POWERINT EPR-93

Engineering Prototype Report for EP-93 –
32 W/81 W Peak Supply Using
PeakSwitch™ (PKS606Y)
Title
90-265 VAC Input, 30 V, 1.07 A (continuous),
Specification 2 A (100 ms), 2.7 A (50 ms) Output
Application
Printers, DVRs, Audio, General Purpose
Author
Power Integrations Applications Department
Document
Number
EPR-93
Date
22-Jun-2006
Revision
1.4
Summary and Features
•
•
•
•
•
EcoSmart® – meets all existing and proposed harmonized energy efficiency
standards including: CECP (China), CEC, EPA, AGO, European Commission
• No-load power consumption 200 mW at 265 VAC
• 81.8% active-mode efficiency (exceeds requirement of 80.2%)
Tight tolerance I2f parameter (-10%/+12%) reduces system cost:
• Increases MOSFET and magnetics power delivery
• Reduces worst-case overload power, which lowers component costs
• Allows small EE25 core size
Integrated PeakSwitch safety/reliability features:
• Accurate (± 5%), auto-recovering, hysteretic thermal shutdown function
maintains safe PCB temperatures under all conditions
• Auto-restart protects against output short circuits and open feedback loops
• Adaptive current limit reduces output overload power
• Programmable smart AC line sensing provides latching shutdown during
short circuit, overload and open loop faults and prevents power ON/OFF
glitches during power down or brownout
Meets EN55022 and CISPR-22 Class B conducted EMI with >14 dBµV margin
Meets IEC61000-4-5 Class 3 AC line surge
Power Integrations
5245 Hellyer Avenue, San Jose, CA 95138 USA.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
22-Jun-2006
The products and applications illustrated herein (including circuits external to the products and transformer
construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign
patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at
www.powerint.com.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 2 of 40
22-Jun-2006
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
Table Of Contents
1
2
3
4
Introduction .................................................................................................................5
Power Supply Specification ........................................................................................6
Schematic ...................................................................................................................7
Circuit Description.......................................................................................................8
4.1
Input EMI Filtering................................................................................................8
4.2
PeakSwitch Primary.............................................................................................8
4.3
Output Rectification and Filtering.........................................................................9
4.4
Output Feedback .................................................................................................9
4.5
Output Protection.................................................................................................9
5 PCB Layout...............................................................................................................10
6 Bill Of Materials.........................................................................................................11
7 Transformer Specification .........................................................................................13
7.1
Electrical Diagram..............................................................................................13
7.2
Electrical Specifications .....................................................................................13
7.3
Materials ............................................................................................................14
7.4
Transformer Build Diagram................................................................................14
7.5
Transformer Construction ..................................................................................15
8 Transformer Spreadsheet .........................................................................................16
9 Performance Data.....................................................................................................19
9.1
Efficiency ...........................................................................................................19
9.1.1
Active Mode CEC Measurement Data........................................................19
9.2
No-load Input Power ..........................................................................................21
9.3
Available Standby Output Power .......................................................................21
9.4
Regulation .........................................................................................................22
9.4.1
Load Regulation .........................................................................................22
9.4.2
Line Regulation...........................................................................................22
10
Thermal Performance............................................................................................23
11
Waveforms ............................................................................................................24
11.1 Drain Voltage and Current, Normal Operation...................................................24
11.2 Output Voltage Start-up Profile ..........................................................................24
11.3 Drain Voltage and Current Start-up Profile ........................................................25
11.4 Load Transient Response (1 A to 2 A Load Step) .............................................25
11.5 Holdup Time ......................................................................................................26
11.6 AC Line Disturbance..........................................................................................27
12
Output Ripple Measurements................................................................................30
12.1.1 Ripple Measurement Technique.................................................................30
12.1.2 Measurement Results.................................................................................31
13
Output Over-current Shutdown/Restart .................................................................32
14
Line Surge.............................................................................................................33
15
Conducted EMI .....................................................................................................34
16
Appendix ...............................................................................................................36
16.1 Heat Sink Drawing .............................................................................................36
17
Revision History ....................................................................................................37
Page 3 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
22-Jun-2006
Important Note:
Although this board is designed to satisfy safety isolation requirements, the engineering
prototype has not been agency approved. Therefore, all testing should be performed
using an isolation transformer to provide the AC input to the prototype board.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 4 of 40
22-Jun-2006
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
1 Introduction
This document is an engineering report describing a 90-265 VAC input, 30 V, 1.07 A
continuous, 2.7 A peak output power supply utilizing a PKS606Y. This power supply is
intended as a general-purpose evaluation platform for PeakSwitch, and is ideal for
applications where a significant pulsed output load is required, such as printers, audio
amplifiers, DVRs and DC motor drives.
The document contains the power supply specification, schematic, bill of materials,
transformer documentation, printed circuit layout, and performance data.
Figure 1 – EP-93 Populated Circuit Board Photograph.
