VITESSE VSC830

VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
2.7Gb/s Asynchronous
Dual 2x2 Crosspoint Switch
VSC830
Features
• Dual 2x2 Crosspoint Switch
• 2.7Gb/s NRZ Data Bandwidth, 2.7GHz Signal
Bandwidth
• 50Ω Source Terminated Output Driver and
Programmable Input Terminations
• Single 3.3V Supply, 1W Typical Dissipation
• PECL/TTL-Compatible Control Inputs
• Power-Down Capability for Unused Outputs
• PECL-Compatible High-Speed I/O
• Compact 44-Pin PQFP, 10x10mm Package
General Description
The VSC830 is a monolithic dual 2x2 asynchronous crosspoint switch, designed for critical signal path
control and buffering applications, such as loop-back, protection switching, and multi-channel backplane
driver/receivers. Signal path delay is tightly matched between each output channel to eliminate the need for
delay path compensation when switching between signal sources.
The crosspoint function is based on a multiplexer tree architecture. Each 2x2 switch can be considered as a
pair of 2:1 multiplexers that share the same inputs. The signal path through each switch is fully differential and
delay matched. The signal path is unregistered, so there are no restrictions on the phase, frequency, or signal
pattern at each input. Unused outputs can be independently powered off, thereby eliminating power on unused
sections (see Design Guide section in this data sheet). The switch control inputs can be configured to be compatible with PECL or TTL levels. The high-speed input and output levels are nominally PECL compatible and
capable of interfacing with a wide range of termination schemes.
VSC830 Symbol Diagram
S1,S2
A1
Y1
A2
Y2
S1,S2
G52192-0, Rev 4.0
05/23/01
A1
Y1
A2
Y2
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
Page 1
VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
2.7Gb/s Asynchronous
Dual 2x2 Crosspoint Switch
VSC830
Functional Block Diagram
PEMODE
VCC
S1A
A1A+
A1A-
VCCP1A
SL
0
Y1A
1
Y1AN
TERM_ENABLE_A
VEE1A
S2A
VCCP2A
SL
A2A+
A2A-
0
Y2A
1
Y2AN
VEE2A
S1B
A1B+
A1B-
VCCP1B
SL
0
Y1B
1
Y1BN
TERM_ENABLE_B
VEE1B
S2B
VCCP2B
SL
A2B+
A2B-
0
Y2B
1
Y2BN
VEE2B
Page 2
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
G52192-0, Rev 4.0
05/23/01
VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
2.7Gb/s Asynchronous
Dual 2x2 Crosspoint Switch
VSC830
Functional Description
Select
As shown in Figure 1, each output can be treated as a 2:1 multiplexer, with the A1 and A2 inputs common
to both multiplexers. The select input S1 independently controls the state of the multiplexer that drives output
Y1, and select input S2 independently controls the output of Y2.
Figure 1: Select Functional Block Diagram
S1
S2
A1
Y1
Y2
A2
Table 1 specifies the function of the select inputs.
Table 1: Select Function
S1
S2
Y1
Y2
0
0
A1
A1
1
0
A2
A1
0
1
A1
A2
1
1
A2
A2
MODE
The interface level of the select pins, S1 and S2, can be programmed to either TTL or PECL levels by shorting the MODE pin to either VCC or VEE. Note that the MODE pin must be tied to either VCC or VEE. The function of MODE is specified in Table 2.
Table 2: MODE Function
MODE
G52192-0, Rev 4.0
05/23/01
S1, S2
VEE
TTL
VCC
PECL
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
Page 3
VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
2.7Gb/s Asynchronous
Dual 2x2 Crosspoint Switch
VSC830
Power-Down
Power to each output stage is provided through VCC, VCCP, and VEE. VCC is common to all outputs. To
power off unused outputs, tie the respective VEE and VCCP pin to VCC, as shown in Figure 2.
Figure 2: Power-Down Mode Example
VCC
VCCP2A
VCCP1A
VEE1A
“ON”
VEE2A
“ON”
VCCP1B
VEE1B
“OFF”
VCCP2B
VEE2B
“OFF”
Minimum power configuration requires output channel 1A active, so power must be applied to VCCP1A
and VEE1A at all times.
