VISHAY BF996SA

BF996S
Vishay Telefunken
N–Channel Dual Gate MOS-Fieldeffect Tetrode,
Depletion Mode
Electrostatic sensitive device.
Observe precautions for handling.
Applications
Input- and mixer stages in UHF tuners.
Features
D Integrated gate protection diodes
D Low noise figure
D Low feedback capacitance
2
D High cross modulation performance
D Low input capacitance
D High AGC-range
1
G2
D
G1
13 579
94 9279
3
4
BF996S Marking: MH
Plastic case (SOT 143)
1=Source, 2=Drain, 3=Gate 2, 4=Gate 1
S
12623
Absolute Maximum Ratings
Tamb = 25_C, unless otherwise specified
Parameter
Drain - source voltage
Drain current
Gate 1/Gate 2 - source peak current
Total power dissipation
Channel temperature
Storage temperature range
Test Conditions
Type
Tamb ≤ 60 °C
Symbol
Value
VDS
20
ID
30
±IG1/G2SM
10
Ptot
200
TCh
150
Tstg
–65 to +150
Unit
V
mA
mA
mW
°C
°C
Symbol
RthChA
Unit
K/W
Maximum Thermal Resistance
Tamb = 25_C, unless otherwise specified
Parameter
Test Conditions
Channel ambient on glass fibre printed board (25 x 20 x 1.5) mm3
plated with 35mm Cu
Document Number 85010
Rev. 3, 20-Jan-99
Value
450
www.vishay.de • FaxBack +1-408-970-5600
1 (8)
BF996S
Vishay Telefunken
Electrical DC Characteristics
Tamb = 25_C, unless otherwise specified
Parameter
Drain - source
breakdown voltage
Gate 1 - source
breakdown voltage
Gate 2 - source
breakdown voltage
Gate 1 - source
leakage current
Gate 2 - source
leakage current
Drain current
Test Conditions
ID = 10 mA, –VG1S = –VG2S = 4 V
Gate 1 - source
cut-off voltage
Gate 2 - source
cut-off voltage
VDS = 15 V, VG2S = 4 V, ID = 20 mA
VDS = 15 V, VG1S = 0, ID = 20 mA
Type
Symbol
V(BR)DS
Min
20
±IG1S = 10 mA, VG2S = VDS = 0
±V(BR)G1SS
±IG2S = 10 mA, VG1S = VDS = 0
±V(BR)G2SS
Typ
Max
Unit
V
8
14
V
8
14
V
±VG1S = 5 V, VG2S = VDS = 0
±IG1SS
50
nA
±VG2S = 5 V, VG1S = VDS = 0
±IG2SS
50
nA
–VG1S(OFF)
18
10.5
18
2.5
mA
mA
mA
V
–VG2S(OFF)
2.0
V
Max
Unit
mS
pF
pF
fF
pF
dB
dB
dB
dB
dB
VDS = 15 V, VG1S = 0, VG2S = 4 V
BF996S
BF996SA
BF996SB
IDSS
IDSS
IDSS
4
4
9.5
Electrical AC Characteristics
VDS = 15 V, ID = 10 mA, VG2S = 4 V, f = 1 MHz , Tamb = 25_C, unless otherwise specified
Parameter
Forward transadmittance
Gate 1 input capacitance
Gate 2 input capacitance
Feedback capacitance
Output capacitance
Power g
gain
AGC range
Noise figure
g
Test Conditions
VG1S = 0, VG2S = 4 V
GS = 2 mS, GL = 0.5 mS, f = 200 MHz
GS = 3.3 mS, GL = 1 mS, f = 800 MHz
VG2S = 4 to –2 V, f = 800 MHz
GS = 2 mS, GL = 0.5 mS, f = 200 MHz
GS = 3.3 mS, GL = 1 mS, f = 800 MHz
www.vishay.de • FaxBack +1-408-970-5600
2 (8)
Symbol
y21s
Cissg1
Cissg2
Crss
Coss
Gps
Gps
DGps
F
F
Min
15
Typ
18.5
2.2
1.1
25
10.8
25
18
40
1.0
1.8
2.6
35
1.2
Document Number 85010
Rev. 3, 20-Jan-99
BF996S
Vishay Telefunken
Common Source S–Parameters
VDS , = 15 V , VG2S = 4 V , Z0 = 50 W, Tamb = 25_C, unless otherwise specified
ID/mA
5
10
15
f/MHz
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
Document Number 85010
Rev. 3, 20-Jan-99
S11
LOG
MAG
dB
–0.05
–0.15
–0.43
–0.70
–1.03
–1.33
–1.62
–1.92
–2.21
–2.49
–2.80
–3.07
–3.31
–0.05
–0.16
–0.48
–0.76
–1.11
–1.43
–1.75
–2.07
–2.40
–2.70
–3.03
–3.32
–3.59
–0.05
–0.17
–0.50
–0.81
–1.18
