AD AD1584BRTZ

2.5 V to 5.0 V Micropower, Precision
Series Mode Voltage References
AD1582/AD1583/AD1584/AD1585
Data Sheet
PIN CONFIGURATION
Series reference (2.5 V, 3 V, 4.096 V, 5 V)
Low quiescent current: 70 µA maximum
Current output capability: ±5 mA
Wide supply range: VIN = VOUT + 200 mV to 12 V
Wideband noise (10 Hz to 10 kHz): 50 µV rms
Specified temperature range: −40°C to +125°C
Compact, surface-mount SOT-23 package
VOUT 1
AD1582/
AD1583/
AD1584/
AD1585
3
VIN
00701-001
FEATURES
TOP VIEW
GND 2
(Not to Scale)
Figure 1. 3-Lead SOT-23-3 (RT Suffix)
900
APPLICATIONS
800
Portable, battery-powered equipment; for example,
notebook computers, cellular phones, pagers, PDAs, GPSs,
and DMMs
Computer workstations; suitable for use with a wide range
of video RAMDACs
Smart industrial transmitters
PCMCIA cards
Automotive
Hard disk drives
3 V/5 V, 8-bit/12-bit data converters
700
ISUPPLY (µA)
600
SHUNT REFERENCE 1
500
400
300
200
100
AD1582 SERIES REFERENCE
0
2.7
13.076kΩ
SOURCE RESISTOR.
00701-002
5
VSUPPLY (V)
Figure 2. Supply Current (μA) vs. Supply Voltage (V)
GENERAL DESCRIPTION
The AD1582/AD1583/AD1584/AD1585 are low cost, low power,
low dropout, precision band gap references. These designs are
available as 3-terminal (series) devices and are packaged in the
compact SOT-23, 3-lead surface-mount package. The versatility
of these references makes them ideal for use in battery-powered
3 V or 5 V systems where there can be wide variations in supply
voltage and a need to minimize power dissipation.
The superior accuracy and temperature stability of the AD1582/
AD1583/AD1584/AD1585 result from the precise matching and
thermal tracking of on-chip components. Patented temperature
drift curvature correction design techniques minimize the
nonlinearities in the voltage output temperature characteristic.
The AD1582/AD1583/AD1584/AD1585 series mode devices
source or sink up to 5 mA of load current and operate efficiently
with only 200 mV of required headroom supply. These parts
draw a maximum 70 μA of quiescent current with only a
1.0 μA/V variation with supply voltage. The advantage of
these designs over conventional shunt devices is extraordinary.
Valuable supply current is no longer wasted through an input
series resistor, and maximum power efficiency is achieved at
all input voltage levels.
The AD1582/AD1583/AD1584/AD1585 are available in two
grades, A and B, and are provided in a tiny footprint, the SOT23. All grades are specified over the industrial temperature
range of −40°C to +125°C.
Table 1. AD158x Products, Three Electrical Grades
Initial Accuracy
Electrical
Grade
B
A
Rev. J
AD1582
0.08%
0.80%
AD1583/AD1585
0.10%
1.00%
AD1584
0.10%
0.98%
Temperature
Coefficient
(ppm°C)
50
100
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©1997–2013 Analog Devices, Inc. All rights reserved.
Technical Support
www.analog.com
AD1582/AD1583/AD1584/AD1585
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Theory of Operation ...................................................................... 10
Applications ....................................................................................... 1
Applications Information .............................................................. 11
Pin Configuration ............................................................................. 1
Temperature Performance......................................................... 11
General Description ......................................................................... 1
Voltage Output Nonlinearity vs. Temperature ....................... 11
Revision History ............................................................................... 2
Output Voltage Hysteresis ......................................................... 12
Specifications..................................................................................... 3
Supply Current vs. Temperature............................................... 12
AD1582 Specifications ................................................................. 3
Supply Voltage ............................................................................ 12
AD1583 Specifications ................................................................. 4
AC Performance ......................................................................... 12
AD1584 Specifications ................................................................. 5
Noise Performance and Reduction .......................................... 13
AD1585 Specifications ................................................................. 6
Turn-On Time ............................................................................ 13
Absolute Maximum Ratings............................................................ 7
Dynamic Performance ............................................................... 14