Programmable input termination
Across each differential input (from the + input to the - input) of the VSC830 is a switched 100Ω termination resistor. Using the TERM_ENABLE pin, the termination can be optionally disabled. To enable the input
termination, connect the respective TERM_ENABLE pin to VCC. To disable the internal termination, connect
TERM_ENABLE to VEE. If unconnected, the TERM_ENABLE pin will self-bias to VEE and disable the internal termination. Independent termination controls are provided for the “A” and “B” switches.
Page 4
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
G52192-0, Rev 4.0
05/23/01
VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
2.7Gb/s Asynchronous
Dual 2x2 Crosspoint Switch
VSC830
AC Characteristics
Table 3: AC Timing
Symbol
Parameter
Min
Typ
Max
Units
FRATE
Signal path data rate
2.7
Gb/s
FBW
Signal path bandwidth (-3dB)
2.7
GHz
TSKW
Channel to channel delay skew
TCON
Switch configuration setup time(1)
50
tR, tF
High-speed output rise/fall times, 20% to 80%
tjP
Signal path added jitter, peak-peak(1)
(2)
ps
1
ns
150
ps
40
ps
23
NOTES: (1) Tested on a sample basis only, with 2 -1 PRBS data, input signal rise/fall time < 150ps. Value stated in table is added
to measurement system jitter. (2) Input signal rise/fall time < 150ps, measured using an alternating 1, 0 pattern.
DC Characteristics (All characteristics are over the specified operating conditions)
Table 4: Power Supply
Symbol
Parameter
Min
Typ
Max
Units
ICC
Total VCC(P) supply current
350
mA
PD
Power dissipation per output
(Y1A±, Y2A±, Y1B±, Y2B±)
300
mW
PT
Total chip power (all outputs powered on)
1.2
W
Conditions
NOTE: Specified with outputs terminated, 100Ω between true and complement, VCC = 3.45V.
Table 5: Select Input Levels—TTL Mode
Symbol
Parameter
Min
Typ
Max
Units
0.8
V
2.0
Conditions
VIH
Input HIGH voltage (TTL)
VIL
Input LOW voltage (TTL)
V
IIH
Input HIGH current (TTL)
500
µA
VIN = 2.4V
IIL
Input LOW current (TTL)
-500
µA
VIN = 0.5V
Max
Units
Table 6: Select Input Levels—PECL Mode
Symbol
Parameter
Min
Typ
VCC1.0
Conditions
VIH
Input HIGH voltage (PECL)
VIL
Input LOW voltage (PECL)
VCC1.6
V
IIH
Input HIGH current (PECL)
500
µA
VIN = 2.5V
IIL
Input LOW current (PECL)
-500
µA
VIN = 1.5V
Max
Units
V
Table 7: Control Inputs
Symbol
RPEMODE
G52192-0, Rev 4.0
05/23/01
Parameter
PEMODE pin impedance
Min
Typ
3100
Conditions
Ω
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
Page 5
VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
2.7Gb/s Asynchronous
Dual 2x2 Crosspoint Switch
VSC830
Table 8: “A” Input Levels (Differential PECL)
Symbol
VID
VICM
Parameter
Input differential voltage
Input common-mode voltage
Min
Typ
Max
Units
200
1000
mV
VCC1.7
VCC0.9
V
Conditions
See Note 1
NOTE: (1) Peak-to-peak swing of each side of the differential input.
Table 9: “Y” Output Levels (Differential PECL)
Symbol
Parameter
VOD1
Output differential voltage (Data)
VOD2
Output differential voltage (Clock)
VOCM
Output common-mode voltage
Min
Typ
Max
Units
Conditions
400
700
1000
mV
See Note 1
400
550
850
mV
See Note 2
VCC1.0
V
VCC1.6
NOTES: (1) Peak-peak swing of each side of the differential output. 223-1 PRBS data. (2) Peak-to-peak swing of each side of the
differential output. Alternating 1, 0 pattern.