–1.52
–1.86
–2.20
–2.53
–2.86
–3.21
–3.50
–3.80
ANG
deg
–8.5
–17.7
–24.6
–32.1
–39.2
–45.8
–52.3
–58.7
–64.7
–70.7
–76.6
–82.5
–88.6
–9.0
–18.7
–26.0
–33.7
–41.2
–48.3
–55.1
–61.6
–67.9
–74.2
–80.2
–86.4
–92.3
–9.4
–19.4
–27.1
–35.0
–42.9
–50.3
–57.2
–63.9
–70.4
–76.8
–82.9
–89.0
–95.1
S21
LOG
MAG
dB
3.24
3.63
2.51
2.01
1.45
0.94
0.43
–0.10
–0.59
–1.12
–1.52
–1.93
–2.35
5.19
5.58
4.45
3.95
3.40
2.88
2.39
1.88
1.39
0.90
0.50
0.13
–0.28
6.07
6.44
5.31
4.80
4.23
3.72
3.22
2.72
2.24
1.74
1.34
0.95
0.56
ANG
deg
164.9
150.9
134.7
121.3
108.4
96.5
85.0
74.1
63.6
53.1
43.7
33.6
24.1
165.3
151.8
136.3
123.3
110.9
99.5
88.7
78.1
67.9
57.9
48.7
38.9
29.6
165.4
152.0
136.7
123.8
111.5
100.3
89.6
79.4
69.2
59.4
50.2
40.8
31.5
S12
LOG
MAG
dB
–56.84
–50.57
–48.51
–46.98
–46.40
–46.40
–47.02
–47.53
–47.81
–48.52
–48.53
–46.95
–44.44
–56.24
–49.97
–47.91
–46.48
–45.91
–45.91
–46.53
–47.13
–47.41
–48.21
–48.43
–47.04
–44.54
–55.74
–49.47
–47.41
–45.98
–45.41
–45.41
–46.13
–46.63
–47.00
–47.91
–48.33
–47.04
–44.53
ANG
deg
82.2
75.6
67.7
62.8
57.8
57.3
58.9
63.3
73.1
83.5
102.1
120.4
131.7
81.9
75.0
67.2
61.8
56.3
55.8
56.7
60.7
69.9
80.0
98.9
118.2
130.5
81.4
74.6
66.4
60.8
55.1
54.4
54.9
58.5
67.3
76.7
95.2
115.3
128.7
S22
LOG
MAG
dB
–0.08
–0.18
–0.29
–0.44
–0.59
–0.76
–0.91
–1.08
–1.26
–1.45
–1.57
–1.75
–1.92
–0.11
–0.21
–0.33
–0.47
–0.65
–0.81
–0.96
–1.12
–1.32
–1.49
–1.61
–1.79
–1.96
–0.15
–0.24
–0.36
–0.52
–0.68
–0.84
–1.02
–1.16
–1.35
–1.53
–1.66
–1.84
–2.00
ANG
deg
–3.4
–7.1
–9.7
–12.3
–15.1
–17.4
–19.7
–22.0
–24.3
–26.2
–28.4
–30.5
–32.7
–3.5
–7.2
–9.8
–12.6
–15.3
–17.8
–20.0
–22.4
–24.6
–26.6
–28.8
–31.0
–33.3
–3.6
–7.3
–10.0
–12.9
–15.7
–18.0
–20.4
–22.7
–25.0
–27.1
–29.4
–31.6
–33.9
www.vishay.de • FaxBack +1-408-970-5600
3 (8)
BF996S
Vishay Telefunken
Typical Characteristics (Tamb = 25_C unless otherwise specified)
22
250
200
150
100
50
14
12
10
0
8
6
4
VG1S= –1V
0
0
20
40
60
80
100 120 140 160
Tamb – Ambient Temperature ( °C )
–1
–0.5
0.0
0.5
1.0
1.5
VG2S – Gate 2 Source Voltage ( V )
12852
Figure 1. Total Power Dissipation vs.
Ambient Temperature
Figure 4. Drain Current vs. Gate 2 Source Voltage
32
4.0
C issg1 – Gate 1 Input Capacitance ( pF )
2V
1.5V
1V
VG2S= 4V
Ptot=200mW
28
ID – Drain Current ( mA )
16
2
96 12159
24
20
0.5V
16
0
12
8
–0.5V
4
VG1S= –1V
0
0
2
4
6
8
10
12
14
VDS=15V
VG2S=4V
f=1MHz
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
16
VDS – Drain Source Voltage ( V )
12849
–1
–0.5
0.0
0.5
1.0
1.5
ID – Drain Current ( mA )
12853
Figure 2. Drain Current vs. Drain Source Voltage
Figure 5. Gate 1 Input Capacitance vs. Drain Current
3.0
22
VDS= 15V
18
C issg2 – Gate 2 Input Capacitance ( pF )
6V 5V 4V 3V
20
ID – Drain Current ( mA )
4V
3V
2V
1V
VDS= 15V
18
0
2V
16
1V
14
12
10
0.5V
8
6
0
4
2
VG2S= –1V
0
–1
12851
5V
20
ID – Drain Current ( mA )
P tot – Total Power Dissipation ( mW )
300
–0.5
0.0
0.5
1.0
Figure 3. Drain Current vs. Gate 1 Source Voltage
www.vishay.de • FaxBack +1-408-970-5600
4 (8)
2.0
1.5
1.0
0.5
0
–2
1.5
VG1S – Gate 1 Source Voltage ( V )
VDS=15V
VG1S=0
f=1MHz
2.5
12854
–1
0
1
2
3
4
5
VG2S – Gate 2 Source Voltage ( V )
Figure 6. Gate 2 Input Capacitance vs.
