CYPRESS FM22LD16-55-BGTR

FM22LD16
4Mbit F-RAM Memory
Features
4Mbit Ferroelectric Nonvolatile RAM
 Organized as 256Kx16
 Configurable as 512Kx8 Using /UB, /LB
 1014 Read/Write Cycles
 NoDelay™ Writes
 Page Mode Operation to 40MHz
 Advanced High-Reliability Ferroelectric Process
SRAM Compatible
 JEDEC 256Kx16 SRAM Pinout
 55 ns Access Time, 110 ns Cycle Time
Advanced Features
 Software Programmable Block Write Protect
Description
The FM22LD16 is a 256Kx16 nonvolatile memory
that reads and writes like a standard SRAM. A
ferroelectric random access memory or F-RAM is
nonvolatile, which means that data is retained after
power is removed. It provides data retention for over
10 years while eliminating the reliability concerns,
functional disadvantages, and system design
complexities of battery-backed SRAM (BBSRAM).
Fast write timing and high write endurance make the
F-RAM superior to other types of memory.
Superior to Battery-backed SRAM Modules
 No Battery Concerns
 Monolithic Reliability
 True Surface Mount Solution, No Rework Steps
 Superior for Moisture, Shock, and Vibration
Low Power Operation
 2.7V – 3.6V Power Supply
 Low Standby Current (90µA typ.)
 Low Active Current (8 mA typ.)
Industry Standard Configuration
 Industrial Temperature -40 C to +85 C
 48-ball “Green”/RoHS FBGA package
 Pin compatible with FM21LD16 (2Mb) and
FM23MLD16 (8Mb)
The device is available in a 48-ball FBGA package.
Device specifications are guaranteed over industrial
temperature range –40°C to +85°C.
Pin Configuration
In-system operation of the FM22LD16 is very similar
to other RAM devices and can be used as a drop-in
replacement for standard SRAM. Read and write
cycles may be triggered by /CE or simply by
changing the address. The F-RAM memory is
nonvolatile due to its unique ferroelectric memory
process. These features make the FM22LD16 ideal
for nonvolatile memory applications requiring
frequent or rapid writes in the form of an SRAM.
The FM22LD16 includes a low voltage monitor that
blocks access to the memory array when VDD drops
below VDD min. The memory is protected against an
inadvertent access and data corruption under this
condition. The device also features softwarecontrolled write protection. The memory array is
divided into 8 uniform blocks, each of which can be
individually write protected.
1
2
3
4
5
6
A
/LB
/OE
A0
A1
A2
NC
B
DQ8
/UB
A3
A4
/CE
DQ0
C
DQ9
DQ10
A5
A6
DQ1
DQ2
D
VSS
DQ11
A17
A7
DQ3
VDD
E
VDD
DQ12
NC
A16
DQ4
VSS
F
DQ14
DQ13
A14
A15
DQ5
DQ6
G
DQ15
NC
A12
A13
/WE
DQ7
H
NC
A8
A9
A10
A11
NC
Top View (Ball Down)
Ordering Information
FM22LD16-55-BG
55 ns access, 48-ball
“Green”/RoHS FBGA
FM22LD16-55-BGTR 55 ns access, 48-ball
“Green”/RoHS FBGA,
Tape & Reel
This product conforms to specifications per the terms of the Ramtron standard warranty. The product has completed Ramtron’s
internal qualification testing and has reached production status.
Cypress Semiconductor Corporation
•
Document Number: 001-86190 Rev. **
198 Champion Court
•
San Jose, CA 95134-1709 • 408-943-2600
Revised February 25, 2013
A(17:2)
32K x 16 block
32K x 16 block
32K x 16 block
32K x 16 block
32K x 16 block
32K x 16 block
32K x 16 block
32K x 16 block
...
A(17:0)
Block & Row Decoder
Address Latch & Write Protect
FM22LD16 - 256Kx16 FRAM
A(1:0)
...
Column Decoder
CE
I/O Latch & Bus Driver
WE
UB, LB
DQ(15:0)
Control
Logic
2
OE
Figure 1. Block Diagram
Pin Description
Pin Name
Type
A(17:0)
Input
/CE
Input
/WE
Input
/OE
Input
DQ(15:0)
/UB
I/O
Input
/LB
Input
VDD
VSS
Supply
Supply
Pin Description
Address inputs: The 18 address lines select one of 262,144 words in the F-RAM array. The
lowest two address lines A(1:0) may be used for page mode read and write operations.
Chip Enable input: The device is selected and a new memory access begins when /CE is
low. The entire address is latched internally on the falling edge of /CE. Subsequent changes
to the A(1:0) address inputs allow page mode operation when /CE is low.
Write Enable: A write cycle begins when /WE is asserted. The rising edge causes the
FM22LD16 to write the data on the DQ bus to the F-RAM array. The falling edge of /WE
latches a new column address for page mode write cycles.
Output Enable: When /OE is low, the FM22LD16 drives the data bus when valid read data is
available. Deasserting /OE high tri-states the DQ pins.
Data: 16-bit bi-directional data bus for accessing the F-RAM array.
Upper Byte Select: Enables DQ(15:8) pins during reads and writes. Deasserting /UB high
tri-states the DQ pins. If the user does not perform byte writes and the device is not
configured as a 512Kx8, the /UB and /LB pins may be tied to ground.
Lower Byte Select: Enables DQ(7:0) pins during reads and writes. Deasserting /LB high tristates the DQ pins. If the user does not perform byte writes and the device is not configured
as a 512Kx8, the /UB and /LB pins may be tied to ground.
Supply Voltage
Ground
Document Number: 001-86190 Rev. **
Page 2 of 15
FM22LD16 - 256Kx16 FRAM
Functional Truth Table 1,2
/CE
/WE
A(17:2)
H
X
X
H
V