Page 5 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
22-Jun-2006
2 Power Supply Specification
Description
Symbol
Input
Voltage
VIN
Frequency
fLINE
No-Load Input Power (230 VAC)
Output
Output Voltage
VOUT1
Output Ripple Voltage
VRIPPLE1
Output Current
IOUT1
Total Output Power
Continuous Output Power
POUT
Peak Output Power
POUT_PEAK
Efficiency
Full Load
η
Required average efficiency at
ηCEC
25, 50, 75 and 100 % of POUT
Min
Typ
Max
Units
Comment
90
47
265
64
0.2
VAC
Hz
W
2 Wire – no P.E.
50/60
27
30
33
400
2.71
V
mV
A
81
W
W
0
1.07
32
82
%
%
80.2
± 10%
20 MHz bandwidth
o
Measured at POUT, 25 C
Per California Energy Commission
(CEC) / ENERGY STAR
requirements
Environmental
Conducted EMI
Meets CISPR22B / EN55022B
Designed to meet IEC950, UL1950
Class II
Safety
Surge
1 (D)
2 (C)
kV
Surge
1 (D)
2 (C)
kV
Ambient Temperature
TAMB
0
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
50
o
C
1.2/50 µs surge, IEC 1000-4-5,
Series Impedance:
Differential Mode (D): 2 Ω
Common Mode (C): 12 Ω
100 kHz ring wave, 500 A short
circuit current, differential (D) and
common mode (C)
Free convection, sea level
Page 6 of 40
22-Jun-2006
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
3 Schematic
Figure 2 – EP-93 Schematic.
Page 7 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
22-Jun-2006
4 Circuit Description
4.1 Input EMI Filtering
Components C1, C2, C3, C10, C17, C19, R15, L1, and L2 provide common mode and
differential mode EMI filtering. The use of two Y capacitors (C10 and C19) together with
an output common choke (L2) and the frequency jitter feature of PeakSwitch allows the
supply to meet EN55022B conducted EMI limits even with the output connected directly
to safety earth ground. On the PCB layout C19 is placed so that the primary side is
connected as close to the bulk capacitor as possible to route surge currents away from
U1. Resistors R1 and R2 discharge C3 when AC power is removed.
4.2 PeakSwitch Primary
Components D5, C7, and R5, R6 provide AC line and under voltage sensing for
PeakSwitch U1. At startup, switching is inhibited until the input voltage is above the
under-voltage threshold, determined when a current >25 µA flows into the EN/UV pin.
Once the threshold is exceeded, the under-voltage status is not checked until auto-restart
is triggered (no feedback for 30 ms). This allows the supply to continue to operate even
below the under-voltage threshold as long as the output remains in regulation,
maximizing hold-up time.
The separate AC sense network of D5 and C7 allows the PeakSwitch to determine the
cause of loss of regulation. If the input voltage is above the under-voltage threshold, then
a fault condition is assumed. In this case PeakSwitch will latch off. If the input voltage is
below the under-voltage threshold then loss of regulation was due to a low line condition
and PeakSwitch will stop switching (but not latch off) until the under-voltage threshold is
exceeded again.
Once latched off, the supply can be reset by removing the AC input such that C7
discharges and the current into the EN/UV pin falls below 25 µA. The under-voltage
function can be disabled by removing R6. Resistor R16 provides a small amount of bias
to the U1 EN/UV pin to keep the under-voltage lockout function activated during brownout
conditions when C7 may discharge.
Diode D7, C6, C8, and R7 provide bias power and decoupling to U1.
Diode D6, C5, R3, R4, and VR1 clamp the U1 drain voltage to safe levels. Use of a
moderately slow diode (tRR ≤ 500 ns) for D6 increases power supply efficiency.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 8 of 40
22-Jun-2006
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
4.3 Output Rectification and Filtering
The secondary of the transformer is rectified and filtered by D8 and C12. As the peak
load condition is of short duration, the output capacitor ripple current rating is appropriate
for the continuous output current. As capacitor lifetime is a function of temperature rise,
this can be used to determine if the capacitor rating (ESR and ripple current specification)
is acceptable. Resistor R8 and capacitor C11 are fitted to reduce high frequency EMI.
4.4 Output Feedback
Diodes D9 and VR2, along with the forward drop of the LED of optocoupler U2, set the
output voltage of the power supply. Resistor R13 provides a bias current through D9 and
VR2 to improve regulation by operating VR2 closer to its knee and test current. Resistor
R12 sets the overall gain of the feedback loop while capacitor C15 boosts high frequency
loop gain to reduce pulse grouping. A high gain (300-600%) optocoupler U2 is used to
reduce control loop delays.
4.5 Output Protection
Components Q1, Q2, R9 to R11, R14, C13, C16, D10, and VR3 are used for latching
overvoltage and overcurrent protection in conjunction with the smart AC sensing feature,
to shut down the supply in a fault condition. If either an output overvoltage (e.g. optocoupler failure), or overcurrent (e.g. motor stall) fault occurs, SCR Q2 is fired, shorting the
output winding. The SCR is connected directly to the secondary winding to allow a lower
current rating and lower cost device to be used, as the SCR does not have to discharge
the output capacitor.
The value of VR3 is selected to give the desired overvoltage trigger threshold. For
overcurrent protection, the value of R9 is selected to turn on Q1 at the desired
overcurrent threshold while R10 and C13 provide a time constant, to prevent short
duration (~200 ms) transient loads from triggering shutdown.
The shutdown condition can be reset by briefly removing AC power for ~3 seconds
(maximum), the time required for C7 to discharge and the current into the EN/UV pin to
fall below 25 µA.