ESD Caution .................................................................................. 7
Outline Dimensions ....................................................................... 15
Terminology ...................................................................................... 8
Ordering Guide .......................................................................... 16
Typical Performance Characteristics ............................................. 9
Package Branding Information ................................................ 16
REVISION HISTORY
2/13—Rev. I to Rev. J
Change to Table 6 ............................................................................. 7
Changes to Ordering Guide .......................................................... 16
5/10—Rev. H to Rev. I
Changes to Figure 10 ...................................................................... 11
Updated Outline Dimensions ....................................................... 16
Changes to Ordering Guide .......................................................... 16
11/07—Rev. G to Rev. H
Deleted C Grade ................................................................. Universal
Changes to VOERR Parameter ....................................................... 3
Changes to Ordering Guide .......................................................... 16
12/02—Rev. B to Rev. C
Changes to Features ..........................................................................1
Changes to General Description .....................................................1
Changes to Specifications .................................................................2
Changes to Absolute Maximum Ratings ........................................6
Replaced TPC 3 .................................................................................8
Changes to Temperature Performance Section .............................9
Replaced Figure 4 ..............................................................................9
Changes to Output Voltage Hysteresis Section .......................... 10
Updated SOT-23 Package .............................................................. 13
3/97—Revision 0: Initial Version
6/06—Rev. F to Rev. G
Changes to Features.......................................................................... 1
Changes to General Description .................................................... 1
2/06—Rev. E to Rev. F
Updated Format .................................................................. Universal
Changes to Features.......................................................................... 1
Changes to Table 6 ............................................................................ 7
Changes to Ordering Guide .......................................................... 16
6/05—Rev. D to Rev. E
Changes to Ordering Guide ........................................................... 7
Moved Package Branding Section .................................................. 7
6/04—Rev. C to Rev. D
Changes to Ordering Guide ............................................................ 6
Updated Outline Dimensions ....................................................... 13
Rev. J | Page 2 of 16
Data Sheet
AD1582/AD1583/AD1584/AD1585
SPECIFICATIONS
AD1582 SPECIFICATIONS
TA = TMIN to TMAX, VIN = 5 V, unless otherwise noted.
Table 2.
Parameter
OUTPUT VOLTAGE (@ 25°C)
VO
INITIAL ACCURACY ERROR (@ 25°C)
VOERR
OUTPUT VOLTAGE TEMPERATURE DRIFT
TEMPERATURE COEFFICIENT (TCVO)
−40°C < TA < +125°C
0°C < TA < 70°C
MINIMUM SUPPLY HEADROOM (VIN – VOUT)
LOAD REGULATION
0 mA < IOUT < 5 mA (−40°C to +85°C)
0 mA < IOUT < 5 mA (−40°C to +125°C)
−5 mA < IOUT < 0 mA (−40°C to +85°C)
−5 mA < IOUT < 0 mA (−40°C to +125°C)
−0.1 mA < IOUT < +0.1 mA (−40°C to +85°C)
−0.1 mA < IOUT < +0.1 mA (−40°C to +125°C)
LINE REGULATION
VOUT + 200 mV < VIN < 12 V
IOUT = 0 mA
RIPPLE REJECTION (ΔVOUT/ΔVIN)
VIN = 5 V ± 100 mV (f = 120 Hz)
QUIESCENT CURRENT
SHORT-CIRCUIT CURRENT TO GROUND
NOISE VOLTAGE (@ 25°C)
0.1 Hz to 10 Hz
10 Hz to 10 kHz
TURN-ON SETTLING TIME TO 0.1%
CL = 0.2 µF
LONG-TERM STABILITY
1000 Hours @ 25°C
OUTPUT VOLTAGE HYSTERESIS
TEMPERATURE RANGE
Specified Performance (A, B, C)
Operating Performance (A, B, C)
Min
2.480
AD1582A
Typ
Max
2.500
−20
−0.80
40
35
Min
2.520
2.498
+20
+0.80
100
−2
−0.08
AD1582B
Typ
Max
2.502
V
+2
+0.08
50
mV
%
ppm/°C
50
ppm/°C
ppm/°C
mV
0.2
0.4
0.25
0.45
2.7
3.5
0.2
0.4
0.25
0.45
2.7
3.5
mV/mA
mV/mA
mV/mA
mV/mA
mV/mA
mV/mA
25
25
µV/V
70
15
dB
µA
mA
100
200
2.500
18
15
200
80
80
70
15
70
50
70
50
100
Rev. J | Page 3 of 16
µV p-p
µV rms
100
100
115
−40
−55
Unit
100
115
+125
+125
−40
−55
µs
ppm/1000 hr
ppm
+125
+125
°C
°C
AD1582/AD1583/AD1584/AD1585
Data Sheet
AD1583 SPECIFICATIONS
TA = TMIN to TMAX, VIN = 5 V, unless otherwise noted.
Table 3.