L
H
No Change
L
H
Change
L
V

L
V

L
No Change

X
X

Notes:
1)
2)
3)
4)
A(1:0)
X
V
Change
V
V
V
V
X
Operation
Standby/Idle
Read
Page Mode Read
Random Read
/CE-Controlled Write
/WE-Controlled Write 2
Page Mode Write 3
Starts Precharge
H=Logic High, L=Logic Low, V=Valid Data, X=Don’t Care.
/WE-controlled write cycle begins as a Read cycle and A(17:2) is latched then.
Addresses A(1:0) must remain stable for at least 10 ns during page mode operation.
For write cycles, data-in is latched on the rising edge of /CE or /WE, whichever comes first.
Byte Select Truth Table
/OE
/LB
/UB
H
X
X
X
H
H
L
H
L
L
H
L
L
X
H
L
L
H
L
L
Operation
Read; Outputs Disabled
Read; DQ(7:0) Hi-Z
Read; DQ(15:8) Hi-Z
Read
Write; Mask DQ(7:0)
Write; Mask DQ(15:8)
Write
The /UB and /LB pins may be grounded if 1) the system does not
perform byte writes and 2) the device is not configured as a 512Kx8.
Document Number: 001-86190 Rev. **
Page 3 of 15
FM22LD16 - 256Kx16 FRAM
Overview
The FM22LD16 is a wordwide F-RAM memory
logically organized as 262,144 x 16 and accessed
using an industry standard parallel interface. All data
written to the part is immediately nonvolatile with no
delay. The device offers page mode operation which
provides higher speed access to addresses within a
page (row). An access to a different page requires that
either /CE transitions low or the upper address
A(17:2) changes.
Memory Operation
Users access 262,144 memory locations, each with 16
data bits through a parallel interface. The F-RAM
array is organized as 8 blocks each having 8192 rows.
Each row has 4 column locations, which allows fast
access in page mode operation. Once an initial
address has been latched by the falling edge of /CE,
subsequent column locations may be accessed
without the need to toggle /CE. When /CE is
deasserted high, a precharge operation begins. Writes
occur immediately at the end of the access with no
delay. The /WE pin must be toggled for each write
operation. The write data is stored in the nonvolatile
memory array immediately, which is a feature unique
to F-RAM called NoDelayTM writes.
Read Operation
A read operation begins on the falling edge of /CE.
The falling edge of /CE causes the address to be
latched and starts a memory read cycle if /WE is high.
Data becomes available on the bus after the access
time has been satisfied. Once the address has been
latched and the access completed, a new access to a
random location (different row) may begin while /CE
is still low. The minimum cycle time for random
addresses is tRC. Note that unlike SRAMs, the
FM22LD16’s /CE-initiated access time is faster than
the address cycle time.
The FM22LD16 will drive the data bus when /OE
and at least one of the byte enables (/UB, /LB) is
asserted low. The upper data byte is driven when /UB
is low, and the lower data byte is driven when /LB is
low. If /OE is asserted after the memory access time
has been satisfied, the data bus will be driven with
valid data. If /OE is asserted prior to completion of
the memory access, the data bus will not be driven
until valid data is available. This feature minimizes
supply current in the system by eliminating transients
caused by invalid data being driven onto the bus.
When /OE is deasserted high, the data bus will
remain in a high-Z state.
Write Operation
Writes occur in the FM22LD16 in the same time
interval as reads. The FM22LD16 supports both /CEDocument Number: 001-86190 Rev. **
and /WE-controlled write cycles. In both cases, the
address A(17:2) is latched on the falling edge of /CE.
In a /CE-controlled write, the /WE signal is asserted
prior to beginning the memory cycle. That is, /WE is
low when /CE falls. In this case, the device begins the
memory cycle as a write. The FM22LD16 will not
drive the data bus regardless of the state of /OE as
long as /WE is low. Input data must be valid when
/CE is deasserted high. In a /WE-controlled write, the
memory cycle begins on the falling edge of /CE. The
/WE signal falls some time later. Therefore, the