Page 9 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
22-Jun-2006
5 PCB Layout
Figure 3 – EP-93 Printed Circuit Layout.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 10 of 40
22-Jun-2006
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
6 Bill of Materials
Item
1
2
3
Qty
2
1
1
Part Ref
C1 C2
C3
C4
4
5
1
1
C5
C6
6
7
8
9
10
1
2
2
1
1
C7
C8 C14
C10 C19
C11
C12
11
1
C13
12
2
C15 C16
13
14
1
5
15
1
C17
D1 D2 D3
D4 D5
D6
16
17
18
2
1
1
D7 D9
D8
D10
19
20
1
1
F1
HS1
21
1
J1
22
1
J2
23
24
1
1
J3
JP1
25
1
JP2
26
27
28
29
1
1
1
1
L1
L2
U1 (REF)
Q1
30
31
32
33
1
2
1
1
Q2
R1 R2
R3
R4
Page 11 of 40
Description
100 pF, Ceramic, Y1
680 nF, 275 VAC, Film, X2
150 µF, 400 V, Electrolytic,
(18 x 35.5)
2.2 nF, 1 kV, Disc Ceramic
47 µF, 35 V, Electrolytic,
Gen Purpose, (5 x 11)
100 nF, 400 V, Film
220 nF, 50 V, Ceramic, Z5U, 0.2" L.S.
1 nF, Ceramic, Y1
330 pF, 1 kV, Disc Ceramic
330 µF, 50 V, 22 mΩ, Electrolytic,
(10 x 25)
47 uF, 16 V, Electrolytic, Gen Purpose,
(5 x 11.5)
100 nF, 50 V, Ceramic, Z5U
Mfg Part Number
ECK-DNA101MB
PX684K3ID6
YSD2GM151L32B0
BAI0264
5GAD22
ECA-1VHG470
Mfg
Panasonic
Carli
Luminous Town
Vishay
Panasonic
ECQ-E4104KF
C322C224M5U5CA
ECK-DNA102MB
5GAT33
EEU-FM1H331L
Panasonic
Kemet
Panasonic
Vishay
Panasonic
ECA-1CHG470
Panasonic
C317C104M5U5CA Kemet
4700 pF, 1 kV, Thru-hole, Disc Ceramic
1000 V, 1 A, Rectifier, DO-41
5GAD47
1N4007
Vishay/Sprague
Vishay
800 V, 1 A, Fast Recovery Diode, 500 ns,
DO-41
75 V, 300 mA, Fast Switching, DO-35
150 V, 3 A, Schottky, DO-201AD
200 V, 1 A, Ultrafast Recovery, 50 ns,
DO-41
3.15 A, 250 V, Slow, TR5
HEATSINK/Alum, TO-220 1-hole, 2 Mtg
Pins
AC Input Receptacle and Accessory Plug,
PCBM
2 Position (1 x 2) header, 0.156-pitch,
Vertical
PCB Terminal Hole, 18 AWG
Wire Jumper, Non-insulated, 22 AWG,
0.4 in
Wire Jumper, Non-insulated, 22 AWG,
0.3 in
5.3 mH, 1 A, Common Mode Choke
5.3 µH, 4 A, Common Mode Choke Bead
Nut, Hex, Kep 4-40, Zinc Plate
PNP, Small Signal BJT, 40 V, 0.2 A, TO92
SCR, 400 V, 1.25 A, TO-92
1.3 MΩ, 5%, 1/4 W, Carbon Film
10 kΩ, 5%, 1/2 W, Carbon Film
22 Ω, 5%, 1/2 W, Carbon Film
FR106
Diodes Inc.
1N4148
STPS3150RL
UF4003
Vishay
ST
Vishay
3,821,315,0410
Custom
161-R301SN13
Wickman
Clark Precision
Sheetmetal
Kobiconn
26-48-1021
Molex
N/A
298
N/A
Alpha
298
Alpha
ELF15N010A
Custom
Panasonic
2N3906
Vishay
FS0202DA
CFR-25JB-1M3
CFR-50JB-10K
CFR-50JB-22R
Fagor
Yageo
Yageo
Yageo
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
34
35
36
37
38
39
40
41
42
43
44
45
46
1 R5
1 R6
1 R7
1 R8
1 R9
1 R10
1 R11
2 R12 R13
1 R14
1 R15
1 R16
1 RT1
1 U1 (REF)
47
1 T1
2.2 MΩ, 5%, 1/4 W, Carbon Film
2.4 MΩ, 5%, 1/4 W, Carbon Film
4.7 kΩ, 5%, 1/4 W, Carbon Film
68 Ω, 5%, 1/2 W, Carbon Film
0.33 Ω, 5%, 2 W, Metal Oxide
1.5 kΩ, 5%, 1/8 W, Carbon Film
3 kΩ, 5%, 1/4 W, Carbon Film
1 kΩ, 5%, 1/4 W, Carbon Film
100 Ω, 5%, 1/8 W, Carbon Film
2.2 Ω, 5%, 1/8 W, Carbon Film
2.7 MΩ, 5%, 1/8 W, Carbon Film
NTC Thermistor, 10 Ω, 1.7 A
SCR, Phillips, 4-40 X 5/16 Pan-head
Machine Screw, Steel, Zinc Plate
Transformer, EE25, 10 Pins, Vertical
48
1 U1
PeakSwitch, PKS606Y, TO-220-7C
49
1 U2
Optocoupler, 35 V, CTR 300-600%, 4-DIP PC817X4
50
51
52
53
1 VR1
1 VR2
1 VR3
1 U1 (REF)
100 V, 5%, 1 W, DO-41
28 V, 5%, 500 mW, DO-35
36 V, 5%, 500 mW, DO-35
Washer Flat #4, Zinc Plated
54
55
56
57
58
59
1
1 J1 (REF)
1 J1 (REF)
1 J1 (REF)
1 U1 (REF)
1 C4, RT1, L2
(REF)
PCB, EP-93, REVD
Wire, UL1015, 18 AWG, GRN/YEL
Heat Shrink, 1/4-inch, BLK
Snap-in Terminal
Silicone Heat Sink Compound
Silicone Adhesive, Non-corrosive
22-Jun-2006
CFR-25JB-2M2
CFR-25JB-2M4
CFR-25JB-4K7
CFR-50JB-68R
RS2 0.33 5% A
CFR-12JB-1K5
CFR-25JB-3K0
CFR-25JB-1K0
CFR-12JB-91R
CFR-12JB-2R2
CFR-12JB-2M7
CL-120
Yageo
Yageo
Yageo
Yageo
Stackpole/Sei
Yageo
Yageo
Yageo
Yageo
Yageo
Yageo
Thermometrics
SIL6039
LSPA10545
SNX1882
PKS606Y
Hi Cal
LiShin
Santronics
Power
Integrations
Sharp
1N4764A
1N5255B
1N5258B
#4FWZ