Parameter
OUTPUT VOLTAGE (@ 25°C)
VO
INITIAL ACCURACY ERROR (@ 25°C)
VOERR
OUTPUT VOLTAGE TEMPERATURE DRIFT
TEMPERATURE COEFFICIENT (TCVO)
–40°C < TA < +125°C
0°C < TA < 70°C
MINIMUM SUPPLY HEADROOM (VIN – VOUT)
LOAD REGULATION
0 mA < IOUT < 5 mA (–40°C to +85°C)
0 mA < IOUT < 5 mA (–40°C to +125°C)
–5 mA < IOUT < 0 mA (–40°C to +85°C)
–5 mA < IOUT < 0 mA (–40°C to +125°C)
–0.1 mA < IOUT < +0.1 mA (–40°C to +85°C)
–0.1 mA < IOUT < +0.1 mA (–40°C to +125°C)
LINE REGULATION
VOUT + 200 mV < VIN < 12 V
IOUT = 0 mA
RIPPLE REJECTION (ΔVOUT/ΔVIN)
VIN = 5 V ± 100 mV (f = 120 Hz)
QUIESCENT CURRENT
SHORT-CIRCUIT CURRENT TO GROUND
NOISE VOLTAGE (@ 25°C)
0.1 Hz to 10 Hz
10 Hz to 10 kHz
TURN-ON SETTLING TIME TO 0.1%
CL = 0.2 µF
LONG-TERM STABILITY
1000 Hours @ 25°C
OUTPUT VOLTAGE HYSTERESIS
TEMPERATURE RANGE
Specified Performance (A, B, C)
Operating Performance (A, B, C)
Min
2.970
AD1583A
Typ
Max
3.000
−30
−1.0
40
35
Min
3.030
2.997
+30
+1.0
100
−3
−0.1
AD1583B
Typ
Max
3.003
V
+3
+0.1
50
mV
%
ppm/°C
50
ppm/°C
ppm/°C
mV
0.25
0.45
0.40
0.6
2.9
3.7
0.25
0.45
0.40
0.6
2.9
3.7
mV/mA
mV/mA
mV/mA
mV/mA
mV/mA
mV/mA
25
25
µV/V
70
15
dB
µA
mA
100
200
3.000
18
15
200
80
80
70
15
85
60
85
60
120
Rev. J | Page 4 of 16
µV p-p
µV rms
120
100
115
−40
−55
Unit
100
115
+125
+125
−40
−55
µs
ppm/1000 hr
ppm
+125
+125
°C
°C
Data Sheet
AD1582/AD1583/AD1584/AD1585
AD1584 SPECIFICATIONS
TA = TMIN to TMAX, VIN = 5 V, unless otherwise noted.
Table 4.
Parameter
OUTPUT VOLTAGE (@ 25°C)
VO
INITIAL ACCURACY ERROR (@ 25°C)
VOERR
OUTPUT VOLTAGE TEMPERATURE DRIFT
TEMPERATURE COEFFICIENT (TCVO)
−40°C < TA < +125°C
0°C < TA < 70°C
MINIMUM SUPPLY HEADROOM (VIN – VOUT)
LOAD REGULATION
0 mA < IOUT < 5 mA (−40°C to +85°C)
0 mA < IOUT < 5 mA (−40°C to +125°C)
−5 mA < IOUT < 0 mA (−40°C to +85°C)
−5 mA < IOUT < 0 mA (−40°C to +125°C)
−0.1 mA < IOUT < +0.1 mA (−40°C to +85°C)
−0.1 mA < IOUT < +0.1 mA (−40°C to +125°C)
LINE REGULATION
VOUT + 200 mV < VIN 12 V
IOUT = 0 mA
RIPPLE REJECTION (ΔVOUT/ΔVIN)
VIN = 5 V ± 100 mV (f = 120 Hz)
QUIESCENT CURRENT
SHORT-CIRCUIT CURRENT TO GROUND
NOISE VOLTAGE (@ 25°C)
0.1 Hz to 10 Hz
10 Hz to 10 kHz
TURN-ON SETTLING TIME TO 0.1%
CL = 0.2 µF
LONG-TERM STABILITY
1000 Hours @ 25°C
OUTPUT VOLTAGE HYSTERESIS
TEMPERATURE RANGE
Specified Performance (A, B, C)
Operating Performance (A, B, C)
Min
4.056
AD1584A
Typ
Max
4.096
−40
−0.98
40
35
Min
4.136
4.092
+40
+0.98
100
−4
−0.1
AD1584B
Typ
Max
4.100
V
+4
+0.1
50
mV
%
ppm/°C
50
ppm/°C
ppm/°C
mV
0.32
0.52
0.40
0.6
3.2
4.1
0.32
0.52
0.40
0.6
3.2
4.1
mV/mA
mV/mA
mV/mA
mV/mA
mV/mA
mV/mA
25
25
µV/V
70
15
dB
µA
mA
100
200
4.096
18
15
200
80
80
70
15
110
90
110
90
140
Rev. J | Page 5 of 16
µV p-p
µV rms
140
100
115
−40
−55
Unit
100
115
+125
−125
−40
−55
µs
ppm/1000 hr
ppm
+125
+125
°C
°C
AD1582/AD1583/AD1584/AD1585
Data Sheet
AD1585 SPECIFICATIONS
@ TA = TMIN to TMAX, VIN = 6 V, unless otherwise noted.
Table 5.
