VISHAY BZM55C3V9

BZM55-Series
Vishay Semiconductors
Small Signal Zener Diodes
Features
• Saving space
• Hermetic sealed parts
e2
• Electrical data identical with the devices
BZT55..Series / TZM..Series
• Fits onto SOD323/SOD110 footprints
• Very sharp reverse characteristic
• Low reverse current level
• Very high stability
• Low noise
• Available with tighter tolerances
• Lead (Pb)-free component
• Component in accordance to RoHS 2002/95/EC
and WEEE 2002/96/EC
9612315
Applications
Mechanical Data
• Voltage stabilization
Case: MicroMELF
Weight: approx. 12 mg
Packaging codes/options:
TR / 2.5 k per 7" reel, 12.5 k/box
TR3 / 10 k per 13" reel, 10 k/box
Absolute Maximum Ratings
Tamb = 25 °C, unless otherwise specified
Parameter
Symbol
Value
Unit
PV
500
mW
Z-current
IZ
PV/VZ
mA
Junction temperature
Tj
175
°C
Tstg
- 65 to + 175
°C
Power dissipation
Test condition
RthJA ≤ 300 K/W
Storage temperature range
Thermal Characteristics
Tamb = 25 °C, unless otherwise specified
Symbol
Value
Unit
Junction to ambient air
Parameter
mounted on epoxy-glass hard
tissue, Fig. 1
Test condition
RthJA
500
K/W
Junction tie point
35 µm copper clad, 0.9 mm2
copper area per electrode
RthJL
300
K/W
Electrical Characteristics
Tamb = 25 °C, unless otherwise specified
Parameter
Forward voltage
Document Number 85597
Rev. 1.9, 10-Mar-06
Test condition
IF = 200 mA
Symbol
VF
Min
Typ.
Max
Unit
1.5
V
www.vishay.com
1
BZM55-Series
Vishay Semiconductors
Electrical Characteristics
BZM55C..
Partnumber
Zener Voltage
Range1)
VZ at IZT
Dynamic
Resistance
rzjT at
IZT,
f = 1kHz
rzjK at
IZK,
f = 1kHz
Ω
V
Test
Current
Temperature
Coefficient
Test
Current
IZT
TKVZ
IZK
IR
IR
at Tamb at Tamb
= 25 °C = 150 °C
at VR
mA
µA
V
mA
%/K
min
min
max
max
BZM55C2V4
2.28
2.56
< 85
< 600
5
- 0.09
- 0.06
1
< 50
< 100
1
BZM55C2V7
2.5
2.9
< 85
< 600
5
- 0.09
- 0.06
1
< 10
< 50
1
BZM55C3V0
2.8
3.2
< 90
< 600
5
- 0.08
- 0.05
1
<4
< 40
1
BZM55C3V3
3.1
3.5
< 90
< 600
5
- 0.08
- 0.05
1
<2
< 40
1
BZM55C3V6
3.4
3.8
< 90
< 600
5
-0.08
- 0.05
1
<2
< 40
1
BZM55C3V9
3.7
4.1
< 90
< 600
5
- 0.08
- 0.05
1
<2
< 40
1
BZM55C4V3
4
4.6
< 90
< 600
5
- 0.06
- 0.03
1
<1
< 20
1
BZM55C4V7
4.4
5
< 80
< 600
5
- 0.05
0.02
1
< 0.5
< 10
1
BZM55C5V1
4.8
5.4
< 60
< 550
5
- 0.02
0.02
1
< 0.1
<2
1
BZM55C5V6
5.2
6
< 40
< 450
5
- 0.05
0.05
1
< 0.1
<2
1
BZM55C6V2
5.8
6.6
< 10
< 200
5
0.03
0.06
1
< 0.1
<2
2
BZM55C6V8
6.4
7.2
<8
< 150
5
0.03
0.07
1
< 0.1
<2
3
BZM55C7V5
7
7.9
<7
< 50
5
0.03
0.07
1
< 0.1
<2
5
BZM55C8V2
7.7
8.7
<7
< 50
5
0.03
0.08
1
< 0.1
<2
6.2
BZM55C9V1 *
8.5
9.6
< 10
< 50
5
0.03
0.09
1
< 0.1
<2
6.8
BZM55C10 *
9.4
0.6
< 15
< 70
5
0.03
0.1
1
< 0.1
<2
7.5
BZM55C11 *
10.4
11.6
< 20
< 70
5
0.03
0.11
1
< 0.1
<2
8.2
BZM55C12 *
11.4
12.7
< 20
< 90
5
0.03
0.11
1
< 0.1
<2
9.1
BZM55C13 *
12.4
14.1
< 26
< 110
5
0.03
0.11