Microsemi
Microsemi
Microsemi
Building
Fasteners
8918-189
221014-6BK
02-07-2102
Belden
Alpha
Molex
19-155
GC Electronics
Note: (REF) indicates mechanical items associated with the referenced component(s) but
that are not shown on the schematic.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 12 of 40
22-Jun-2006
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
7 Transformer Specification
7.1
Electrical Diagram
NC
WDG #4
7T
2 X 29 AWG
1
WDG #5
19T
2 X 29 AWG
3
9,10
WDG #3
10T
4 X 26 AWG Triple insulated
7,8
WDG #1
20T
2 X 29 AWG
2
5
WDG #2
5T
2 X 29 AWG
4
Figure 4 – Transformer Electrical Diagram.
7.2
Electrical Specifications
Electrical Strength
Resonant Frequency
1 Second, from Pins 1-5 to
Pins 6-10
Between Pins 1-5 and Pins 6-10
Pins 1-2, All other Windings Open,
Measured at 100 kHz, 0.4 VRMS
Pins 1-2, All other Windings Open
Primary Leakage
Inductance
Pins 1-2, with Pins 6-10 Shorted,
Measured at 100 kHz, 0.4V RMS
Creepage
Primary Inductance
Page 13 of 40
3000 VAC,
60 Hz
6 mm (Min.)
132 µH,
±10%
2 MHz
(Min.)
5.5 µH
(Max.)
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
7.3
Materials
Item
[1]
Description
Core: (EE25) E25/10/6 Ferroxcube 3C90 Material or Equivalent
Gapped for AL of 88 nH/T2
Bobbin: 10-pin EE25, Vertical Mount, Yih Hwa YW-360 or
Equivalent
Magnet Wire: #29 AWG Double-coated
Triple Insulated Wire: #26 AWG
Tape, 3M #1298 or Equivalent 10.8 mm Wide
Varnish
[2]
[3]
[4]
[5]
[6]
7.4
22-Jun-2006
Transformer Build Diagram
Pins Side
Tape
1
3
½ Primary
1
Shield
7,8
9,10
Secondary
4
5
Bias
3
2
½ Primary
Figure 5 – Transformer Build Diagram.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 14 of 40
22-Jun-2006
7.5
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
Transformer Construction
1/2 Primary
Basic Insulation
Bifilar Bias
Winding
Basic Insulation
30 V Quad filar
Secondary
Winding
Basic Insulation
Shield
Basic Insulation
1/2 Primary
Finish Wrap
Final Assembly
Page 15 of 40
Start at Pin 2. Wind 20 bifilar turns of item [3] in
approximately 1.25 layer, finish on Pin 3.
Use one layer of item [5] for basic insulation.
Starting at Pin 5, wind 5 bifilar turns of item [3]. Spread turns
evenly across bobbin. Finish at Pin 4.
Use two layers of item [5] for basic insulation.
Start at Pins 9 and 10. Wind 10 quad filar turns of item [4]
(about 2 layers). Spread turns evenly across bobbin. Finish
on Pins 7 and 8.
Use two layers of item [5] for basic insulation.
Starting at Pin 1, wind 7 bifilar turns of item [3]. Spread turns
evenly across bobbin. Leave 1/2-inch of flying lead at finish.
Use two layers of item [5] for basic insulation. Trap flying lead
from shield winding between tape layers.
Start at Pin 3. Wind 19 bifilar turns of item [3] in
approximately 1 layer, finish on Pin 1.
Use three layers of item [5] for finish wrap.
Assemble and secure core halves. Dip Varnish (item [6]).
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
22-Jun-2006
8 Transformer Spreadsheet
ACDC_PeakSwitch_0 INPUT
INFO
31006; Rev.1.1;
©Copyright Power
Integrations 2006
ENTER APPLICATION VARIABLES
VACMIN
90
VACMAX
265
fL
50
Nominal Output
30.00
Voltage (VO)
Maximum Output
2.71
Current (IO)
Minimum Output
27.00
Voltage at Peak Load
Continuous Power
32.00
Peak Power
n
0.75
Z
tC Estimate
CIN
3.00
150.00
ENTER PeakSwitch VARIABLES
PeakSwitch
PKS606Y
Chosen Device
ILIMITMIN
ILIMITMAX
fSmin
I^2fmin
VOR
VDS
VD
VDB
VCLO
KP (STEADY STATE)
KP (TRANSIENT)
120.00
8.00
1.00
170
OUTPUT UNIT
Volts
Volts
Hertz
Volts
Minimum AC Input Voltage
Maximum AC Input Voltage
AC Mains Frequency
Nominal Output Voltage (at continuous power)
Amps
Power Supply Output Current (corresponding to peak power)
27.00 Volts
Minimum Output Voltage at Peak Power (Assuming output droop
during peak load)
32.00 Watts
Continuous Output Power
73.17 Watts
Peak Output Power
Efficiency Estimate at output terminals and at peak load.