Absolute Maximum Ratings
Power Supply Voltage (VCC) Potential to GND ..............................................................................-0.5V to +4.0V
TTL Input Voltage Applied ................................................................................................... -0.5V to VCC +0.5V
ECL Input Voltage Applied .................................................................................................... -0.5V to VCC +0.5V
Output Current (IOUT) .................................................................................................................................... 50mA
Case Temperature Under Bias (TC) .............................................................................................-55oC to + 125oC
Storage Temperature (TSTG)........................................................................................................-65oC to + 150oC
NOTE: (1) Caution: Stresses listed under “Absolute Maximum Ratings” may be applied to devices one at a time without causing
permanent damage. Functionality at or exceeding the values listed is not implied. Exposure to these values for extended
periods may affect device reliability.
Operating Conditions
Supply voltage (VEE) .......................................................................................................................................... 0V
Supply voltage (VCC) ............................................................................................................................ +3.3V ±5%
Supply voltage (VCCP) .......................................................................................................................... +3.3V ±5%
Operating Range(1) (T) ..................................................................................................................... 0oC to +85oC
NOTE: (1) Lower limit of specification is ambient temperature and upper limit is case temperature.
ESD Ratings
Proper ESD procedures should be used when handling this product. The VSC830 is rated to the following
ESD voltages based on the human body model:
1. All pins are rated at or above 1500V.
Page 6
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
G52192-0, Rev 4.0
05/23/01
VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
2.7Gb/s Asynchronous
Dual 2x2 Crosspoint Switch
VSC830
Package Pin Descriptions
G52192-0, Rev 4.0
05/23/01
VCC
S1A
A1A-
A1A+
VCC
TERM_ENABLE_A
VCCP1A
Y1A+
Y1A-
VEE1A
VEE1A
44
43
42
41
40
39
38
37
36
35
34
Figure 3: Pin Diagram
VCC
1
33
VEE2A
S2A
2
32
VEE2A
A2A+
3
31
Y2A+
A2A-
4
30
Y2A-
VCC
5
29
VCCP2A
PEMODE
6
28
VCC
VCCP1B
VSC830
20
21
22
Y2B+
VEE2B
VEE2B
19
Y2B-
VEE1B
18
23
17
11
VCCP2B
VCC
TERM_ENABLE_B
VEE1B
16
Y1B-
24
VCC
25
10
15
9
S1B
14
A1B-
A2B-
Y1B+
A2B+
26
13
8
S2B
A1B+
12
7
27
VCC
VCC
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
Page 7
VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
2.7Gb/s Asynchronous
Dual 2x2 Crosspoint Switch
VSC830
Table 10: Pin Identification
Page 8
Signal Name
Pin(s)
Function
Description
VCC
1, 5, 7, 11, 12,
16, 28, 40, 44
Positive Supply
Global supply for chip
VEE1A
34, 35
Negative Supply
For channel output 1A. Must always be powered on.
VEE2A
32, 33
Negative Supply
For output 2A. Connect to VCC to power-off.
VEE1B
23, 24
Negative Supply
For output 1B. Connect to VCC to power-off.
VEE2B
21, 22
Negative Supply
For output 2B. Connect to VCC to power-off.
VCCP1A
38
Positive Supply
Output driver supply for channel 1A
VCCP2A
29
Positive Supply
Output driver supply for channel 2A
VCCP1B
27
Positive Supply
Output driver supply for channel 1B
VCCP2B
18
Positive Supply
Output driver supply for channel 2B
TERM_ENABLE_A
39
Termination Enable
Input termination enable for the “A” switch.
Normally low (VEE). Connect to VCC to enable
internal 100 ohm termination between AxA+ inputs.
TERM_ENABLE_B
17
Termination Enable
Input termination enable for the “B” switch.
Normally low (VEE). Connect to VCC to enable
internal 100Ω termination between AxA+ inputs.
