0
2.168
68.3
74.0
–5.7
4.210
61.9
74.0
–12.1
4.337
60.7
74.0
–13.3
6.315
58.3
74.0
–15.7
6.505
60.7
74.0
–13.3
8.672
45.6
74.0
–28.4
Preliminary Rev. 0.1
21
Si8410/20/21
4.4. RF Immunity and Common Mode Transient Immunity
The Si841x and Si842x families have very high common mode transient immunity while transmitting data. This is
typically measured by applying a square pulse with very fast rise/fall times between the isolated grounds.
Measurements show no failures up to 30 kV/µs. During a high surge event, the output may glitch low for up to
20–30 ns, but the output corrects immediately after the surge event.
The Si841x and Si842x families pass the industrial requirements of CISPR24 for RF immunity of 3 V/m using an
unshielded evaluation board. As shown in Figure 14, the isolated ground planes form a parasitic dipole antenna,
while Figure 15 shows the RMS common mode voltage versus frequency above which the Si841x becomes
susceptible to data corruption. To avoid compromising data, care must be taken to keep RF common-mode voltage
below the envelope specified in Figure 15. The PCB should be laid-out to not act as an efficient antenna for the RF
frequency of interest. RF susceptibility is also significantly reduced when the end system is housed in a metal
enclosure, or otherwise shielded.
GND1
Isolator
GND2
Dipole
Antenna
Figure 14. Dipole Antenna
RMS Voltage (V)
5
4
3
2
1
0
500
1000
1500
Frequency (MHz)
Figure 15. RMS Common Mode Voltage vs. Frequency
22
Preliminary Rev. 0.1
2000
Si8410/20/21
5. Pin Descriptions
Si841x
VDD1
A1
VDD1
GND1
Si842x
8
7
6
5
1
2
3
4
VDD2
VDD1
GND2
A1
B1
A2
GND2
GND1
Top View
8
7
6
5
1
2
3
4
VDD2
B1
B2
GND2
Top View
Narrow Body SOIC
Name
SOIC-8 Pin#
Si8410
SOIC-8 Pin#
Si8420/21
Type
VDD1
1,3
1
Supply
Side 1 power supply.
GND1
4
4
Ground
Side 1 ground.
A1
2
2
Digital I/O
Side 1 digital input or output.
A2
NA
3
Digital I/O
Side 1 digital input or output.
B1
6
7
Digital I/O
Side 2 digital input or output.
B2
NA
6
Digital I/O
Side 2 digital input or output.
VDD2
8
8
Supply
Side 2 power supply.
GND2
5,7
5
Ground
Side 2 ground.
Preliminary Rev. 0.1
Description
23
Si8410/20/21
6. Ordering Guide
Ordering Part
Number
Number of Inputs Number of Inputs
VDD1 Side
VDD2 Side
Maximum
Data Rate
Temperature
Package Type
Si8410-A-IS
1
0
1
–40 to 125 °C
SOIC-8
Si8410-B-IS
1
0
10
–40 to 125 °C
SOIC-8
Si8410-C-IS
1
0
150
–40 to 125 °C
SOIC-8
Si8420-A-IS
2
0
1
–40 to 125 °C
SOIC-8
Si8420-B-IS
2
0
10
–40 to 125 °C
SOIC-8
Si8420-C-IS
2
0
150
–40 to 125 °C
SOIC-8
Si8421-A-IS
1
1
1
–40 to 125 °C
SOIC-8
Si8421-B-IS
1
1
10
–40 to 125 °C
SOIC-8
Si8421-C-IS
1
1
150
–40 to 125 °C
SOIC-8
Note: All packages are Pb-free and RoHS Compliant. Moisture sensitivity level is MSL2 with peak reflow temperature of
260 °C according to the JEDEC industry standard classifications and peak solder temperature.
24
Preliminary Rev. 0.1
Si8410/20/21
7. Package Outline: 8-Pin SOIC
Figure 16 illustrates the package details for the Si84xx. Table 14 lists the values for the dimensions shown in the
illustration.
α
Figure 16. 8-pin Small Outline Integrated Circuit (SOIC) Package
Table 14. Package Diagram Dimensions
Symbol
Millimeters
Min
Max
A
1.35
1.75
A1
0.10
0.25
A2
1.40 REF
1.55 REF
B
0.33
0.51
C
0.19
0.25
D
4.80
5.00
E
3.80
4.00
e
1.27 BSC
H
5.80
6.20
h
0.25
0.50
L
0.40
1.27
∝
0°
8°
Preliminary Rev. 0.1
25
Si8410/20/21
CONTACT INFORMATION
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Email: [email protected]
Internet: www.silabs.com
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.
26
Preliminary Rev. 0.1