Enter 0.7 if no better data available
0.60
Loss Allocation Factor (Z = Secondary side losses / Total losses)
mSeconds Bridge Rectifier Conduction Time Estimate
150 uFarads
Input Capacitance
PKS606Y
PKS606Y
2.600
3.000
250000
1955
120
8
1
0.7
170
0.50
0.30
PeakSwitch device
Amps
Amps
Hertz
A^2kHz
Volts
Volts
Volts
Volts
Volts
ENTER UVLO VARIABLES
V_UV_TARGET
89 Volts
V_UV_ACTUAL
92 Volts
RUV_IDEAL
RUV_ACTUAL
3.47 Mohms
3.60 Mohms
BIAS WINDING VARIABLES
VB
NB
PIVB
ACDC_PeakSwitch_031006_Rev1-1.xls; PeakSwitch
Continuous/Discontinuous Flyback Transformer Design
Spreadsheet
15.00 Volts
5
63 Volts
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Minimum Current Limit
Maximum Current Limit
Minimum Device Switching Frequency
I^2f (product of current limit squared and frequency is trimmed for
tighter tolerance)
Reflected Output Voltage (VOR <= 135 V Recommended)
PeakSwitch on-state Drain to Source Voltage
Output Winding Diode Forward Voltage Drop
Bias Winding Diode Forward Voltage Drop
Nominal Clamp Voltage
Ripple to Peak Current Ratio (KP < 6)
Ripple to Peak Current Ratio under worst case at peak load
(0.25 < KP < 6)
Target DC under-voltage threshold, above which the power supply
will start
Typical DC start-up voltage based on standard value of
RUV_ACTUAL
Calculated value for UV Lockout resistor
Closest standard value of resistor to RUV_IDEAL
Bias winding Voltage
Number of Bias Winding Turns
Bias Rectifier Maximum Peak Inverse Voltage
Page 16 of 40
22-Jun-2006
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES
Core Type
EE25
EE25
Core
Bobbin
AE
LE
AL
BW
M
L
NS
EE25
EE25_BOBBIN
0.404
7.34
1420
10.20
0.00
10
DC INPUT VOLTAGE PARAMETERS
VMIN
VMAX
P/N:
P/N:
cm^2
cm
nH/T^2
mm
mm
3
10
User Selected Core Size(Verify
acceptable thermal rise under continuous
load conditions)
PC40EE25-Z
EE25_BOBBIN
Core Effective Cross Sectional Area
Core Effective Path Length
Ungapped Core Effective Inductance
Bobbin Physical Winding Width
Safety Margin Width (Half the Primary to
Secondary Creepage Distance)
Number of Primary Layers
Number of Secondary Turns
81 Volts
375 Volts
Minimum DC Input Voltage
Maximum DC Input Voltage
CURRENT WAVEFORM SHAPE PARAMETERS
DMAX
ON-Time
Extension
0.62
IAVG
IP
IR
IRMS
1.34
2.60
1.31
1.80
!!! Info. ON-Time Extension feature
invoked. Verify this design for acceptable
electrical and thermal performance on the
bench
Average Primary Current
Minimum Peak Primary Current
Primary Ripple Current
Primary RMS Current
TRANSFORMER PRIMARY DESIGN PARAMETERS
LP
LP_TOLERANCE
NP
ALG
Target BM
BM
BAC
ur
LG
BWE
OD
INS
DIA
AWG
CM
CMA
Page 17 of 40
10.00
Amps
Amps
Amps
Amps
132 uHenries Typical Primary Inductance. +/- 10% to
ensure a minimum primary inductance of
119 uH
10 %
Primary inductance tolerance
39
Primary Winding Number of Turns
88 nH/T^2 Gapped Core Effective Inductance
3000 Gauss
Target Peak Flux Density at Maximum
Current Limit
2523 Gauss
Calculated Maximum Operating Flux
Density, BM < 3000 is recommended
635 Gauss
AC Flux Density for Core Loss Curves
(0.5 X Peak to Peak)
2053
Relative Permeability of Ungapped Core
0.54 mm
Gap Length (Lg > 0.1 mm)
30.6 mm
Effective Bobbin Width
0.79 mm
Maximum Primary Wire Diameter
including insulation
0.08 mm
Estimated Total Insulation Thickness
(= 2 * film thickness)
0.71 mm
Bare conductor diameter
22 AWG
Primary Wire Gauge (Rounded to next
smaller standard AWG value)
645 Cmils
Bare conductor effective area in circular
mils
358 Cmils/
Primary Winding Current Capacity
Amp
(100 < CMA < 500)
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
TRANSFORMER SECONDARY DESIGN PARAMETERS
Lumped parameters
ISP
ISRMS
IRIPPLE
CMS
AWGS
10.06
5.44
4.72
1089
Amps
Amps
Amps
Cmils
19 AWG
VOLTAGE STRESS PARAMETERS
VDRAIN
624 Volts
PIVS
127 Volts
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
22-Jun-2006
Peak Secondary Current
Secondary RMS Current
Output Capacitor RMS Ripple Current
Secondary Bare Conductor minimum
circular mils
Secondary Wire Gauge (Rounded up to
next larger standard AWG value)
Maximum Drain Voltage Estimate
(Assumes 20% zener clamp tolerance
and an additional 10% temperature
tolerance)
Output Rectifier Maximum Peak Inverse
Voltage
Page 18 of 40
22-Jun-2006
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
9 Performance Data
All measurements performed at room temperature, 60 Hz input frequency.