1
< 0.1
<2
10
BZM55C15 *
13.8
15.6
< 30
< 110
5
0.03
0.11
1
< 0.1
<2
11
BZM55C16 *
15.3
17.1
< 40
< 170
5
0.03
0.11
1
< 0.1
<2
12
BZM55C18 *
16.8
19.1
< 50
< 170
5
0.03
0.11
1
< 0.1
<2
13
BZM55C20 *
18.8
21.2
< 55
< 220
5
0.03
0.11
1
< 0.1
<2
15
BZM55C22 *
20.8
23.3
< 55
< 220
5
0.04
0.12
1
< 0.1
<2
16
BZM55C24 *
22.8
25.6
< 80
< 220
5
0.04
0.12
1
< 0.1
<2
18
BZM55C27 *
25.1
28.9
< 80
< 220
5
0.04
0.12
1
< 0.1
<2
20
BZM55C30 *
28
32
< 80
< 220
5
0.04
0.12
1
< 0.1
<2
22
BZM55C33 *
31
35
< 80
< 220
5
0.04
0.12
1
< 0.1
<2
24
BZM55C36 *
34
38
< 80
< 220
5
0.04
0.12
1
< 0.1
<2
27
BZM55C39 *
37
41
< 90
< 500
2.5
0.04
0.12
0.5
< 0.1
<5
30
BZM55C43 *
40
46
< 90
< 600
2.5
0.04
0.12
0.5
< 0.1
<5
33
BZM55C47 *
44
50
110
< 700
2.5
0.04
0.12
0.5
< 0.1
<5
36
BZM55C51 *
48
54
125
< 700
2.5
0.04
0.12
0.5
< 0.1
< 10
39
BZM55C56 *
52
60
135
< 1000
2.5
0.04
0.12
0.5
< 0.1
< 10
43
BZM55C62 *
58
66
150
< 1000
2.5
0.04
0.12
0.5
< 0.1
< 10
47
BZM55C68 *
64
72
200
< 1000
2.5
0.04
0.12
0.5
< 0.1
< 10
51
BZM55C75 *
70
79
250
< 1500
2.5
0.04
0.12
0.5
< 0.1
< 10
56
1)
tp ≤ 10 ms, T/tp > 1000
*)
Additionnal measurement of Voltage group 9V1 to 75 at 95 % Vzmin ≤ 35 nA at Tj 25 °C
www.vishay.com
2
Reverse Leakage Current
Document Number 85597
Rev. 1.9, 10-Mar-06
BZM55-Series
Vishay Semiconductors
Electrical Characteristics
BZM55B..
Partnumber
Zener Voltage
Range1)
VZ at IZT
Dynamic
Resistance
rzjT at
IZT,
f = 1kHz
rzjK at
IZK,
f = 1kHz
Ω
V
Test
Current
Temperature
Coefficient
Test
Current
IZT
TKVZ
IZK
mA
min
max
BZM55B2V4
2.35
2.45
< 85
< 600
BZM55B2V7
2.64
2.76
< 85
< 600
BZM55B3V0
2.94
3.06
< 90
BZM55B3V3
3.24
3.36
< 90
BZM55B3V6
3.52
3.68
BZM55B3V9
3.82
BZM55B4V3
%/K
Reverse Leakage Current
IR at
Tamb =
25 °C
mA
IR at
Tamb =
150 °C
µA
at VR
V
min
max
5
- 0.09
- 0.06
1
< 50
< 100
1
5
- 0.09
- 0.06
1
< 10
< 50
1
< 600
5
- 0.08
- 0.05
1
<4
< 40
1
< 600
5
- 0.08
- 0.05
1
<2
< 40
1
< 90
< 600
5
- 0.08
- 0.05
1
<2
< 40
1
3.98
< 90
< 600
5
- 0.08
- 0.05
1
<2
< 40
1
4.22
4.38
< 90
< 600
5
- 0.06
- 0.03
1
<1
< 20
1
BZM55B4V7
4.6
4.80
< 80
< 600
5
- 0.05
0.02
1
< 0.5
< 10
1
BZM55B5V1
5
5.20
< 60
< 550
5
- 0.02
0.02
1
< 0.1
<2
1
BZM55B5V6
5.48
5.72
< 40
< 450
5
- 0.05
0.05
1
< 0.1
<2
1
BZM55B6V2
6.08
6.32
< 10
< 200
5
0.03
0.06
1
< 0.1
<2
2
BZM55B6V8
6.66
6.94
<8
< 150
5
0.03
0.07
1
< 0.1
<2
3
BZM55B7V5
7.35
7.65
<7
< 50
5
0.03
0.07
1
< 0.1
<2
5
BZM55B8V2
8.04
8.36
<7
< 50
5
0.03
0.08
1
< 0.1
<2
6.2
BZM55B9V1 *
8.92
9.28
< 10
< 50
5
0.03
0.09
1
< 0.1
<2
6.8
BZM55B10 *
9.8
10.20
< 15
< 70
5
0.03
0.1
1
< 0.1
<2
7.5
BZM55B11 *
10.78
11.22
< 20
< 70
5
0.03
0.11
1
< 0.1
<2
8.2
BZM55B12 *
11.76
12.24
< 20
< 90
5
0.03
0.11
1
< 0.1
<2
9.1
BZM55B13 *
12.74
13.26
< 26
< 110
5
0.03
0.11
1
< 0.1
<2
10
BZM55B15 *
14.7
15.30
< 30
< 110
5
0.03
0.11
1
< 0.1
<2
11
BZM55B16 *