Parameter
OUTPUT VOLTAGE (@ 25°C)
VO
INITIAL ACCURACY ERROR (@ 25°C)
VOERR
OUTPUT VOLTAGE TEMPERATURE DRIFT
TEMPERATURE COEFFICIENT (TCVO)
−40°C < TA < 125°C
0°C < TA < 70°C
MINIMUM SUPPLY HEADROOM (VIN – VOUT)
LOAD REGULATION
0 mA < IOUT < 5 mA (−40°C to +85°C)
0 mA < IOUT < 5 mA (−40°C to +125°C)
−5 mA < IOUT < 0 mA (−40°C to +85°C)
−5 mA < IOUT < 0 mA (−40°C to +125°C)
−0.1 mA < IOUT < +0.1 mA (−40°C to +85°C)
−0.1 mA < IOUT < +0.1 mA (−40°C to +125°C)
LINE REGULATION
VOUT + 200 mV < VIN < 12 V
IOUT = 0 mA
RIPPLE REJECTION (ΔVOUT/ΔVIN)
VIN = 6 V ± 100 mV (f = 120 Hz)
QUIESCENT CURRENT
SHORT-CIRCUIT CURRENT TO GROUND
NOISE VOLTAGE (@ 25°C)
0.1 Hz to 10 Hz
10 Hz to 10 kHz
TURN-ON SETTLING TIME TO 0.1%
CL = 0.2 μF
LONG-TERM STABILITY
1000 Hours @ 25°C
OUTPUT VOLTAGE HYSTERESIS
TEMPERATURE RANGE
Specified Performance (A, B, C)
Operating Performance (A, B, C)
Min
4.950
AD1585A
Typ
Max
5.000
−50
−1.0
40
35
Min
5.050
4.995
+50
+1.0
100
−5
−0.10
AD1585B
Typ
Max
5.005
V
+5
+0.10
50
mV
%
ppm/°C
50
ppm/°C
ppm/°C
mV
0.40
0.6
0.40
0.6
4
4.8
0.40
0.6
0.40
0.6
4
4.8
mV/mA
mV/mA
mV/mA
mV/mA
mV/mA
mV/mA
25
25
µV/V
70
15
dB
µA
mA
100
200
5.000
18
15
200
80
80
70
15
140
100
140
100
175
Rev. J | Page 6 of 16
µV p-p
µV rms
175
100
115
−40
−55
Unit
100
115
+125
+125
−40
−55
µs
ppm/1000 hr
ppm
+125
+125
°C
°C
Data Sheet
AD1582/AD1583/AD1584/AD1585
ABSOLUTE MAXIMUM RATINGS
Table 6.
Parameter
VIN to Ground
Internal Power Dissipation 1
SOT-23-3 (RT-3)
Storage Temperature Range
Specified Temperature Range
AD1582RT/AD1583RT/
AD1584RT/AD1585RT
Lead Temperature, Soldering
Vapor Phase (60 sec)
Infrared (15 sec)
1
Rating
12 V
400 mW
−65°C to 150°C
−40°C to +125°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
ESD CAUTION
215°C
220°C
Specification is for device in free air at 25°C; SOT-23 package, θJA = 300°C.
Rev. J | Page 7 of 16
AD1582/AD1583/AD1584/AD1585
Data Sheet
TERMINOLOGY
Temperature Coefficient (TCVO)
The change of output voltage over the operating temperature
change and normalized by the output voltage at 25°C, expressed
in ppm/°C. The equation follows
TCVO [ppm/°C ] =
VO (T2 ) − VO (T1 )
VO (25°C ) × (T2 − T1 )
Thermal Hysteresis (VO_HYS)
The change of output voltage after the device is cycled through
temperatures from +25°C to −40°C to +85°C and back to +25°C.
This is a typical value from a sample of parts put through
such a cycle
VO _ HYS = VO (25°C ) − VO _ TC
× 10 6
VO _ HYS [ppm ] =
where:
VO (25°C) = VO @ 25°C.
VO (T1) = VO @ Temperature 1.
VO (T2) = VO @ Temperature 2.
Line Regulation (ΔVO/ΔVIN) Definition
The change in output voltage due to a specified change in input
voltage. It includes the effects of self-heating. Line regulation is
expressed in either percent per volt, parts per million per volt,
or microvolts per volt change in input voltage.
Load Regulation (ΔVO/ΔILOAD)
The change in output voltage due to a specified change in load
current. It includes the effects of self-heating. Load regulation
is expressed in either microvolts per milliampere, parts per
million per milliampere, or ohms of dc output resistance.
VO (t 0 )
× 10 6
Operating Temperature
The temperature extremes at which the device can still function.
Parts can deviate from their specified performance outside the
specified temperature range.
∆VO = VO (t 0 ) − VO (t 1 )
VO (t 0 ) − VO (t 1 )
VO (25°C )
where:
VO (25°C) = VO at 25°C.