9.1
Efficiency
84%
84%
83%
Efficiency (%)
83%
82%
82%
81%
81%
100% Load
50% Load
80%
75% Load
25% Load
80%
79%
80
100
120
140
160
180
200
220
240
260
280
AC Input Voltage
Figure 6 – Efficiency vs. Input Voltage, Room Temperature, 60 Hz.
9.1.1 Active Mode CEC Measurement Data
All single output adapters, including those provided with products for sale in California
after July 1st, 2006 must meet the California Energy Commission (CEC) requirement for
minimum active mode efficiency and no-load input power. Minimum active mode
efficiency is defined as the average efficiency of 25, 50, 75 and 100% of rated output
power, with the limit based on the nameplate output power:
Nameplate
Output (PO)
Minimum Efficiency in Active Mode
of Operation
<1W
≥ 1 W to ≤ 49 W
> 49 W
0.49 × PO
0.09 × ln (PO) + 0.49 [ln = natural log]
0.84
For adapters that are single input voltage only, the measurement is made at the rated
single nominal input voltage (115 VAC or 230 VAC). For universal input adapters the
measurement is made at both nominal input voltages (115 VAC and 230 VAC).
Page 19 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
22-Jun-2006
To meet the standard, the measured average efficiency (or efficiencies for universal input
supplies) must be greater than or equal to the efficiency specified by the CEC/Energy
Star standard.
Percent of
Full Load
25
50
75
100
Average
CEC
specified
minimum
average
efficiency (%)
Efficiency (%)
115 VAC
230 VAC
81.0%
81.6%
82.4%
82.1%
80.5%
81.5%
82.8%
83.4%
81.8%
82%
80.2%
More states within the USA and other countries are adopting this standard. For the latest
up to date information please visit the PI Green Room:
http://www.powerint.com/greenroom/regulations.htm
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 20 of 40
22-Jun-2006
9.2
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
No-load Input Power
0.22
0.20
0.18
Input Power (W)
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00
80
100
120
140
160
180
200
220
240
260
280
AC Input Voltage
Figure 7 – Zero Load Input Power vs. Input Line Voltage, Room Temperature, 60 Hz.
9.3 Available Standby Output Power
The chart below shows the available output power vs. line voltage for input power levels
of 1 W and 3 W.
2.50
Available Output Power (W)
2.25
2.00
1.75
Pin = 1W
Pin = 3W
1.50
1.25
1.00
0.75
0.50
0.25
0.00
80
100
120
140
160
180
200
220
240
260
280
AC Input Voltage
Figure 8 –- Available Output Power vs. Input Voltage for PIN of 1 W and 3 W.
Page 21 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
9.4
22-Jun-2006
Regulation
9.4.1 Load Regulation
100.5%
115 VAC
230 VAC
100.0%
Regulation (%)
99.5%
99.0%
98.5%
98.0%
97.5%
97.0%
96.5%
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
Output Load (A)
Figure 9 – Output Regulation vs. Load, Room Temperature.
9.4.2 Line Regulation
103%
102%
101%
Regulation (%)
100%
99%
98%
97%
96%
95%
94%
93%
80
100
120
140
160
180
200
220
240
260
280
AC Input Voltage
Figure 10 – Line Regulation, Room Temperature, Full Load. (32 W).
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 22 of 40
22-Jun-2006
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
10 Thermal Performance
Temperature of key components, open frame room temperature and 85 VAC input.
Item
Temperature
(°C)
85 VAC
Ambient
D8 (Output Rectifier)
C12 (Output Capacitor)
U1 (PeakSwitch)
T1 (Transformer)
L1 (Common Mode
Choke)
C4 (Bulk Capacitor)
Page 23 of 40
25.2
65.8
47.0
70.0
58.0
47.0
34.7
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
22-Jun-2006
11 Waveforms
11.1 Drain Voltage and Current, Normal Operation
Figure 11 – 90 VAC, Full Load.
Upper: VDRAIN, 100 V / div.
Lower: IDRAIN, 0.5 A, 5 µs / div.
Figure 12 – 265 VAC, Full Load.
Upper: VDRAIN, 200 V / div.
Lower: IDRAIN, 0.5 A, 5 µs / div.
11.2 Output Voltage Start-up Profile
Figure 13 – Start-Up Profile, 90 VAC.
5 V, 5 ms / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Figure 14 – Start-Up Profile, 265 VAC.
5 V, 5 ms / div.
Page 24 of 40
22-Jun-2006
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
11.3 Drain Voltage and Current Start-up Profile
Figure 15 – 90 VAC Input, 32 W Load.
Upper: VDRAIN, 100 V, 2 ms / div.
Lower: IDRAIN, 2 A / div.
Figure 16 – 265 VAC Input, 32 W Load.
Upper: VDRAIN, 200 V, 2 ms / div.
Lower: IDRAIN, 2 A / div.
11.4 Load Transient Response (1 A to 2 A Load Step)
Figure 17 – Transient Response, 90 VAC,
1 A to 2 A to 1 A Load Step.
Upper: Output Voltage, 1 V/div.
Lower: Load Current, 1 A, 50 ms/div.
