VISHAY IL251-X009

VISHAY
IL250/ 251/ 252/ ILD250/ 251/ 252
Vishay Semiconductors
Optocoupler, Phototransistor Output, AC Input, With Base
Connection
Single Channel
Features
•
•
•
•
AC or Polarity Insensitive Input
Built-in Reverse Polarity Input Protection
Improved CTR Symmetry
Industry Standard DIP Package
• DIN EN 60747-5-2(VDE0884)
DIN EN 60747-5-5 pending
Available with Option 1
Applications
Ideal for AC signal detection and monitoring.
Description
The IL250/ 251/ 252/ ILD250/ 251/ 252 are bidirectional input optically coupled isolators consisting of
two Gallium Arsenide infrared LEDs coupled to a silicon NPN phototransistor per channel.
The IL250/ ILD/250 has a minimum CTR of 50 %,
the IL251/ ILD251 has a minimum CTR of 20 %,
and the IL252/ ILD252 has a minimum CTR of 100 %.
The IL250/ IL251/ IL252 are single channel optocouplers. The ILD250/ ILD251/ ILD252 has two isolated
channels in a single DIP package.
6 B
C/A 2
5 C
NC 3
4 E
Dual Channel
1
8 E
C 2
7 C
A
3
6 C
C
4
5 E
A
Agency Approvals
• UL File #E52744 System Code H or J
• CSA 93751
• BSI IEC60950 IEC60965
A/C 1
i179024
Order Information
Part
Remarks
IL250
CTR > 50 %, Single Channel DIP-6
IL251
CTR > 20 %, Single Channel DIP-6
IL252
CTR > 100 %, Single Channel DIP-6
ILD250
CTR > 50 %, Dual Channel DIP-8
ILD251
CTR > 20 %, Dual Channel DIP-8
ILD252
CTR > 100 %, Dual Channel DIP-8
IL250-X007
CTR > 50 %, Single Channel SMD-6 (option 7)
IL250-X009
CTR > 50 %, Single Channel SMD-6 (option 9)
IL251-X009
CTR > 20 %, Single Channel SMD-6 (option 9)
IL252-X007
CTR > 100 %, Single Channel SMD-6 (option 7)
IL252-X009
CTR > 100 %, Single Channel SMD-6 (option 9)
ILD250-X009
CTR > 50 %, Dual Channel SMD-6 (option 9)
ILD251-X006
CTR > 20 %, Dual Channel DIP-8 400 mil (option
6)
ILD251-X007
CTR > 20 %, Dual Channel SMD-6 (option 7)
ILD251-X009
CTR > 20 %, Dual Channel SMD-6 (option 9)
ILD252-X009
CTR > 100 %, Dual Channel SMD-6 (option 9)
For additional information on the available options refer to
Option Information.
Document Number 83618
Rev. 1.3, 20-Apr-04
www.vishay.com
1
IL250/ 251/ 252/ ILD250/ 251/ 252
VISHAY
Vishay Semiconductors
Absolute Maximum Ratings
Tamb = 25 °C, unless otherwise specified
Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is
not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
Maximum Rating for extended periods of the time can adversely affect reliability.
Input
Parameter
Test condition
Symbol
Value
IF
60
mA
Pdiss
100
mW
1.33
mw/°C
Symbol
Value
Unit
BVCEO
30
V
Emitter-base breakdown voltage
BVEBO
5.0
V
Collector-base breakdown voltage
BVCBO
70
V
Power dissipation single channel
Pdiss
200
mW
Power dissipation dual channel
Pdiss
Forward continuous current
Power dissipation
Derate linearly from 25 °C
Unit
Output
Parameter
Test condition
Collector-emitter breakdown voltage
150
mW
Derate linearly from 25 °C single channel
2.6
mW/°C
Derate linearly from 25 °C dual channel
2.0
mW/°C
Coupler
Parameter
Test condition
Symbol
Value
Unit
VISO
5300
VRMS
Creepage
≥ 7.0
mm
Clearance
≥ 7.0
mm
Isolation test voltage (between
emitter and detector referred to
standard climate
23 °C/50 %RH, DIN 50014)
VIO = 500 V, Tamb = 25 °C
RIO
1012
Ω
VIO = 500 V, Tamb = 100 °C
RIO
1011
Ω
Total dissipation single channel
Ptot
250
mW
Total dissipation dual channel
Ptot
400
mW
Derate linearly from 25 °C single
channel
3.3
mW/°C
Derate linearly from 25 °C dual
channel
5.3
mW/°C
°C
Isolation resistance
Storage temperature
Tstg
- 55 to + 150
Operating temperature
Tamb
- 55 to + 100
°C
10
sec.
Lead soldering time at 260 °C
www.vishay.com
2
Document Number 83618
Rev. 1.3, 20-Apr-04
IL250/ 251/ 252/ ILD250/ 251/ 252
VISHAY
Vishay Semiconductors
Electrical Characteristics
Tamb = 25 °C, unless otherwise specified
Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering
evaluation. Typical values are for information only and are not part of the testing requirements.