PEMODE
6
Control
PECL/TTL interface control
A1A±
41, 42
PECL Input
Channel 1A differential signal input
S1A
43
PECL/TTL Input
Channel 1A input selector
Y1A±
37, 36
PECL Output
Channel 1A differential output
A2A±
3, 4
PECL Input
Channel 2A differential signal input
S2A
2
Y2A±
31, 30
PECL/TTL Input
Channel 2A input selector
PECL Output
Channel 2A differential output
A1B±
S1B
8, 9
PECL Input
Channel 1B differential signal input
10
PECL/TTL Input
Channel 1B input selector
Y1B±
A2B±
26, 25
PECL Output
Channel 1B differential output
14, 15
PECL Input
Channel 2B differential signal input
S2B
13
Y2B±
20, 19
PECL/TTL Input
Channel 2B input selector
PECL Output
Channel 2B differential output
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
G52192-0, Rev 4.0
05/23/01
VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
2.7Gb/s Asynchronous
Dual 2x2 Crosspoint Switch
VSC830
Package Thermal Characteristics
The VSC830 is packaged into a standard plastic quad flatpack with an embedded, but unexposed thermal
slug. This package adheres to industry-standard EIAJ footprints for a 10x10mm body, 44 lead PQFP. The package construction is as shown in Figure 4. The 44-pin PQFP with embedded slug has the thermal properties
shown in Table 11. This package allows the VSC830 to operate with ambient temperatures up to 70oC in still
air.
Figure 4: Package Cross Reference
Die
Wire Bond
Plastic Molding Compound
Lead
Insulator
Copper Heat Spreader
Table 11: 44-Pin PQFP Thermal Resistance
Symbol
Description
Value
(oC/W)
TA(MAX)
(oC)
θCA-0
Thermal resistance from case-to-ambient, still air
28.4
50.9
θCA-100
Thermal resistance from case-to-ambient, 100 LFPM air
22.7
57.8
θCA-200
Thermal resistance from case-to-ambient, 200 LFPM air
19.9
61.1
θCA-400
Thermal resistance from case-to-ambient, 400 LFPM air
16.2
65.6
θCA-600
Thermal resistance from case-to-ambient, 600 LFPM air
13.9
68.3
NOTE: TA(MAX) = max case temperature - (max power dissipation • θCA AIRFLOW).
G52192-0, Rev 4.0
05/23/01
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
Page 9
VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
2.7Gb/s Asynchronous
Dual 2x2 Crosspoint Switch
VSC830
Package Information
44-Pin PQFP, 10mm x 10mm Package Drawing
F
G
44
34
1
33
L
Item
mm
Tol.
A
2.45
MAX
D
2.00
+.10 / -.05
E
0.35
±.05
F
13.20
±.25
G
10.00
±.10
H
13.20
±.25
I
10.00
±.10
J
0.88
+.15 / -.10
J1
0.80
+.15 / -.10
K
0.80
BASIC
L
3.56
±.50 DIA.
I H
23
11
12
22
10 o TYP
D
10 o TYP
K
0.30 RAD.TYP.
A
0.25 MAX.
0.20 RAD. TYP.
0.17 MAX.
0.25
0 o- 8 o
0.102 MAX. LEAD
COPLANARITY
J1
J
E
NOTES:
Drawing not to scale.
Heat spreader up.
All units in mm unless otherwise noted.
Package #: 101-299-1
Issue #: 1
G52192-0, Rev 4.0
05/23/01
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
Page 10
VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
2.7Gb/s Asynchronous
Dual 2x2 Crosspoint Switch
VSC830
Ordering Information
The order number for this product is formed by a combination of the device number, and package type.
VSC830
XX
Device Type
2.7Gb/s Asynchronous
Dual 2x2 Crosspint Switch
Package
QZ: 44-Pin PQFP, 10 x 10mm Body
Evaluation Boards
An evaluation board for the VSC830 is available. Please contact your local sales representative.
Notice
Vitesse Semiconductor Corporation (“Vitesse”) provides this document for informational purposes only. All information in this document, including descriptions of features, functions, performance, technical specifications and availability, is subject to change without notice at any time. Nothing contained in this document shall be construed as extending any warranty or promise, express or implied, that any Vitesse product will be
available as described or will be suitable for or will accomplish any particular task.