15.7
16.30
< 40
< 170
5
0.03
0.11
1
< 0.1
<2
12
BZM55B18 *
17.64
18.36
< 50
< 170
5
0.03
0.11
1
< 0.1
<2
13
BZM55B20 *
19.6
20.40
< 55
< 220
5
0.03
0.11
1
< 0.1
<2
15
BZM55B22 *
21.55
22.45
< 55
< 220
5
0.04
0.12
1
< 0.1
<2
16
BZM55B24 *
23.5
24.5
< 80
< 220
5
0.04
0.12
1
< 0.1
<2
18
BZM55B27 *
26.4
27.6
< 80
< 220
5
0.04
0.12
1
< 0.1
<2
20
BZM55B30 *
29.4
30.6
< 80
< 220
5
0.04
0.12
1
< 0.1
<2
22
BZM55B33 *
32.4
33.6
< 80
< 220
5
0.04
0.12
1
< 0.1
<2
24
BZM55B36 *
35.3
36.7
< 80
< 220
5
0.04
0.12
1
< 0.1
<2
27
BZM55B39 *
38.2
39.8
< 90
< 500
2.5
0.04
0.12
1
< 0.1
<5
30
BZM55B43 *
42.1
43.9
< 90
< 600
2.5
0.04
0.12
0.5
< 0.1
<5
33
BZM55B47 *
46.1
47.9
< 110
< 700
2.5
0.04
0.12
0.5
< 0.1
<5
36
BZM55B51 *
50
52.0
< 125
< 700
2.5
0.04
0.12
0.5
< 0.1
< 10
39
BZM55B56 *
54.9
57.1
< 135
< 1000
2.5
0.04
0.12
0.5
< 0.1
< 10
43
BZM55B62 *
60.8
63.2
< 150
< 1000
2.5
0.04
0.12
0.5
< 0.1
< 10
47
BZM55B68 *
66.6
69.4
< 200
< 1000
2.5
0.04
0.12
0.5
< 0.1
< 10
51
BZM55C75 *
73.5
76.5
< 250
< 1500
2.5
0.04
0.12
0.5
< 0.1
< 10
56
1)
tp ≤ 10 ms, T/tp > 1000
*)
Additionnal measurement of Voltage group 9V1 to 75 at 95 % Vzmin ≤ 35 nA at Tj 25 °C
Document Number 85597
Rev. 1.9, 10-Mar-06
www.vishay.com
3
BZM55-Series
Vishay Semiconductors
Typical Characteristics
200
600
CD - Diode Capacitance (pF)
Ptot - Total Power Dissipation (mW)
Tamb = 25 °C, unless otherwise specified
500
400
300
200
100
40
80
120
160
100
IZ = 5 mA
10
0
5
10
15
20
25
VZ - Z-Voltage (V)
95 9598
25
20
VZ - Z-Voltage (V)
1.3
VZtn = VZt/VZ (25 °C)
1.2
TKVZ = 10 x 10-4/K
8 x 10-4/K
6 x 10-4/K
1.1
4 x 10-4/K
2 x 10-4/K
1.0
0
- 2 x 10-4/K
- 4 x 10-4/K
0.9
0.8
- 60
95 9599
Figure 2. Typical Change of Working Voltage under Operating
Conditions at Tamb=25°C
15
Figure 4. Diode Capacitance vs. Z-Voltage
VZtn - Relative Voltage Change
Tj = 25 °C
1
10
5
95 9601
1000
VZ - Voltage Change (mV)
50
0
Figure 1. Total Power Dissipation vs. Ambient Temperature
0
60
120
180
240
Tj - Junction Temperature (°C)
Figure 5. Typical Change of Working Voltage vs. Junction
Temperature
100
15
IF - Forward Current (mA)
TKVZ - Temperature Coefficient of VZ (10-4/K)
Tj = 25 °C
100
200
Tamb - Ambient Temperature (°C)
95 9602
10
5
IZ = 5 mA
0
10
Tj = 25 °C
1
0.1
0.01
0.001
-5
0
95 9600
10
20
40
30
VZ - Z-Voltage (V)
0
50
Figure 3. Temperature Coefficient of Vz vs. Z-Voltage
4
VR = 2 V
0
0
0
www.vishay.com
150
95 9605
0.2
0.4
0.6
0.8
1.0
VF - Forward Voltage (V)
Figure 6. Forward Current vs. Forward Voltage
Document Number 85597
Rev. 1.9, 10-Mar-06
BZM55-Series
Vishay Semiconductors
100
0.71
80
1.3
1.27
0.152
IZ - Z-Current (mA)
Ptot = 500 mW
Tamb = 25 °C
9.9
60
0.355
25
40
10
20
2.5
0
0
4
6
12
8
24
95 10329
20
VZ - Z-Voltage (V)
95 9604
Figure 10. Board for RthJA definition (in mm)
Figure 7. Z-Current vs. Z-Voltage