VO_TC = VO at 25°C after temperature cycle at +25°C to −40°C to
+85°C and back to +25°C.
Long-Term Stability (ΔVO)
Typical shift of output voltage at 25°C on a sample of parts
subjected to an operation life test of 1000 hours at 125°C.
∆VO [ppm ] =
VO (25°C ) − VO _ TC
× 10 6
where:
VO (t0) = VO @25°C at Time 0.
VO (t1) = VO @ 25°C after 1000 hours of operation at 125°C.
Rev. J | Page 8 of 16
Data Sheet
AD1582/AD1583/AD1584/AD1585
TYPICAL PERFORMANCE CHARACTERISTICS
0.40
22
0.35
20
0.30
16
AD1585
0.25
14
mV/mA
12
10
0.20
AD1582
0.15
8
6
0.10
4
–50
–40
–30
–20
–10
0
ppm/°C
10
20
30
40
50
0
00701-003
0
–60
0
2
Figure 3. Typical Output Voltage Temperature Drift Distribution
6
VIN (V)
8
10
12
5
Figure 6. Load Regulation vs. VIN
50
0
45
–10
40
–20
35
–30
30
µV/V
NUMBER OF PARTS
4
00701-006
0.05
2
00701-007
NUMBER OF PARTS
18
25
20
–40
AD1582
–50
–60
15
AD1585
–70
10
–80
5
–0.6%
–0.2%
0.2%
VOUT (ERROR)
0.6%
1.0%
–90
00701-004
0
–1.0%
–5
Figure 4. Typical Output Voltage Error Distribution
–4
–3
–2
–1
0
1
IOUT (mA)
2
3
4
Figure 7. Line Regulation vs. ILOAD
2.504
10k
2.502
2.500
IOUT = 1mA
nV/ Hz
2.496
IOUT = 0mA
1k
2.494
2.492
2.488
–40
–20
0
20
40
60
TEMPERATURE (°C)
80
100
120
100
10
Figure 5. Typical Temperature Drift Characteristic Curves
100
1k
FREQUENCY (Hz)
10k
Figure 8. Noise Spectral Density
Rev. J | Page 9 of 16
100k
00701-008
2.490
00701-005
VOUT
2.498
AD1582/AD1583/AD1584/AD1585
Data Sheet
THEORY OF OPERATION
Rev. J | Page 10 of 16
VIN
R4
R3
VOUT
R5
VBG
+
VBE R2
–
R1
R6
+
V1
–
GND
Figure 9. Simplified Schematic
00701-009
The AD1582/AD1583/AD1584/AD1585 use the band gap
concept to produce stable, low temperature coefficient voltage
references suitable for high accuracy data acquisition components and systems. These parts of precision references use the
underlying temperature characteristics of a silicon transistor’s
base emitter voltage in the forward-biased operating region.
Under this condition, all such transistors have a −2 mV/°C
temperature coefficient (TC) and a VBE that, when extrapolated
to absolute zero, 0 K (with collector current proportional to
absolute temperature), approximates the silicon band gap voltage.
By summing a voltage that has an equal and opposite temperature coefficient of 2 mV/°C with the VBE of a forward-biased
transistor, an almost 0 TC reference can be developed. In the
AD1582/AD1583/AD1584/AD1585 simplified circuit diagram
shown in Figure 9, such a compensating voltage, V1, is derived
by driving two transistors at different current densities and
amplifying the resultant VBE difference (∆VBE, which has a positive
TC). The sum of VBE and V1 (VBG) is then buffered and amplified
to produce stable reference voltage outputs of 2.5 V, 3 V, 4.096 V,
and 5 V.
Data Sheet
AD1582/AD1583/AD1584/AD1585
APPLICATIONS INFORMATION
2
2.498
2.496
2.494
2.492
–40
–20
0
20
40
60
TEMPERATURE (°C)
80
100
120
Figure 11. Output Voltage vs. Temperature
VOLTAGE OUTPUT NONLINEARITY VS.
TEMPERATURE
When using a voltage reference with data converters, it is
important to understand the impact that temperature drift can
have on converter performance. The nonlinearity of the reference
output drift represents additional error that cannot be easily
calibrated out of the overall system. To better understand the
impact such a drift can have on a data converter, refer to Figure 12,
where the measured drift characteristic is normalized to the
endpoint average drift. The residual drift error for the AD1582/
AD1583/AD1584/AD1585 of approximately 200 ppm demonstrates that these parts are compatible with systems that require
12-bit accurate temperature performance.
VIN
3
2.500
4.7µF
Figure 10. Typical Connection Diagram
TEMPERATURE PERFORMANCE
The AD1582/AD1583/AD1584/AD1585 are designed for
applications where temperature performance is important.
Extensive temperature testing and characterization ensure
that device performance is maintained over the specified
temperature range.
The error band guaranteed with the AD1582/AD1583/AD1584/
AD1585 is the maximum deviation from the initial value at 25°C.