Vitesse products are not intended for use in life support appliances, devices or systems. Use of a Vitesse product in such applications without written
consent is prohibited.
G52192-0, Rev 4.0
05/23/01
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
Page 11
VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
2.7Gb/s Asynchronous
Dual 2x2 Crosspoint Switch
VSC830
Design Guide
Introduction
The purpose of this document is to make it easier for system designers to use the VSC830 2.7Gb/s dual 2x2
crosspoint switch. This guide provides guidelines for I/O terminations, power supply decoupling and board layout.
Signal Terminations
The high-speed inputs (A1A+/-, A1B+/-, A2A+/- and A2B+/-) on the VSC830 are internally terminated
with a programmable 100Ω termination between the true and complement input. The input termination can be
disabled by connecting the TERM_ENABLE pin to VEE. High impedance internal biasing resistors provide the
correct bias voltage at the inputs for AC-coupled applications (Figure 5).
Figure 5: High-Speed Input Termination
a) Termination Enabled
Chip Boundary
VCC = 3.3 V
CIN
ZO
2.0 V
2.0 V
R| | = 3.15kΩ (approx.)
100
ZO
CIN
VEE = GND
b) Termination Disabled
Chip Boundary
VCC = 3.3 V
CIN
ZO
2.0 V
2.0 V
RT = ZO
R| | = 3.15 kΩ (approx.)
VTT
VTT CIN
VEE = GND
CIN TYP = 0.1µF (capacitor value is selected for data input = 2.7Gb/s)
VTT = VCC - 1.3V
G52192-0, Rev 4.0
05/23/01
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
Page 12
VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
2.7Gb/s Asynchronous
Dual 2x2 Crosspoint Switch
VSC830
The high-speed outputs (Y1A+/-, Y1B+/-, Y2A+/- and Y2B+/-) each consist of a differential pair designed
to drive a 50Ω transmission line. The transmission line should be terminated with a 100Ω resistor at the receiver
of the downstream device between the true and complement outputs. No connection to a termination voltage is
required. The output driver is source terminated to 50Ω on-chip, providing a snubbing of any reflections. Output power can be cut by tying VEE to VCC. In single ended mode, the unused output must be terminated with
50Ω. Some output termination examples are shown in Figures 6 and 7.
Figure 6: Examples of High-Speed Output I/O Termination for VSC830
a) AC Termination #1
VCC
50Ω
VCC
ZO = 50Ω
50Ω
0.1 µF
0.1 µF
50Ω
50Ω
VCC
VCC
b) AC Termination #2 (Internal biasing required for Receiver)
VCC
50Ω
ZO = 50Ω
0.1 µF
100Ω
0.1 µF
50Ω
VCC
c) AC Termination #3
VCC
50Ω
ZO = 50Ω
0.1 µF
0.1 µF
50Ω 100 pF
50Ω
50Ω
VCC
G52192-0, Rev 4.0
05/23/01
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
Page 13
VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
2.7Gb/s Asynchronous
Dual 2x2 Crosspoint Switch
VSC830
Figure 7: Examples of High-Speed Output I/O Termination for VSC830
a) Single-Ended AC Termination (Receiver internal biasing required)
VCC
50Ω
ZO = 50Ω
0.1µF
100Ω
0.1µF
50Ω
VCC
b) DC Termination
VCC
50Ω
VCC
ZO = 50Ω
50Ω
50Ω
50Ω
VCC
0.1µF
0.1µF
VCC
Power Supply and Layout Considerations
The VSC830 is a single supply part, requiring only a 3.3V supply. The location and hook-up of the bypass
capacitors is critical to providing the VSC830 with a clean 3.3V power supply. VCC that are adjacent can share
a 0.027µF capacitor connected to VEE.
Normally the four channel specific VCC pins (VCCP1A, VCCP1B, VCCP2A, VCCP2B) are connected to one
common VCC plane. In the same way the four channel specific VEE pins are connected to the common VEE
plane. A suggested decoupling schematic for this configuration is shown in Figure 7a. However, a slightly
higher signal integrity can be achieved if these pins are treated as different power supplies. In this case,
VCCP1A should then be decoupled to VEE1A etc, as shown in Figure 7b.