Page 25 of 40
Figure 18 – Transient Response, 265 VAC,
1 A to 2 A to 1 A Load Step.
Upper: Output Voltage, 1 V/div.
Lower: Load Current, 1 A, 50 ms/div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
22-Jun-2006
11.5 Holdup Time
All measurements taken at 32 W output load.
Figure 19 – Holdup Time, 90 VAC.
Top Trace: Output Voltage, 20 V/div.
Middle Trace: Output Current, 1 A/div.
Bottom Trace: AC Input Current, 5 A, 10 ms/div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 26 of 40
22-Jun-2006
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
11.6 AC Line Disturbance
All measurements taken at 32 W output load.
Figure 20 – Half-Cycle Dropout, 90 VAC, 60 Hz.
Top Trace: Output Voltage, 20 V/div.
Middle Trace: Output Current, 2 A/div.
Bottom Trace: AC Input Voltage, 100 V, 20 ms/div.
Figure 21 – Half-Cycle Dropout, 120 VAC, 60 Hz.
Top Trace: Output Voltage, 20 V/div.
Middle Trace: Output Current, 2 A/div.
Bottom Trace: AC Input Voltage, 100 V, 20 ms/div.
Figure 22 – Half-Cycle Dropout, 216 VAC, 50 Hz.
Top Trace: Output Voltage, 20 V/div.
Middle Trace: Output Current, 2 A/div.
Bottom Trace: AC Input Voltage, 200 V, 20 ms/div.
Figure 23 – Half-Cycle Dropout, 240 VAC, 50 Hz.
Top Trace: Output Voltage, 20 V/div.
Middle Trace: Output Current, 2 A/div.
Bottom Trace: AC Input Voltage, 200 V, 20 ms/div.
Page 27 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
22-Jun-2006
Figure 24 – Full Cycle Dropout, 120 VAC, 60Hz.
Top Trace: Output Voltage, 20 V/div.
Middle Trace: Output Current, 2 A/div.
Bottom Trace: AC Input Voltage, 200 V, 20 ms/div.
Figure 25 – Full Cycle Dropout, 240 VAC, 50 Hz.
Top Trace: Output Voltage, 20 V/div.
Middle Trace: Output Current, 2 A/div.
Bottom Trace: AC Input Voltage, 200 V, 20 ms/div.
Figure 26 – Line Sag from 120 VAC to 84 VAC
(50 cycles), 60 Hz.
Top Trace: Output Voltage, 20 V/div.
Middle Trace: Output Current, 2 A/div.
Bottom Trace: AC Input Voltage, 100 V, 200 ms/div.
Figure 27 – Line Sag from 120 VAC to 48 VAC
(16 cycles), 60 Hz.
Top Trace: Output Voltage, 10 V/div.
Bottom Trace: AC Input Voltage, 100 V, 200 ms/div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 28 of 40
22-Jun-2006
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
Figure 28 – Line Swell from 240 VAC to 300 VAC
(500 msec), 50 Hz.
Top Trace: Output Voltage, 10 V/div.
Bottom Trace: AC Input Voltage, 500 V, 100 ms/div.
Page 29 of 40
Figure 29 – Peak Drain Voltage During 300 VAC
Line Swell, 100 V, 2 µs/div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
22-Jun-2006
12 Output Ripple Measurements
12.1.1 Ripple Measurement Technique
For DC output ripple measurements, a modified oscilloscope test probe must be used to
reduce spurious signals due to pickup. Details of the probe modification are provided in
Figure 30 and Figure 31.
The Probe Master 5125BA probe adapter is affixed with two capacitors tied in parallel
across the probe tip. The capacitors include one (1) 0.1 µF/50 V ceramic type and one
(1) 1.0 µF/50 V aluminum electrolytic. The aluminum electrolytic type capacitor is
polarized, so proper polarity across DC outputs must be maintained (see below).
Probe Ground
Probe Tip
Figure 30 – Oscilloscope Probe Prepared for Ripple Measurement (End Cap and Ground Lead Removed).
Figure 31 – Oscilloscope Probe with Probe Master 5125BA BNC Adapter (Modified with Wires for Probe
Ground for Ripple Measurement, and Two Parallel Decoupling Capacitors Added).
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 30 of 40
22-Jun-2006
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
12.1.2 Measurement Results
Figure 32 – Output Ripple, 90 VAC, 60 Hz, Full
Load.
200 mV, 5 ms / div.
Page 31 of 40
Figure 33 – Output Ripple, 265 VAC, 50 Hz, Full
Load.
200 mV, 2 ms / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
22-Jun-2006
13 Output Over-current Shutdown/Restart
Figure 34 – Supply Shutdown After Output Load
Step from 1.07 A to 2.8 A, 85 VAC.
Top Trace: Output Voltage, 10 V/div.
Bottom Trace: Output Current, 1 A, 20 ms/div.
Figure 35 – Supply Shutdown After Output Load
Step from 1.07 A to 2.8 A, 265 VAC.
Top Trace: Output Voltage, 10 V/div.
Bottom Trace: Output Current, 1 A, 20 ms/div.
Figure 36 – Output Recovery Following OverCurrent Shutdown and AC Input Recycle, 115 VAC.
Top Trace: Output Voltage, 20 V/div.
Middle Trace: Output Current, 1 A/div.
Bottom Trace: AC Input Voltage, 100 V, 500 ms/div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 32 of 40
22-Jun-2006
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
14 Line Surge
Differential input line 1.2/50 µs surge testing was completed on a single test unit to
IEC61000-4-5, with 10 strikes per injection phase at 60 second intervals. Input voltage
was set at 230 VAC / 60 Hz. Output was loaded at 32 W and operation was verified
following each surge event.