IZ - Z-Current (mA)
50
Reflow Soldering
Ptot = 500 mW
Tamb = 25 °C
40
30
1.2
20
10
0.8
0
15
20
95 9607
25
30
35
0.8
2.4
16773
VZ - Z-Voltage (V)
Figure 11. Recommended foot pads (in mm)
Figure 8. Z-Current vs. Z-Voltage
rZ - Differential Z-Resistance (Ω)
0.8
1000
Wave Soldering
IZ = 1 mA
100
1.4
5 mA
10 10 mA
0.9
1.0
0.9
Tj = 25 °C
1
0
95 9606
5
10
15
20
25
VZ - Z-Voltage (V)
Figure 9. Differential Z-Resistance vs. Z-Voltage
Document Number 85597
Rev. 1.9, 10-Mar-06
16774
2.8
Figure 12. Recommended foot pads (in mm)
www.vishay.com
5
BZM55-Series
Zthp - Thermal Resistance for Pulse Cond. (KW)
Vishay Semiconductors
1000
tP/T = 0.5
100
tP/T = 0.2
Single Pulse
10
RthJA = 300 K/W
T = Tjmax - Tamb
tP/T = 0.01
tP/T = 0.1
tP/T = 0.02
tP/T = 0.05
1
10-1
iZM = (- VZ + (VZ2 + 4rzj x T/Zthp) 1/2)/(2rzj)
100
95 9603
101
102
tP - Pulse Length (ms)
Figure 13. Thermal Response
2.0 (0.079)
1.8 (0.071)
)
53
.0
(0
0.25 (0.010)
0.15 (0.006)
la
G
1.2 (0.047)
1.1 (0.043)
<
1.
35
1 (0.039) surface plan
Glass case
MicroMELF
ss
Cathode indification
surface plan
0.6
(0.024)
Package Dimensions in mm (Inches)
> R 2.5 (R 0.098)
Glass
ISO Method E
Wave Soldering
1.4 (0.055)
1.2 (0.047)
Reflow Soldering
0.8 (0.031)
0.8 (0.031)
0.9 (0.035)
0.9 (0.035)
0.8 (0.031)
1.0 (0.039)
2.4 (0.094)
2.8 (0.110)
Document No.: 6.560-5007.01-4
Rev. 11, 07.Feb.2005
9612072
www.vishay.com
6
Document Number 85597
Rev. 1.9, 10-Mar-06
BZM55-Series
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating
systems with respect to their impact on the health and safety of our employees and the public, as well as
their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are
known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs
and forbid their use within the next ten years. Various national and international initiatives are pressing for an
earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use
of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments
respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Document Number 85597
Rev. 1.9, 10-Mar-06
www.vishay.com
7
Legal Disclaimer Notice
Vishay
Disclaimer
All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein
or in any other disclosure relating to any product.
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any
information provided herein to the maximum extent permitted by law. The product specifications do not expand or
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed
therein, which apply to these products.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this
document or by any conduct of Vishay.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding
products designed for such applications.
Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000
Revision: 18-Jul-08
www.vishay.com
1