IRF IRGPS40B120UD

PD- 94240A
IRGPS40B120UD
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
UltraFast Co-Pack IGBT
C
VCES = 1200V
Features
• Non Punch Through IGBT Technology.
• Low Diode VF.
• 10µs Short Circuit Capability.
• Square RBSOA.
• Ultrasoft Diode Reverse Recovery Characteristics.
• Positive VCE (on) Temperature Coefficient.
• Super-247 Package.
VCE(on) typ. = 3.12V
G
@ VGE = 15V,
E
ICE = 40A, Tj=25°C
N-channel
Benefits
• Benchmark Efficiency for Motor Control.
• Rugged Transient Performance.
• Low EMI.
• Significantly Less Snubber Required
• Excellent Current Sharing in Parallel Operation.
Super-247™
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 25°C
IF @ TC = 100°C
IFM
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current
Clamped Inductive Load Current
Diode Continuous Forward Current
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Max.
Units
1200
80
40
160
160
80
40
160
± 20
595
238
-55 to +150
V
A
V
W
°C
300 (0.063 in. (1.6mm) from case)
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
Wt
Le
www.irf.com
Junction-to-Case - IGBT
Junction-to-Case - Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Recommended Clip Force
Weight
Internal Emitter Inductance (5mm from package)
Min.
Typ.
Max.
–––
–––
–––
–––
20 (2)
–––
–––
–––
–––
0.24
–––
–––
6.0 (0.21)
13
0.20
0.83
–––
40
–––
–––
–––
Units
°C/W
N(kgf)
g (oz)
nH
1
8/18/04
IRGPS40B120UD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on)
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
VFM
IGES
Parameter
Min. Typ.
Collector-to-Emitter Breakdown Voltage 1200 –––
Temperature Coeff. of Breakdown Voltage ––– 0.40
Collector-to-Emitter Saturation Voltage ––– 3.12
––– 3.39
––– 3.88
––– 4.24
Gate Threshold Voltage
4.0 5.0
Temperature Coeff. of Threshold Voltage ––– -12
Forward Transconductance
––– 30.5
Zero Gate Voltage Collector Current
––– –––
––– 420
Diode Forward Voltage Drop
––– 2.03
––– 2.17
––– 2.26
––– 2.46
Gate-to-Emitter Leakage Current
––– –––
Ref.Fig.
Max. Units
Conditions
–––
V
VGE = 0V, IC = 500µA
––– V/°C VGE = 0V, IC = 1.0mA, (25°C-125°C)
5, 6
3.40
IC = 40A
VGE = 15V
7, 9
3.70
V
IC = 50A
10
4.30
IC = 40A, TJ = 125°C
4.70
IC = 50A, TJ = 125°C
11
9,10
6.0
VCE = VGE, IC = 250µA
––– mV/°C VCE = VGE, IC = 1.0mA, (25°C-125°C) 11 ,12
–––
S
VCE = 50V, IC = 40A, PW=80µs
500
µA
VGE = 0V, VCE = 1200V
1200
VGE = 0V, VCE = 1200V, TJ = 125°C
2.40
IC = 40A
8
2.60
V
IC = 50A
2.68
IC = 40A, TJ = 125°C
2.95
IC = 50A, TJ = 125°C
±100 nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
Eon
Eoff
Etot
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
Cies
Coes
Cres
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
RBSOA
Reverse Bias Safe Operting Area
SCSOA
Short Circuit Safe Operting Area
Erec
trr
Irr
Reverse Recovery energy of the diode
Diode Reverse Recovery time
Diode Peak Reverse Recovery Current
2
Min.
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
340
40
165
1400
1650
3050
1950
2200
4150
76
39
332
25
4300
330
160
Max. Units
Conditions
510
IC = 40A
60
nC VCC = 600V
248
VGE = 15V
1750
µJ
IC = 40A, VCC = 600V
2050
VGE = 15V,RG = 4.7Ω, L =200µH
3800
Ls = 150nH
TJ = 25°C
2300
TJ = 125°C
2950
µJ
Energy losses include "tail" and
5250
diode reverse recovery.
99
IC = 40A, VCC = 600V
55
VGE = 15V, RG = 4.7Ω L =200µH
365
ns
Ls = 150nH, T J = 125°C
33
–––
VGE = 0V
–––
pF
VCC = 30V
–––
f = 1.0MHz
TJ = 150°C, IC = 160A, Vp =1200V
FULL SQUARE
VCC = 1000V, VGE = +15V to 0V
RG = 4.7Ω
TJ = 150°C, Vp =1200V
10 ––– –––
µs VCC = 900V, VGE = +15V to 0V,
RG = 4.7Ω
––– 3346 –––
µJ
TJ = 125°C
––– 180 –––
ns
VCC = 600V, IF = 60A, L =200µH
––– 50 –––
A
VGE = 15V,RG = 4.7Ω, Ls = 150nH
Ref.Fig.