Therefore, for a given grade of the AD1582/AD1583/AD1584/
AD1585, the designer can easily determine the maximum total
error by summing initial accuracy and temperature variation. For
example, for the AD1582BRT, the initial tolerance is ±2 mV, and
the temperature error band is ±8 mV; therefore, the reference is
guaranteed to be 2.5 V ± 10 mV from −40°C to +125°C.
250
200
150
Figure 11 shows the typical output voltage drift for the AD1582/
AD1583/AD1584/AD1585 and illustrates the methodology. The
box in Figure 11 is bounded on the x-axis by operating temperature extremes. It is bounded on the y-axis by the maximum
and minimum output voltages observed over the operating
temperature range. The slope of the diagonal drawn from the
initial output value at 25°C to the output values at +125°C and
−40°C determines the performance grade of the device.
Rev. J | Page 11 of 16
100
50
0
–50
–50
–25
0
25
50
TEMPERATURE (°C)
Figure 12. Residual Drift Error
75
100
00701-012
1µF
AD1582/
AD1583/
AD1584/
AD1585
2.502
ΔVOUT (ppm)
–
1
00701-010
+
VOUT
2.504
00701-011
Unlike conventional shunt reference designs, the AD1582/
AD1583/AD1584/AD1585 provide stable output voltages at
constant operating current levels. When properly decoupled,
as shown in Figure 10, these devices can be applied to any
circuit and provide superior low power solutions.
Duplication of these results requires a test system that is highly
accurate with stable temperature control. Evaluation of the
AD1582/AD1583/AD1584/AD1585 produces curves similar
to those in Figure 5 and Figure 11, but output readings can vary
depending on the test methods and test equipment used.
VOUT (V)
The AD1582/AD1583/AD1584/AD1585 are series references
that can be used for many applications. To achieve optimum
performance with these references, only two external components are required. Figure 10 shows the AD1582/AD1583/
AD1584/AD1585 configured for operation under all loading
conditions. With a simple 4.7 µF capacitor attached to the input
and a 1 µF capacitor applied to the output, the devices can achieve
specified performance for all input voltage and output current
requirements. For best transient response, add a 0.1 µF capacitor
in parallel with the 4.7 µF capacitor. While a 1 µF output capacitor
can provide stable performance for all loading conditions, the
AD1582/AD1583/AD1584/AD1585 can operate under low
(−100 µA < IOUT < +100 µA) current conditions with just a
0.2 µF output capacitor. The 4.7 µF capacitor on the input can
be reduced to 1 μF in this condition.
AD1582/AD1583/AD1584/AD1585
Data Sheet
OUTPUT VOLTAGE HYSTERESIS
SUPPLY VOLTAGE
High performance industrial equipment manufacturers can
require the AD1582/AD1583/AD1584/AD1585 to maintain a
consistent output voltage error at 25°C after the references are
operated over the full temperature range. All references exhibit
a characteristic known as output voltage hysteresis; however, the
AD1582/AD1583/AD1584/AD1585 are designed to minimize
this characteristic. This phenomenon can be quantified by measuring the change in the +25°C output voltage after temperature
excursions from +125°C to +25°C and from −40°C to +25°C.
Figure 13 displays the distribution of the AD1582/AD1583/
AD1584/AD1585 output voltage hysteresis.
One of the ideal features of the AD1582/AD1583/AD1584/AD1585
is low supply voltage headroom. The parts can operate at supply
voltages as low as 200 mV above VOUT and up to 12 V. However,
if negative voltage is inadvertently applied to VIN with respect to
ground, or any negative transient >5 V is coupled to VIN, the
device can be damaged.
70
NUMBER OF PARTS
60
50
40
To apply the AD1582/AD1583/AD1584/AD1585, it is important
to understand the effects of dynamic output impedance and
power supply rejection. In Figure 15, a voltage divider
is formed by the AD1582/AD1583/AD1584/ AD1585 output
impedance and by the external source impedance. Figure 16
shows the effect of varying the load capacitor on the reference
output. Power supply rejection ratio (PSRR) should be determined
when characterizing the ac performance of a series voltage
reference. Figure 17 shows a test circuit used to measure PSRR,
and Figure 18 demonstrates the ability of the AD1582/AD1583/
AD1584/AD1585 to attenuate line voltage ripple.
30
VLOAD DC
20
2 × VOUT
0
–700
–450
–200
50
ppm
300
00701-013
10
550
2kΩ
10kΩ
10kΩ
×1
±100µA
10kΩ
±2V
5V
DUT
5µF
1µF
00701-015
80
AC PERFORMANCE
Figure 15. Output Impedance Test Circuit
Figure 13. Output Voltage Hysteresis Distribution
SUPPLY CURRENT VS. TEMPERATURE
100
1µF CAP
OUTPUT IMPEDANCE (Ω)
The quiescent current for the AD1582/AD1583/AD1584/
AD1585 varies slightly over temperature and input supply range.