Input
Parameter
Test condition
Symbol
IF = ± 10 mA
Forward voltage
Min
VF
Typ.
Max
Unit
1.2
1.5
V
Max
Unit
Output
Parameter
Test condition
Collector-emitter breakdown voltage
IC = 1.0 mA
Symbol
Min
Typ.
BVCEO
30
50
V
Emitter-base breakdown voltage
IE = 100 µA
BVEBO
7.0
10
V
Collector-base breakdown voltage
IC = 10 µA
BVCBO
70
90
V
Collector-emitter leakage current
VCE = 10 V
ICEO
5.0
50
nA
Typ.
Max
Unit
0.4
V
Coupler
Parameter
Test condition
Collector-emitter saturation
voltage
IF = ± 16 mA, IC = 2.0 mA
Symbol
Min
VCEsat
Current Transfer Ratio
Parameter
Test condition
IF = ± 10 mA, VCE = 10 V
DC Current Transfer Ratio
Part
Symbol
Min
ILD250
CTRDC
50
%
ILD251
CTRDC
20
%
ILD252
CTRDC
100
%
Symmetry (CTR @ + 10 mA)/
(CTR @ -10 mA)
0.50
Typ.
Max
1.0
Unit
2.0
Typical Characteristics (Tamb = 25 °C unless otherwise specified)
1.5
40
NCTR - Normalized CTR
IF - LED Forward Current - mA
60
-55°C
20
25°C
0
85°C
-20
-40
-60
-1.5
Normalized to:
VCE = 10 V, IF = 10 mA
TA= 25°C
CTRce(sat) VCE = 0.4 V
1.0
0.5
NCTR(SAT)
NCTR
0.0
-1.0
-0.5
0.0
0.5
1.0
1.5
.1
VF - LED Forward Voltage - V
iil250_01
Fig. 1 LED Forward Current vs.Forward Voltage
Document Number 83618
Rev. 1.3, 20-Apr-04
1
10
100
I F - LED Current - mA
iil250_02
Fig. 2 Normalized Non-Saturated and Saturated CTR vs. LED
Current
www.vishay.com
3
IL250/ 251/ 252/ ILD250/ 251/ 252
VISHAY
Vishay Semiconductors
35
Normalized to:
VCE = 10 V, IF = 10 mA, TA= 25°C
ˇ
CTRce(sat) VCE = 0.4 V
1.0
ICE - Collector Current - mA
NCTR - Normalized CTR
1.5
TA= 50°C
0.5
NCTR(SAT)
NCTR
30
25
50°C
20
15
85°C
10
5
0
0.0
.1
1
10
100
0
10
I F - LED Current - mA
iil250_03
50
60
10 5
Normalized to:
VCE = 10 V, IF = 10 mA
TA= 25°C
ICEO - Collector-Emitter - nA
NCTR - Normalized CTR
40
30
Fig. 6 Collector-Emitter Current vs. Temperature and LED
Current
1.5
1.0
CTRce(sat) VCE = 0.4 V
TA= 70°C
0.5
NCTR(SAT)
NCTR
0.0
.1
1
10
I F - LED Current - mA
100
iil250_04
10 4
10 3
10 2
VCE = 10 V
10 1
TYPICAL
10 0
10 -1
10 -2
-20
0
20
40
60
80
100
TA - Ambient Temperature - °C
iil250_07
Fig. 4 Normalized Non-saturated and saturated CTR vs. LED
Current
Fig. 7 Collector-Emitter Leakage Current vs.Temp.
1.5
1.5
Normalized to:
V CE = 10 V, I F = 10 mA, TA = 25°C
CTRce(sat) VCE = 0.4 V
1.0
TA = 85°C
0.5
NCTR(SAT)
NCTR
0.0
.1
1
10
IF - LED Current - mA
100
iil250_05
Fig. 5 Normalized Non-saturated and saturated CTR vs. LED
Current
www.vishay.com
NCTRcb - Normalized CTRcb
NCTR - Normalized CTR
20
IF - LED Current - mA
iil250_06
Fig. 3 Normalized Non-saturated and Saturated CTR vs. LED
Current
4
70°C
25°C
Normalized to:
IF =10 mA
VCB = 9.3 V
TA = 25°C
1.0
0.5
25°C
50°C
70°C
0.0
.1
iil250_08
1
10
100
IF - LED Current - mA
Fig. 8 Normalized CTRcb vs. LED Current and Temperature
Document Number 83618
Rev. 1.3, 20-Apr-04
IL250/ 251/ 252/ ILD250/ 251/ 252
VISHAY
Vishay Semiconductors
1000
1.5
70°C
ICB = 1.0357 *IF ^1.3631
10
1
.1
.01
.1
iil250_09
V CE = 0.4 V
1
10
10
100
1000
I B - Base Current - (µA)
2.5
1000
tpLH - Propagation Delay µs
Normalized to:
IF = 10 mA, T = 25°C
Normalized Photocurrent
TA = 25°C
Fig. 12 Normalized Saturated HFE vs. Base Current and
Temperature
Fig. 9 Collector-Base Photocurrent vs. LED Current
1
NIB-TA = -20°C
NIb, TA = 25°C
NIb, TA = 50°C
NIb, TA = 70°C
TA = 25°C, IF = 10 mA
VCC = 5 V, Vth = 1.5 V
tpHL
2.0
100
10
1.5
tpLH
1
.01
1.0
.1
.1
1
10
70°C
1.0
25°C
-20°C
100
RL - Collector Load Resistor - kΩ
Fig. 13 Propagation Delay vs. Collector Load Resistor
Normalized to:
I B= 20 µA
VCE = 10 V
TA = 25°C
50°C
10
iil250_13
Fig. 10 Normalized Photocurrent vs. IF and Temp.
