IRF IRLIB9343PBF

PD - 95745
DIGITAL AUDIO MOSFET
IRLIB9343PbF
Features
Advanced Process Technology
l Key Parameters Optimized for Class-D Audio
Amplifier Applications
l Low RDSON for Improved Efficiency
l Low Qg and Qsw for Better THD and Improved
Efficiency
l Low Qrr for Better THD and Lower EMI
l 175°C Operating Junction Temperature for
Ruggedness
l Repetitive Avalanche Capability for Robustness and
Reliability
l Lead-Free
l
Key Parameters
VDS
RDS(ON) typ. @ VGS = -10V
RDS(ON) typ. @ VGS = -4.5V
Qg typ.
TJ max
-55
93
150
31
175
V
m:
m:
nC
°C
D
G
TO-220 Full-Pak
S
Description
This Digital Audio HEXFET® is specifically designed for Class-D audio amplifier applications. This MosFET utilizes the latest
processing techniques to achieve low on-resistance per silicon area. Furthermore, Gate charge, body-diode reverse recovery
and internal Gate resistance are optimized to improve key Class-D audio amplifier performance factors such as efficiency, THD
and EMI. Additional features of this MosFET are 175°C operating junction temperature and repetitive avalanche capability.
These features combine to make this MosFET a highly efficient, robust and reliable device for Class-D audio amplifier
applications.
Absolute Maximum Ratings
Parameter
VDS
Max.
Units
-55
±20
V
-14
-10
A
VGS
ID @ TC = 25°C
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ -10V
ID @ TC = 100°C
IDM
Continuous Drain Current, VGS @ -10V
Pulsed Drain Current
PD @TC = 25°C
PD @TC = 100°C
Power Dissipation
-60
33
Power Dissipation
20
TJ
TSTG
c
Linear Derating Factor
Operating Junction and
Storage Temperature Range
W
0.26
-40 to + 175
W/°C
°C
10 (1.1)
lbf in (N m)
Mounting Torque, 6-32 or M3 screw
y
y
Thermal Resistance
RθJC
RθJA
Junction-to-Case
f
Junction-to-Ambient
Parameter
f
Typ.
Max.
Units
–––
3.84
°C/W
–––
65
Notes  through … are on page 7
www.irf.com
1
8/23/04
IRLIB9343PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Typ. Max. Units
Conditions
BVDSS
Drain-to-Source Breakdown Voltage
-55
–––
–––
∆ΒVDSS/∆TJ
RDS(on)
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
–––
–––
-52
93
–––
105
VGS(th)
Gate Threshold Voltage
–––
-1.0
150
–––
170
–––
∆VGS(th)/∆TJ
IDSS
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
–––
–––
-3.7
–––
–––
-2.0
Gate-to-Source Forward Leakage
–––
–––
–––
–––
-25
-100
nA
VDS = -55V, VGS = 0V, TJ = 125°C
VGS = -20V
Gate-to-Source Reverse Leakage
Forward Transconductance
–––
5.3
–––
–––
100
–––
S
VGS = 20V
VDS = -25V, ID = -14A
Total Gate Charge
Pre-Vth Gate-to-Source Charge
–––
–––
31
7.1
47
–––
Gate-to-Drain Charge
Gate Charge Overdrive
–––
–––
8.5
15
–––
–––
See Fig. 6 and 19
Turn-On Delay Time
Rise Time
–––
–––
9.5
24
–––
–––
VDD = -28V, VGS = -10V
ID = -14A
Turn-Off Delay Time
Fall Time
–––
–––
21
9.5
–––
–––
Input Capacitance
Output Capacitance
–––
–––
660
160
–––
–––
Reverse Transfer Capacitance
Effective Output Capacitance
–––
–––
72
280
–––
–––
ƒ = 1.0MHz,
See Fig.5
VGS = 0V, VDS = 0V to -44V
Internal Drain Inductance
–––
4.5
–––
Between lead,
Internal Source Inductance
–––
7.5
–––
IGSS
gfs
Qg
Qgs
Qgd
Qgodr
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss
LD
V
mV/°C Reference to 25°C, ID = -1mA
mΩ VGS = -10V, ID = -3.4A
e
= -2.7A e
V
VGS = -4.5V, ID
VDS = VGS, ID = -250µA
mV/°C
µA VDS = -55V, VGS = 0V
VDS = -44V
VGS = -10V
ID = -14A
ns
RG = 2.5Ω
pF
VGS = 0V
VDS = -50V
nH
LS
VGS = 0V, ID = -250µA
e
6mm (0.25in.)