Figure 14 illustrates the typical performance for the
AD1582/AD1583/AD1584/AD1585 reference when varying
both temperature and supply voltage. As is evident from
Figure 14, the AD1582/AD1583/AD1584/AD1585 supply
current increases only 1.0 μA/V, making this device extremely
attractive for use in applications where there can be wide
variations in supply voltage and a need to minimize power
dissipation.
10
AD1585
AD1582
1
0.1
10
100
80
1k
10k
FREQUENCY (Hz)
100k
1M
Figure 16. Output Impedance vs. Frequency
TA = +85°C
TA = +25°C
10V
10kΩ
5V ± 100mV
×1
40
±200mV
TA = –40°C
10kΩ
0.22µF
DUT
VOUT
0.22µF
20
3
4
5
6
7
VIN (V)
8
9
10
11
00701-014
Figure 17. Ripple Rejection Test Circuit
0
Figure 14. Typical Supply Current over Temperature
Rev. J | Page 12 of 16
00701-017
IQ (µA)
60
00701-016
100
Data Sheet
AD1582/AD1583/AD1584/AD1585
100
100µV
90
80
10ms
100
90
70
60
50
AD1585
40
30
10
0%
00701-020
20
0
1
10
100
1k
10k
FREQUENCY (Hz)
100k
1M
00701-018
10
Figure 18. Ripple Rejection vs. Frequency
NOISE PERFORMANCE AND REDUCTION
The noise generated by the AD1582/AD1583/AD1584/AD1585 is
typically less than 70 µV p-p over the 0.1 Hz to 10 Hz frequency
band. Figure 19 shows the 0.1 Hz to 10 Hz noise of a typical
AD1582/AD1583/AD1584/AD1585. The noise measurement
is made with a high gain band-pass filter. Noise in a 10 Hz to
10 kHz region is approximately 50 µV rms. Figure 20 shows the
broadband noise of a typical AD1582/AD1583/AD1584/AD1585.
If further noise reduction is desired, add a 1-pole, low-pass
filter between the output pin and ground. A time constant of
0.2 ms has a −3 dB point at roughly 800 Hz and reduces the
high frequency noise to about 16 V rms. It should be noted,
however, that while additional filtering on the output can
improve the noise performance of the AD1582/AD1583/
AD1584/AD1585, the added output impedance can degrade
the ac performance of the references.
10µV
1s
100
90
Figure 20. 1 Hz to 10 Hz Voltage Noise
TURN-ON TIME
Many low power instrument manufacturers are concerned
with the turn-on characteristics of the components used in their
systems. Fast turn-on components often enable the end user to
save power by keeping power off when not needed. Turn-on
settling time is defined as the time required, after the application of
power (cold start), for the output voltage to reach its final value
within a specified error. The two major factors affecting this are
the active circuit settling time and the time required for the
thermal gradients on the chip to stabilize. Figure 21 shows the
turn-on settling and transient response test circuit. Figure 22
shows the turn-on characteristics of the AD1582/AD1583/
AD1584/AD1585. These characteristics are generated from coldstart operation and represent the true turn-on waveform after
power-up. Figure 23 shows the fine settling characteristics of
the AD1582/AD1583/AD1584/AD1585. Typically, the reference
settles to within 0.1% of its final value in about 100 µs.
The device can momentarily draw excessive supply current
when VSUPPLY is slightly below the minimum specified level.
Power supply resistance must be low enough to ensure reliable
turn-on. Fast power supply edges minimize this effect.
0V OR 10V
10kΩ
5V OR 10V
0V OR 5V
0V TO 10V
10kΩ
0.22µF
DUT
VOUT
0.22µF
10
0%
00701-019
Figure 21. Turn-On/Transient Response Test Circuit
Figure 19. 10 Hz to 10 kHz Wideband Noise
Rev. J | Page 13 of 16
00701-021
PSRR (dB)
AD1582
Data Sheet
20µs
100
100
90
90
10
0%
Figure 22. Turn-On Characteristics
5V
20µs
100
90
90
10
0%
00701-023
10
0%
20µs
200mV
50µs
Figure 24. Line Transient Response
100
1mV
50µs
Figure 23. Turn-On Settling
5V
20µs
5mV
20µs
00701-025
20µs
1V
00701-022
10
0%
5V
Figure 25. Load Transient Response (0 mA to 5 mA Load)
DYNAMIC PERFORMANCE
Many ADCs and DACs present transient current loads to the
reference and poor reference response can degrade converter
performance. The AD1582/AD1583/AD1584/AD1585 provide
superior static and dynamic line and load regulation. Because
these series references are capable of both sourcing and sinking
large current loads, they exhibit excellent settling characteristics.