1.2
1
100
F I - LED Current - mA
iil250_10
NHFE - Normalized HFE
-20°C
0.5
iil250_12
.1
Normalized to:
VCE = 10 V
I B = 20 µA
0.0
100
1
10
IF - LED Current - mA
1.0
50°C
25°C
tpHL - Propagation Delay µs
ICB - Collector Base
Photocurrent - µA
100
NHFE(sat) -Normalized
Saturated HFE
TA = 25°C
IF
0.8
VO
tD
tR
tPLH
0.6
VTH = 1.5 V
tPHL
0.4
1
iil250_11
10
100
Fig. 11 Normalized Non-saturated HFE vs. Base Current and
Temperature
Rev. 1.3, 20-Apr-04
tF
1000
IB - Base Current - µA
Document Number 83618
tS
iil250_14
Fig. 14 Switching Timing
www.vishay.com
5
IL250/ 251/ 252/ ILD250/ 251/ 252
VISHAY
Vishay Semiconductors
VCC = 5 V
F=10 KHz,
DF=50%
RL
VO
IF=10 mA
iil250_15
Fig. 15 Switching Schematic
Package Dimensions in Inches (mm)
3
2
1
4
5
6
pin one ID
.248 (6.30)
.256 (6.50)
ISO Method A
.335 (8.50)
.343 (8.70)
.039
(1.00)
Min.
4°
typ.
.018 (0.45)
.022 (0.55)
.300 (7.62)
typ.
.048 (0.45)
.022 (0.55)
.130 (3.30)
.150 (3.81)
18°
.031 (0.80) min.
.031 (0.80)
.035 (0.90)
.100 (2.54) typ.
3°–9°
.010 (.25)
typ.
.300–.347
(7.62–8.81)
.114 (2.90)
.130 (3.0)
i178004
www.vishay.com
6
Document Number 83618
Rev. 1.3, 20-Apr-04
IL250/ 251/ 252/ ILD250/ 251/ 252
VISHAY
Vishay Semiconductors
Package Dimensions in Inches (mm)
pin one ID
4
3
2
1
5
6
7
8
.255 (6.48)
.268 (6.81)
ISO Method A
.379 (9.63)
.390 (9.91)
.030 (0.76)
.045 (1.14)
4° typ.
.300 (7.62)
typ.
.031 (0.79)
.130 (3.30)
.150 (3.81)
.050 (1.27)
.018 (.46)
.022 (.56)
i178006
.020 (.51 )
.035 (.89 )
.100 (2.54) typ.
Option 6
Option 7
.407 (10.36)
.391 (9.96)
.307 (7.8)
.291 (7.4)
.300 (7.62)
TYP.
Rev. 1.3, 20-Apr-04
Option 9
.375 (9.53)
.395 (10.03)
.180 (4.6)
.160 (4.1) .0040 (.102)
.315 (8.0)
MIN.
Document Number 83618
3°–9°
.008 (.20)
.012 (.30)
.230(5.84)
.110 (2.79) .250(6.35)
.130 (3.30)
.300 (7.62)
ref.
.028 (0.7)
MIN.
.014 (0.35)
.010 (0.25)
.400 (10.16)
.430 (10.92)
10°
.331 (8.4)
MIN.
.406 (10.3)
MAX.
.0098 (.249)
.012 (.30) typ.
.020 (.51)
.040 (1.02)
.315 (8.00)
min.
15° max.
18450
www.vishay.com
7
IL250/ 251/ 252/ ILD250/ 251/ 252
VISHAY
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and
operatingsystems with respect to their impact on the health and safety of our employees and the public, as
well as their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are
known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs
and forbid their use within the next ten years. Various national and international initiatives are pressing for an
earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the
use of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments
respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423
www.vishay.com
8
Document Number 83618
Rev. 1.3, 20-Apr-04