Gate 2 Source Voltage
Document Number 85010
Rev. 3, 20-Jan-99
BF996S
Vishay Telefunken
20
1.8
1.6
16
1.4
1.0
0.8
0.6
2
0
2
4
6
8
10 12 14 16 18 20
VDS – Drain Source Voltage ( V )
10
–10
1V
–20
0
–0.2V
–0.4V
–0.6V
2
S 21
–30
100MHz
0
1
2
3
4
5
6
7
8
9
10
Re (y11) ( mS )
Figure 10. Short Circuit Input Admittance
0
–5
Im ( y21 ) ( mS )
0
VDS=15V
VG2S=4V
ID=10mA
f=100...1300MHz
300MHz
12857
4V
3V
2V
f= 200MHz
500MHz
6
0
Figure 7. Output Capacitance vs. Drain Source Voltage
– Transducer Gain ( dB )
8
0.2
0
700MHz
10
4
12856
900MHz
12
0.4
–50
1100MHz
14
1.2
–40
f=1300MHz
18
VG2S=4V
f=1MHz
Im ( y11 ) ( mS )
C oss – Output Capacitance ( pF )
2.0
–0.8V
VDS=15V
VG2S=4V
f=100...1300MHz
300MHz
500MHz
–10
–15
f=100MHz
ID=5mA
700MHz
900MHz
10mA
–20
VG2S=–1V
15mA
1100MHz
1300MHz
–60
–2.0 –1.5 –1.0 –0.5 0.0
0.5
1.0
1.5
VG1S – Gate 1 Source Voltage ( V )
12855
6
2V
5
14
12
1V
10
8
6
0
2
4
6
8
10
12
14
16
20
f=1300MHz
1100MHz
900MHz
4
700MHz
3
500MHz
2
0
0.0
18
ID – Drain Current ( mA )
Figure 9. Forward Transadmittance vs. Drain Current
Document Number 85010
Rev. 3, 20-Jan-99
15
300MHz
100MHz
0
12850
10
1
0.5V
VG2S=0
5
VDS=15V
VG2S=4V
ID=10mA
f=100...1300MHz
4
2
0
Re (y21) ( mS )
7
Im ( y22 ) ( mS )
y21s – Forward Transadmittance ( mS )
16
–5
Figure 11. Short Circuit Forward Transfer Admittance
4V
3V
VDS=15V
f=1MHz
18
–10
12858
Figure 8. Transducer Gain vs. Gate 1 Source Voltage
20
–25
–15
2.0
12859
0.5
1.0
1.5
2.0
2.5
3.0
Re (y22) ( mS )
Figure 12. Short Circuit Output Admittance
www.vishay.de • FaxBack +1-408-970-5600
5 (8)
BF996S
Vishay Telefunken
VDS = 15 V, ID = 10 mA, VG2S = 4 V , Z0 = 50 W
S12
S11
j
90°
120°
j0.5
150°
j0.2
0
60°
j2
30°
1300MHz
j5
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
0.2
0.5
1
2
1
5
100
180°
0.08
0.16
0°
100
–j0.2
–j5
–150°
1300MHz
–j0.5
–30°
–j2
–120°
–j
12 968
–60°
–90°
12 969
Figure 13. Input reflection coefficient
Figure 15. Reverse transmission coefficient
S21
S22
j
90°
120°
60°
j0.5
150°
500
300
j2
30°
700
j0.2
100
j5
ÁÁÁÁ
ÁÁÁÁÁÁ
1300MHz
180°
1
2
0°
0
0.2
0.5
1
2
5
–j0.2
–150°
–j5
1300MHz
–30°
–j0.5
–120°
12 970
1
100
–j2
–60°
–90°
Figure 14. Forward transmission coefficient
www.vishay.de • FaxBack +1-408-970-5600
6 (8)
12 971
–j
Figure 16. Output reflection coefficient
Document Number 85010
Rev. 3, 20-Jan-99
BF996S
Vishay Telefunken
Dimensions in mm
96 12240
Document Number 85010
Rev. 3, 20-Jan-99
www.vishay.de • FaxBack +1-408-970-5600
7 (8)
BF996S
Vishay Telefunken
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating
systems with respect to their impact on the health and safety of our employees and the public, as well as their
impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as
ozone depleting substances ( ODSs ).
The Montreal Protocol ( 1987 ) and its London Amendments ( 1990 ) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban
on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of
ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency ( EPA ) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer application
by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the
buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or
indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423
www.vishay.de • FaxBack +1-408-970-5600
8 (8)
Document Number 85010
Rev. 3, 20-Jan-99