Figure 24 displays the line transient response for the AD1582/
AD1583/AD1584/AD1585. The circuit used to perform such
a measurement is shown in Figure 21, where the input supply
voltage is toggled from 5 V to 10 V, and the input and output
capacitors are each 0.22 μF.
Figure 25 and Figure 26 show the load transient settling characteristics for the AD1582/AD1583/AD1584/AD1585 when
load current steps of 0 mA to +5 mA and 0 mA to −1 mA are
applied. The input supply voltage remains constant at 5 V; the
input decoupling and output load capacitors are 4.7 μF and 1 μF,
respectively; and the output current is toggled. For both positive
and negative current loads, the reference responses settle very
quickly and exhibit initial voltage spikes of less than 10 mV.
Rev. J | Page 14 of 16
20µs
5V
100
90
10
0%
5mV
20µs
00701-026
5V
00701-024
AD1582/AD1583/AD1584/AD1585
Figure 26. Load Transient Response (0 mA to −1 mA Load)
Data Sheet
AD1582/AD1583/AD1584/AD1585
OUTLINE DIMENSIONS
3.04
2.90
2.80
1.40
1.30
1.20
3
1
2
0.60
0.45
2.05
1.78
1.02
0.95
0.88
2.64
2.10
1.03
0.89
1.12
0.89
0.100
0.013
GAUGE
PLANE
0.54
REF
0.180
0.085
0.25
0.60 MAX
0.30 MIN
011909-C
0.51
0.37
SEATING
PLANE
COMPLIANT TO JEDEC STANDARDS TO-236-AB
Figure 27. 3-Lead Small Outline Transistor Package [SOT-23-3]
(RT-3)
Dimensions shown in millimeters
1.55
1.50
1.45
2.05
2.00
1.95
8.30
8.00
7.70
1.10
1.00
0.90
0.35
0.30
0.25
3.55
3.50
3.45
3.20
3.10
2.90
1.00 MIN
7” REEL 100.00
OR
13” REEL 330.00
1.10
1.00
0.90
2.80
2.70
2.60
14.40 MIN
1.50 MIN
20.20
MIN
7” REEL 50.00 MIN
OR
13” REEL 100.00 MIN
13.20
13.00
12.80
0.75 MIN
9.90
8.40
6.90
DIRECTION OF UNREELING
Figure 28. SOT-23 Tape and Reel Outline Dimension
(RT-3)
Dimensions shown in millimeters
Rev. J | Page 15 of 16
053006-0
4.10
4.00
3.90
AD1582/AD1583/AD1584/AD1585
Data Sheet
ORDERING GUIDE
Model1
AD1582ART-REEL7
AD1582ARTZ-R2
AD1582ARTZ-REEL7
AD1582BRTZ-REEL7
AD1583ARTZ-R2
AD1583ARTZ-REEL7
AD1583BRTZ-REEL7
AD1584ARTZ-R2
AD1584ARTZ-REEL7
AD1584BRTZ-REEL7
AD1585ARTZ-R2
AD1585ARTZ-REEL7
AD1585BRTZ-REEL7
1
2
Output
Voltage
(V)
2.50
2.50
2.50
2.50
3.00
3.00
3.00
4.096
4.096
4.096
5.00
5.00
5.00
Accuracy
(mV)
20
20
20
2
30
30
3
40
40
4
50
50
5
Initial
Accuracy
(%)
0.80
0.80
0.80
0.08
1.00
1.00
0.10
0.98
0.98
0.10
1.00
1.00
0.10
Initial Temp.
Coefficient
(ppm/°C)
100
100
100
50
100
100
50
100
100
50
100
100
50
Package
Description
SOT-23-3
SOT-23-3
SOT-23-3
SOT-23-3
SOT-23-3
SOT-23-3
SOT-23-3
SOT-23-3
SOT-23-3
SOT-23-3
SOT-23-3
SOT-23-3
SOT-23-3
Package
Option
RT-3
RT-3
RT-3
RT-3
RT-3
RT-3
RT-3
RT-3
RT-3
RT-3
RT-3
RT-3
RT-3
Branding2
2A
R1Z
R1Z
R20
R22
R22
R23
R25
R25
R26
R28
R28
R29
No. of Parts
Banding
per Reel
3,000
250
3,000
3,000
250
3,000
3,000
250
3,000
3,000
250
3,000
3,000
Z = RoHS Compliant Part.
See Package Branding Information section.
PACKAGE BRANDING INFORMATION
This branding information is only for nonPb-free versions. Four fields identify the device:
First field, product identifier; for example, a 2/3/4/5 identifies the generic as AD1582/AD1583/AD1584/AD1585
Second field, device grade, which can be A, B, or C
Third field, calendar year of processing: 7 for 1997..., A for 2001...
Fourth field, two-week window within the calendar year; for example, letters A to Z to represent a two-week window starting with “A” for
the first two weeks of January.
©1997–2013 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D00701-0-2/13(J)
Rev. J | Page 16 of 16