IRF IRG4PC50KPBF

PD - 95647
IRG4PC50KPbF
Short Circuit Rated
UltraFast IGBT
INSULATED GATE BIPOLAR TRANSISTOR
Features
• High short circuit rating optimized for motor control,
tsc =10µs, @360V VCE (start), TJ = 125°C,
VGE = 15V
• Combines low conduction losses with high
switching speed
• Latest generation design provides tighter parameter
distribution and higher efficiency than previous
generations
• Lead-Free
C
VCES = 600V
VCE(on) typ. = 1.84V
G
@VGE = 15V, IC = 30A
E
n-channel
Benefits
• As a Freewheeling Diode we recommend our
HEXFREDTM ultrafast, ultrasoft recovery diodes for
minimum EMI / Noise and switching losses in the
Diode and IGBT
• Latest generation 4 IGBTs offer highest power
density motor controls possible
• This part replaces the IRGPC50K and IRGPC50M
devices
TO-247AC
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
tsc
VGE
EARV
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current 
Clamped Inductive Load Current ‚
Short Circuit Withstand Time
Gate-to-Emitter Voltage
Reverse Voltage Avalanche Energy ƒ
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting torque, 6-32 or M3 screw.
Max.
Units
600
52
30
104
104
10
±20
170
200
78
-55 to +150
V
A
µs
V
mJ
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Wt
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient, typical socket mount
Weight
Typ.
Max.
–––
0.24
–––
6 (0.21)
0.64
–––
40
–––
Units
°C/W
g (oz)
www.irf.com
1
7/26/04
IRG4PC50KPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ.
Collector-to-Emitter Breakdown Voltage
600 —
Emitter-to-Collector Breakdown Voltage „ 18
—
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage
— 0.47
— 1.84
Collector-to-Emitter Saturation Voltage
— 2.19
VCE(ON)
— 1.79
VGE(th)
Gate Threshold Voltage
3.0
—
∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage
—
-12
gfe
Forward Transconductance …
17
24
—
—
ICES
Zero Gate Voltage Collector Current
—
—
—
—
IGES
Gate-to-Emitter Leakage Current
—
—
V(BR)CES
V(BR)ECS
Max. Units
Conditions
—
V
VGE = 0V, IC = 250µA
—
V
VGE = 0V, IC = 1.0A
—
V/°C VGE = 0V, IC = 1.0mA
2.2
IC = 30A
VGE = 15V
—
IC = 52A
See Fig.2, 5
V
—
IC = 30A , TJ = 150°C
6.0
VCE = VGE, IC = 250µA
— mV/°C VCE = VGE, IC = 250µA
—
S
VCE = 100 V, IC = 30A
250
VGE = 0V, VCE = 600V
µA
2.0
VGE = 0V, VCE = 10V, TJ = 25°C
5000
VGE = 0V, VCE = 600V, TJ = 150°C
±100 n A VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
tsc
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Short Circuit Withstand Time
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min.
—
—
—
—
—
—
—
—
—
—
10
Typ.
200
25
85
38
34
160
79
0.49
0.68
1.12
—
—
—
—
—
—
—
—
—
—
37
35
260
170
2.34
13
3200
370
95
Max. Units
Conditions
300
IC = 30A
38
nC
VCC = 400V
See Fig.8
130
VGE = 15V
—
—
TJ = 25°C
ns
240
IC = 30A, VCC = 480V
120
VGE = 15V, RG = 5.0Ω
—
Energy losses include "tail"
—
mJ
See Fig. 9,10,14
1.4
—
µs
VCC = 400V, TJ = 125°C
VGE = 15V, RG = 10Ω , VCPK < 500V
—
TJ = 150°C,
—
IC = 30A, VCC = 480V
ns
—
VGE = 15V, RG = 5.0Ω
—
Energy losses include "tail"
—
mJ
See Fig. 11,14
—
nH
Measured 5mm from package
—
VGE = 0V
—
pF
VCC = 30V
See Fig. 7
—
ƒ = 1.0MHz
Notes:
 Repetitive rating; VGE = 20V, pulse width limited by
ƒ Repetitive rating; pulse width limited by maximum
‚ VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 5.0 Ω
„ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
max. junction temperature. ( See fig. 13b )
junction temperature.
… Pulse width 5.0µs, single shot.