from package
and center of die contact
Avalanche Characteristics
Parameter
EAS
IAR
EAR
Single Pulse Avalanche Energy
Avalanche Current
g
Repetitive Avalanche Energy
Typ.
d
Max.
Units
–––
190
See Fig. 14, 15, 17a, 17b
g
mJ
A
mJ
Diode Characteristics
Parameter
IS @ TC = 25°C Continuous Source Current
Min.
Typ. Max. Units
–––
–––
-14
ISM
(Body Diode)
Pulsed Source Current
–––
–––
-60
VSD
(Body Diode)
Diode Forward Voltage
–––
–––
-1.2
trr
Qrr
2
c
Conditions
MOSFET symbol
A
V
Reverse Recovery Time
–––
57
86
ns
Reverse Recovery Charge
–––
120
180
nC
showing the
integral reverse
D
G
p-n junction diode.
TJ = 25°C, IS = -14A, VGS = 0V
e
S
TJ = 25°C, IF = -14A
di/dt = 100A/µs
e
www.irf.com
IRLIB9343PbF
100
100
10
BOTTOM
VGS
-15V
-12V
-10V
-8.0V
-5.5V
-4.5V
-3.0V
-2.5V
TOP
-I D, Drain-to-Source Current (A)
-I D, Drain-to-Source Current (A)
TOP
1
-2.5V
≤ 60µs PULSE WIDTH
Tj = 25°C
10
BOTTOM
1
-2.5V
≤ 60µs PULSE WIDTH
Tj = 175°C
0.1
0.1
0.1
1
10
0.1
100
Fig 1. Typical Output Characteristics
10
100
Fig 2. Typical Output Characteristics
100.0
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
-I D, Drain-to-Source Current (Α)
1
-VDS, Drain-to-Source Voltage (V)
-VDS, Drain-to-Source Voltage (V)
T J = 25°C
TJ = 175°C
10.0
1.0
VDS = -25V
≤ 60µs PULSE WIDTH
0.1
0.0
5.0
10.0
15.0
ID = -14A
VGS = -10V
1.5
1.0
0.5
-60 -40 -20
-V GS, Gate-to-Source Voltage (V)
10000
20 40 60 80 100 120 140 160 180
Fig 4. Normalized On-Resistance vs. Temperature
20
-V GS, Gate-to-Source Voltage (V)
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C oss = C ds + C gd
1000
Ciss
Coss
Crss
100
0
T J , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
C, Capacitance (pF)
VGS
-15V
-12V
-10V
-8.0V
-5.5V
-4.5V
-3.0V
-2.5V
ID= -14A
16
VDS= -44V
VDS= -28V
VDS= -11V
12
8
4
FOR TEST CIRCUIT
SEE FIGURE 19
0
10
1
10
100
-VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage
www.irf.com
0
10
20
30
40
50
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage
3
IRLIB9343PbF
1000
-I D, Drain-to-Source Current (A)
-I SD, Reverse Drain Current (A)
100.0
T J = 175°C
10.0
T J = 25°C
1.0
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
100µsec
10
VGS = 0V
10msec
1
0.1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
1
2.0
10
100
1000
-VDS , Drain-toSource Voltage (V)
-VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
16
-VGS(th) Gate threshold Voltage (V)
2.5
12
-I D , Drain Current (A)
1msec
Tc = 25°C
Tj = 175°C
Single Pulse
8
4
2.0
ID = -250µA
1.5
0
25
50
75
100
125
150
1.0
175
-75 -50 -25
T J , Junction Temperature (°C)
0
25
50
75
100 125 150 175
T J , Temperature ( °C )
Fig 10. Threshold Voltage vs. Temperature
Fig 9. Maximum Drain Current vs. Case Temperature
Thermal Response ( Z thJC )
10
D = 0.50
1
0.20
0.10
R1
R1
0.05
0.1
τJ
0.02
0.01
τJ
τ1
R2
R2
τ2
τ1
τ2
R3
R3
τ3
τC
τ
τ3
Ci= τi/Ri
Ci= i/Ri
0.01
SINGLE PULSE
( THERMAL RESPONSE )
Ri (°C/W) τi (sec)
0.8737 0.000799
0.877
2.089
0.068578