G52192-0, Rev 4.0
05/23/01
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
Page 14
VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
2.7Gb/s Asynchronous
Dual 2x2 Crosspoint Switch
VSC830
Figure 8: Decoupling Example: Common VCC and VEE Planes
VEE
VEE
34
35
36
37
38
39
31
4
30
VCC
VSC830
Top View
Heat Spreader Up
7
VCC
VCCP2A
29
VCC
28
VCCP1B
27
8
26
9
25
VEE
C1
VEE
22
21
20
19
18
16
15
14
13
12
C1
23
VCCP2B
VCC
VCC
11
C1
24
10
VCC
C1
VEE
40
VCC
32
3
6
C1
33
2
5
VEE
41
VCCS2A
17
C1
VCCP1A
1
VEE
42
VCC
C1
VEE
43
C1
44
C1
C1 = 0.027µF
VCC = VEE = +3.3V (VEE typically ground)
VEE
Recommended resistor and capacitor is size 805
G52192-0, Rev 4.0
05/23/01
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
Page 15
VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
2.7Gb/s Asynchronous
Dual 2x2 Crosspoint Switch
VSC830
Figure 9: Decoupling Example: Separate VCC and VEE Planes
VEE
34
35
36
37
38
3
31
4
30
VCC
VSC830
Top View
Heat Spreader Up
7
VCC
VCCP2A
29
VCC
28
VCCP1B
27
8
26
9
25
10
24
C1
VEE
C1
C1
VEE2A
VEE
VEE1B
22
21
20
19
18
16
15
14
13
12
C1
C1
23
VCCP2B
VCC
VCC
11
VCC
C1
VEE
40
VCC
32
6
C1
33
2
5
VEE
41
VCC
17
C1
C1
VCCP1A
1
VEE
42
VCC
C1
VEE
43
C1
44
C1
VEE1A
39
VEE
C1
VEE
VEE2B
C1 = 0.027µF
VCC = VEE = +3.3V (VEE typically ground)
Recommended resistor and capacitor is size 805
G52192-0, Rev 4.0
05/23/01
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
Page 16
VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
2.7Gb/s Asynchronous
Dual 2x2 Crosspoint Switch
VSC830
High-Speed Serial I/O Layout Considerations
The high-speed serial signals contain digital data at fundamental frequencies up to 2.488GHz clock rate.
Given that, in order to preserve the edges of such data sequences, it is necessary to have excellent frequency and
phase response up to at least the 3rd harmonic, if not the 7th harmonic. Improved signal quality will result should
the reader follow the general design rules below:
1. Keep traces as short as possible. Initial component placement should be very carefully considered.
2. The impedance of the traces must match that of the terminations, connectors and cable(s) in order to reduce
reflections and impedance mismatches. Reflections can create standing waves that will increase the signal
jitter.
3. Differential transmission line impedance must be maintained at 100Ω.
4. When routing differential pairs, keep the lengths identical for both traces. Differences in trace length translate directly into signal skew and can add to the signal jitter. Remember also that the differential impedance
is affected by the separation between the traces.
5. Keep differential pair traces on the same side of the PCB to minimize impedance discontinuity, such as the
one caused when using printed-circuit board vias.
6. Eliminate or reduce stubs.
7. Use rounded corners rather than 45° or 90° corners.
8. Keep signal traces far from other signals which might capacitively couple noise into the signals. This
includes the other trace of a differential pair or the traces of the parallel PECL or TTL interface.
9. Do not cut up the power or ground planes in an effort to steer current paths. This usually produces more
noise, not less.
G52192-0, Rev 4.0
05/23/01
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
Page 17
VITESSE
SEMICONDUCTOR CORPORATION
Data Sheet
VSC830
G52192-0, Rev 4.0
05/23/01
2.7Gb/s Asynchronous
Dual 2x2 Crosspoint Switch
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
Page 18