23
CT1
CT4
WF1
WF2
13,15
14, 16
CT4
WF1
WF2
22
4
CT2
CT3
WF4
17,18,19
20, 21
CT4,WF3
www.irf.com
IRGPS40B120UD
700
100
600
80
500
IC (A)
Ptot (W)
60
40
400
300
200
20
100
0
0
0
20
40
60
80
0
100 120 140 160
50
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
150
200
Fig. 2 - Power Dissipation vs. Case
Temperature
1000
1000
2 µs
100
10 µs
10
100 µs
DC
100
IC A)
IC (A)
100
T C (°C)
T C (°C)
1ms
10
1
10ms
0.1
1
10
100
1000
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C; TJS ≤ 150°C
www.irf.com
10000
1
10
100
1000
10000
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 150°C; VGE =15V
3
IRGPS40B120UD
80
80
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
60
50
ICE (A)
ICE (A)
60
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
70
40
40
30
20
20
10
0
0
0
1
2
3
4
5
6
0
1
2
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
5
6
80
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
70
60
-40°C
25°C
125°C
70
60
50
IF (A)
50
ICE (A)
4
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
80
40
40
30
30
20
20
10
10
0
0
0
1
2
3
4
5
6
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 125°C; tp = 80µs
4
3
VCE (V)
0
1
2
3
4
VF (V)
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80µs
www.irf.com
IRGPS40B120UD
20
20
18
18
16
16
14
12
10
ICE = 20A
ICE = 40A
8
ICE = 80A
VCE (V)
VCE (V)
14
ICE = 20A
ICE = 40A
12
10
ICE = 80A
8
6
4
6
2
4
2
0
5
10
15
5
20
10
500
18
450
T J = 25°C
16
400
T J = 125°C
14
350
10
ICE = 20A
ICE = 40A
8
ICE = 80A
ICE (A)
20
12
20
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
VCE (V)
15
VGE (V)
VGE (V)
300
250
200
6
150
4
100
2
50
0
T J = 125°C
T J = 25°C
0
5
10
15
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 125°C
www.irf.com
20
0
5
10
15
20
VGE (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
5
IRGPS40B120UD
4500
1000
4000
tdOFF
Swiching Time (ns)
3500
Energy (µJ)
3000
EOFF
2500
2000
EON
1500
td ON
100
tF
1000
tR
500
0
0
20
40
60
10
80
20
IC (A)
60
80
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 125°C; L=200µH; VCE= 600V
RG= 4.7Ω; VGE= 15V
Fig. 14 - Typ. Switching Time vs. IC
TJ = 125°C; L=200µH; VCE= 600V
RG= 4.7Ω; VGE= 15V
5000
1000
4500
tdOFF
EOFF
4000
3000
Swiching Time (ns)
3500
Energy (µJ)
40
EON
2500
2000
1500
tdON
100
tR
tF
1000
500
0
10
0
5
10
15
20
RG (Ω)
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 125°C; L=200µH; VCE= 600V
ICE= 40A; VGE= 15V
6
25
0
5
10
15
20
25
RG (Ω)
Fig. 16 - Typ. Switching Time vs. RG
TJ = 125°C; L=200µH; VCE= 600V
ICE= 40A; VGE= 15V
www.irf.com
IRGPS40B120UD
60
60
50
50
RG = 4.7Ω
40
IRR (A)
IRR (A)
40
30
RG = 22 Ω
20
20
RG = 47 Ω
RG = 100 Ω
10
30
10
0
0
0
20
40
60
80
100
0
50
100
IF (A)
RG (Ω)
Fig. 18 - Typical Diode IRR vs. RG
TJ = 125°C; IF = 40A
Fig. 17 - Typical Diode IRR vs. IF
TJ = 125°C
60
9
4.7Ω
8
50
80A
22Ω
7
47 Ω
6
Q RR (µC)
40
IRR (A)
150
30
40A
5
4
20A
3
20
100Ω
2
10
1
0
0
0
500
1000
diF /dt (A/µs)
Fig. 19- Typical Diode IRR vs. diF/dt
VCC= 600V; VGE= 15V;
ICE= 40A; TJ = 125°C
www.irf.com
1500
0
500
1000
1500
diF /dt (A/µs)
Fig. 20 - Typical Diode QRR
VCC= 600V; VGE= 15V;TJ = 125°C
7
IRGPS40B120UD
Energy (µJ)
3500
3000
4.7Ω
2500
22Ω
2000
47Ω
1500
100Ω
1000
500
0
0
20
40
60
80
100
IF (A)
Fig. 21 - Typical Diode ERR vs. IF
TJ = 125°C
10000
16
Cies
14
600V
800V
10
VGE (V)
Capacitance (pF)
12
1000
Coes
Cres
8
6
100
4
2
0
10
0
20