2
www.irf.com
IRG4PC50KPbF
70
For both:
Triangular wave:
Duty cycle: 50%
TJ = 125°C
Tsink = 90°C
Gate drive as specified
Power Dissipation = 40W
60
50
40
Clamp voltage:
80% of rated
Square wave:
60% of rated
voltage
30
I
20
Ideal diodes
10
A
0
0.1
1
10
100
f, Frequency (kHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
1000
TJ = 25 °C
100
TJ = 150 °C
10
1
V GE = 15V
20µs PULSE WIDTH
1
10
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
I C , Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
1000
100
TJ = 150 °C
10
TJ = 25 °C
V CC = 50V
5µs PULSE WIDTH
1
5
6
7
8
9
10
11
12
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4PC50KPbF
3.0
VCE , Collector-to-Emitter Voltage(V)
Maximum DC Collector Current(A)
60
50
40
30
20
10
0
25
50
75
100
125
150
VGE = 15V
80 us PULSE WIDTH
IC = 60 A
2.0
IC = 30 A
IC = 15 A
1.0
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
TC , Case Temperature ( °C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Thermal Response (Z thJC )
1
0.50
0.20
0.1
0.10
0.05
0.02
0.01
0.01
SINGLE PULSE
(THERMAL RESPONSE)
PDM
t1
t2
0.001
0.00001
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = PDM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4PC50KPbF
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
C, Capacitance (pF)
4000
Cies
3000
2000
1000
Coes
Cres
0
1
20
VGE , Gate-to-Emitter Voltage (V)
5000
16
12
8
4
0
10
0
100
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
Total Switching Losses (mJ)
Total Switching Losses (mJ)
100
3.0
2.0
1.0
0.0
10
20
30
40
Ω
RG , Gate Resistance (Ohm)
(Ω)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
80
120
160
200
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
V CC = 480V
V GE = 15V
TJ = 25 ° C
I C = 30A
0
40
QG , Total Gate Charge (nC)
VCE , Collector-to-Emitter Voltage (V)
4.0
VCC = 400V
I C = 30A
50
RG = 5.0
Ohm
Ω
VGE = 15V
VCC = 480V
10
IC = 60 A
IC = 30 A
IC = 15 A
1
0.1
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4PC50KPbF
RG
TJ
VCC
VGE
1000
5.0Ω
= 5.0Ohm
= 150 °C
= 480V
= 15V
I C, Collector-to-Emitter Current (A)
Total Switching Losses (mJ)
8.0
6.0
4.0
2.0
VGE = 20V
T J = 125 oC
100
SAFE OPERATING AREA
10
0.0
10
20
30
40
50
I C , Collector-to-emitter Current (A)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
6
60
1
10
100
1000
VCE , Collector-to-Emitter Voltage (V)
Fig. 12 - Turn-Off SOA
www.irf.com
IRG4PC50KPbF
L
D.U.T.
RL =
VC *
50V
0 - 480V
1000V
480V
4 X IC@ 25°C
480µF
960V
c
d
* Driver same type as D.U.T.; Vc = 80% of Vce(max)
* Note: Due to the 50V power supply, pulse width and inductor
will increase to obtain rated Id.
Fig. 13b - Pulsed Collector
Fig. 13a - Clamped Inductive
Current Test Circuit
Load Test Circuit
IC
L
Driver*
D.U.T.
Fig. 14a - Switching Loss
Test Circuit
VC
50V
1000V
c
d
e
* Driver same type
as D.U.T., VC = 480V
c
d
90%
e
VC
10%
90%
Fig. 14b - Switching Loss
t d(off)
10%
I C 5%
Waveforms
tf
tr
t d(on)
t=5µs
E on
E off
E ts = (Eon +Eoff )
www.irf.com
7
IRG4PC50KPbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
EXAMPLE: THIS IS AN IRFPE30
WIT H ASS EMBLY
LOT CODE 5657
ASS EMBLED ON WW 35, 2000
IN THE ASS EMBLY LINE "H"
Note: "P" in assembly line
position indicates "Lead-Free"
PART NUMBER
INT ERNATIONAL
RECT IFIER
LOGO
IRFPE30
56
AS S EMBLY
LOT CODE
035H
57
DATE CODE
YEAR 0 = 2000
WEEK 35
LINE H
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 07/04
8
www.irf.com