2.593
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
1000
600
EAS, Single Pulse Avalanche Energy (mJ)
RDS(on), Drain-to -Source On Resistance ( mΩ)
IRLIB9343PbF
ID = -14A
500
400
300
200
T J = 125°C
100
T J = 25°C
0
ID
-5.0A
-5.6A
BOTTOM -10A
TOP
800
600
400
200
0
4.0
6.0
8.0
10.0
25
-VGS, Gate-to-Source Voltage (V)
50
75
100
125
150
175
Starting T J, Junction Temperature (°C)
Fig 12. On-Resistance Vs. Gate Voltage
Fig 13. Maximum Avalanche Energy Vs. Drain Current
1000
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses. Note: In no
case should Tj be allowed to
exceed Tjmax
-Avalanche Current (A)
Duty Cycle = Single Pulse
100
0.01
10
0.05
0.10
1
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current Vs.Pulsewidth
EAR , Avalanche Energy (mJ)
200
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = -10A
160
120
80
40
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 15. Maximum Avalanche Energy Vs. Temperature
www.irf.com
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 17a, 17b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 14, 15).
t av = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
5
IRLIB9343PbF
D.U.T
Driver Gate Drive
ƒ
-
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
InductorInductor
Curent
Current
ISD
Ripple ≤ 5%
*
Reverse Polarity of D.U.T for P-Channel
* VGS = 5V for Logic Level Devices
Fig 16. Peak Diode Recovery dv/dt Test Circuit for P-Channel
HEXFET® Power MOSFETs
L
VDS
V DS
D.U.T
RG
VDD
A
IAS
-V
-20V
GS
tp
VGS
DRIVER
D.U.T.
RG
0.01Ω
RD
+
VDD
-10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
15V
Fig 17a. Unclamped Inductive Test Circuit
Fig 18a. Switching Time Test Circuit
I AS
td(on)
tr
t d(off)
tf
VGS
10%
90%
tp
VDS
V(BR)DSS
Fig 17b. Unclamped Inductive Waveforms
Fig 18b. Switching Time Waveforms
Id
Vds
Vgs
L
DUT
0
1K
VCC
Vgs(th)
Qgs1 Qgs2
Fig 19a. Gate Charge Test Circuit
6
Qgd
Qgodr
Fig 19b Gate Charge Waveform
www.irf.com
IRLIB9343PbF
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220 Full-Pak Part Marking Information
E XAMP L E :
T H IS IS AN IR F I840G
WIT H AS S E MB L Y
L OT CODE 3432
AS S E MB L E D ON WW 24 1999
IN T H E AS S E MB L Y L IN E "K "
P AR T N U MB E R
IN T E R N AT IONAL
R E CT IF IE R
L OGO
IR F I840G
924K
34
Note: "P" in assembly line
position indicates "Lead-Free"
32
AS S E MB L Y
L OT CODE
D AT E COD E
YE AR 9 = 1999
WE E K 24
L IN E K
TO-220 FullPak packages are not recommended for Surface Mount Application.
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Starting TJ = 25°C, L = 3.89mH,
RG = 25Ω, IAS = -10A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ Rθ is measured at TJ of approximately 90°C.
… Limited by Tjmax. See Figs. 14, 15, 17a, 17b for repetitive avalanche information
Data and specifications subject to change without notice.
This product has been designed for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.08/04
www.irf.com
7