40
60
80
VCE (V)
Fig. 22- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
8
100
0
100
200
300
400
Q G , Total Gate Charge (nC)
Fig. 23 - Typical Gate Charge vs. VGE
ICE = 40A; L = 600µH
www.irf.com
IRGPS40B120UD
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.05
0.01
0.02
0.1
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.01
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 24. Normalized Transient Thermal Impedance, Junction-to-Case (IGBT)
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.05
0.01
0.02
0.1
SINGLE PULSE
( THERMAL RESPONSE )
0.01
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-005
0.0001
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig 25. Normalized Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
9
IRGPS40B120UD
L
L
VCC
DUT
80 V
DUT
0
1000V
Rg
1K
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.1 - Gate Charge Circuit (turn-on)
diode clamp /
DUT
Driver
D
C
L
- 5V
900V
DUT /
DRIVER
DUT
VCC
Rg
Fig.C.T.3 - RBSOA Circuit
Fig.C.T.4 - RBSOA Circuit
R=
VCC
ICM
DUT
VCC
Rg
Fig.C.T.5 - RBSOA Circuit
10
www.irf.com
IRGPS40B120UD
Fig. WF.1 - Typ. Turn-off Loss Waveform
@ Tj=125°C using Fig. CT.4
Fig. WF.2 - Typ. Turn-on Loss Waveform
@ Tj=125C using Fig. CT.4
50
1100
1000
40
900
900
90
800
80
700
70
800
TEST CURRENT
50
tf
500
400
20
5% V CE
10
300
5% ICE
200
VCE (V)
500
600
ICE (A)
VCE (V)
60
600
30
400
40
90% test current
30
300
10% test current
200
20
5% V CE
10
100
0
100
0
Eoff Loss
-100
-0.20
0.00
0.20
0.40
0.60
-10
0.80
I CE (A)
90% ICE
700
0
0
-100
4.10
4.20
4.30
4.40
4.50
-10
4.60
Time (µs)
Time(µs)
Fig. WF.3 - Typ. Diode Recovery
Waveform
@Tj=125°C using Fig. CT.4
200
QRR
1000
40
900
20
-100
10
-200
0
-300
-10
-400
10%
Peak
IRR
Peak
IRR
-20
450
800
400
ICE
700
V CE (V)
tRR
0
500
V CE
30
I F (A)
V F (V)
100
50
350
600
300
500
250
400
200
300
150
-500
-30
-600
-40
200
100
-700
-50
100
50
-800
-0.25
-60
0.25
time (µS)
www.irf.com
0.75
0
-5.00
0.00
5.00
10.00
I CE (A)
300
Fig. WF.4 - Typ. S.C. Waveform
@ TC=150°C using Fig. CT.3
0
15.00
time (µS)
11
IRGPS40B120UD
Super-247™ Package Outline
0.13 [.005]
16.10 [.632]
15.10 [.595]
2X R 3.00 [.118]
2.00 [.079]
0.25 [.010]
5.50 [.216]
4.50 [.178]
A
B A
13.90 [.547]
13.30 [.524]
2.15 [.084]
1.45 [.058]
1.30 [.051]
0.70 [.028]
4
20.80 [.818]
19.80 [.780]
16.10 [.633]
15.50 [.611]
4
C
1
2
3
B
14.80 [.582]
13.80 [.544]
5.45 [.215]
2X
Ø 1.60 [.063]
MAX.
4.25 [.167]
3.85 [.152]
3X
1.60 [.062]
1.45 [.058]
0.25 [.010]
B A
3X
1.30 [.051]
1.10 [.044]
E
2.35 [.092]
1.65 [.065]
S ECT ION E-E
NOTES :
1. DIMENS IONING AND T OLERANCING PE R AS ME Y14.5M-1994.
2. DIMENS IONS ARE S HOWN IN MILLIMETERS [INCHES ]
3. CONTROLLING DIMENS ION: MILLIMET ER
4. OUTLINE CONFORMS TO JEDEC OUTLINE TO-274AA
E
LEAD AS S IGNMENT S
MOS F ET
1 - GATE
2 - DRAIN
3 - S OURCE
4 - DRAIN
IGBT
1 - GATE
2 - COLLECT OR
3 - E MITT ER
4 - COLLECT OR
Super-247™ Part Marking Information
EXAMPLE: THIS IS AN IRFPS37N50A WITH
ASSEMBLY LOT CODE A8B9
INTERNATIONAL RECTIFIER
LOGO
PART NUMBER
IRFPS37N50A
A8B9
0020
DATE CODE
(YYWW)
YY = YEAR
WW = WEEK
ASSEMBLY LOT CODE
TOP
 VCC = 80% (VCES), VGE = 20V, L = 100 µH, RG = 4.7Ω.
Data and specifications subject to change without notice.
This product has been designed and qualified for the industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.08/04
12
www.irf.com