Surge
Level (V)
+1kV
-1kV
+1kV
-1kV
+1kV
-1kV
+2kV
Input
Voltage
(VAC)
230
230
230
230
230
230
230
+2kV
230
+2kV
230
+2kV
230
+2kV
230
+2kV
230
Injection
Location
Injection
Phase (°)
Test Result
(Pass/Fail)
L to N
L to N
L to N
L to N
L to N
L to N
L, N to
GND
L, N to
GND
L, N to
GND
L, N to
GND
L, N to
GND
L, N to
GND
0
0
90
90
270
270
0
Pass
Pass
Pass
Pass
Pass
Pass
Pass
0
Pass
90
Pass
90
Pass
270
Pass
270
Pass
Unit passes under all test conditions.
Page 33 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
22-Jun-2006
15 Conducted EMI
For the measurements shown below, the power supply was resistively loaded to 32 W
and attached to the LISN via a 2-meter IEC line cord arranged in a serpentine pattern.
The power supply secondary return was hard-wired to the LISN ground using a 1-meter
cable.
Figure 37 – Conducted EMI, Maximum Steady State Load, 115 VAC, 60 Hz, and EN55022 B Limits.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 34 of 40
22-Jun-2006
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
Figure 38 – Conducted EMI, Maximum Steady State Load, 230 VAC, 60 Hz, and EN55022 B Limits.
Page 35 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
22-Jun-2006
16 Appendix
16.1 Heat Sink Drawing
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 36 of 40
22-Jun-2006
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
17 Revision History
Date
17-Mar-06
24-Mar-06
Author
PI SJ
PI SJ
Revision
1.0
1.1
30-Mar-06
04-May-06
PI SJ
PI SJ
1.2
1.3
22-Jun-06
PI SJ
1.4
Page 37 of 40
Description & changes
First Release
Fix board picture and add
transformer suppliers
Format for printing
Updated PeakSwitch symbol
in Figure 2
Revised ground connection
on the circuit diagram in
Figure 2
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
22-Jun-2006
Notes
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 38 of 40
22-Jun-2006
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
Notes
Page 39 of 40
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
EP-93 – 30 V, 1.07 A, 2.7 A (peak), Universal Input Supply
22-Jun-2006
For the latest updates, visit our website: www.powerint.com
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power
Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS
MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT OF THIRD PARTY RIGHTS.
PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be
covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power
Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. Power Integrations grants its
customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.
The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, EcoSmart, Clampless, E-Shield,
Filterfuse, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective
companies. ©Copyright 2006 Power Integrations, Inc.
Power Integrations Worldwide Sales Support Locations
WORLD HEADQUARTERS
5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main:
+1-408-414-9200
Customer Service:
Phone:
+1-408-414-9665
Fax:
+1-408-414-9765
e-mail: [email protected]
GERMANY
Rueckertstrasse 3
D-80336, Munich
Germany
Phone:
+49-89-5527-3910
Fax:
+49-89-5527-3920
e-mail: [email protected]
JAPAN
Keihin Tatemono 1st Bldg
2-12-20
Shin-Yokohama, Kohoku-ku,
Yokohama-shi, Kanagawa ken,
Japan 222-0033
Phone:
+81-45-471-1021
Fax:
+81-45-471-3717
e-mail:
[email protected]
TAIWAN
5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu Dist.
Taipei, Taiwan 114, R.O.C.
Phone:
+886-2-2659-4570
Fax:
+886-2-2659-4550
e-mail:
[email protected]
CHINA (SHANGHAI)
Rm 807-808A,
Pacheer Commercial Centre,
555 Nanjing Rd. West
Shanghai, P.R.C. 200041
Phone:
+86-21-6215-5548
Fax:
+86-21-6215-2468
e-mail: [email protected]
INDIA
261/A, Ground Floor
7th Main, 17th Cross,
Sadashivanagar
Bangalore, India 560080
Phone:
+91-80-5113-8020
Fax:
+91-80-5113-8023
e-mail: [email protected]
KOREA
RM 602, 6FL
Korea City Air Terminal B/D,
159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728, Korea
Phone:
+82-2-2016-6610
Fax:
+82-2-2016-6630
e-mail:
[email protected]
EUROPE HQ
1st Floor, St. James’s House
East Street, Farnham
Surrey, GU9 7TJ
United Kingdom
Phone:
+44 (0) 1252-730-140
Fax:
+44 (0) 1252-727-689
e-mail: [email protected]
CHINA (SHENZHEN)
Room 2206-2207, Block A,
Elec. Sci. Tech. Bldg.
2070 Shennan Zhong Rd.
Shenzhen, Guangdong,
China, 518031
Phone:
+86-755-8379-3243
Fax:
+86-755-8379-5828
e-mail: [email protected]
ITALY
Via Vittorio Veneto 12
20091 Bresso MI
Italy
Phone: +39-028-928-6000
Fax: +39-028-928-6009
e-mail: [email protected]
SINGAPORE
51 Newton Road,
#15-08/10 Goldhill Plaza,
Singapore, 308900
Phone:
+65-6358-2160
Fax:
+65-6358-2015
e-mail:
[email protected]
APPLICATIONS HOTLINE
World Wide +1-408-414-9660
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
APPLICATIONS FAX
World Wide +1-408-414-9760
Page 40 of 40