memory cycle begins as a read. The data bus will be
driven if /OE is low, however it will hi-Z once /WE is
asserted low. The /CE- and /WE-controlled write
timing cases are shown in the Electrical
Specifications section.
Write access to the array begins on the falling edge of
/WE after the memory cycle is initiated. The write
access terminates on the rising edge of /WE or /CE,
whichever comes first. A valid write operation
requires the user to meet the access time specification
prior to deasserting /WE or /CE. Data setup time
indicates the interval during which data cannot
change prior to the end of the write access (rising
edge of /WE or /CE).
Unlike other truly nonvolatile memory technologies,
there is no write delay with F-RAM. Since the read
and write access times of the underlying memory are
the same, the user experiences no delay through the
bus. The entire memory operation occurs in a single
bus cycle. Data polling, a technique used with
EEPROMs to determine if a write is complete, is
unnecessary.
Page Mode Operation
The F-RAM array is organized as 8 blocks each
having 8192 rows. Each row has 4 column address
locations. Address inputs A(1:0) define the column
address to be accessed. An access can start on any
column address, and other column locations may be
accessed without the need to toggle the /CE pin. For
fast access reads, once the first data byte is driven
onto the bus, the column address inputs A(1:0) may
be changed to a new value. A new data byte is then
driven to the DQ pins no later than tAAP, which is less
than half the initial read access time. For fast access
writes, the first write pulse defines the first write
access. While /CE is low, a subsequent write pulse
along with a new column address provides a page
mode write access.
Page 4 of 15
FM22LD16 - 256Kx16 FRAM
Precharge Operation
The precharge operation is an internal condition in
which the state of the memory is being prepared for a
new access. Precharge is user-initiated by driving the
/CE signal high. It must remain high for at least the
minimum precharge time tPC.
Precharge is also activated by changing the upper
addess A(17:2). The current row is first closed prior
to accessing the new row. The device automatically
detects an upper order address change which starts a
precharge operation, the new address is latched, and
the new read data is valid within the tAA address
access time. Refer to the Read Cycle Timing 1
diagram on page 10. Likewise a similar sequence
occurs for write cycles. Refer to the Write Cycle
Timing 3 diagram on page 12. The rate at which
random addresses can be issued is tRC and tWC,
respectively.
Software Write Protection
The 256Kx16 address space is divided into 8 sectors
(blocks) of 32Kx16 each. Each sector can be
individually software write-protected and the settings
are nonvolatile. A unique address and command
sequence invokes the write protection mode.
To modify write protection, the system host must
issue six read commands, three write commands, and
a final read command. The specific sequence of read
addresses must be provided in order to access to the
write protect mode. Following the read address
sequence, the host must write a data byte that
specifies the desired protection state of each sector.
For confirmation, the system must then write the
complement of the protection byte immediately
following the protection byte. Any error that occurs
including read addresses in the wrong order, issuing a
seventh read address, or failing to complement the
protection value will leave the write protection
unchanged.
The write protect state machine monitors all
addresses, taking no action until this particular
read/write sequence occurs. During the address
sequence, each read will occur as a valid operation
and data from the corresponding addresses will be
driven onto the data bus. Any address that occurs out
of sequence will cause the software protection state
machine to start over. After the address sequence is
completed, the next operation must be a write cycle.
The data byte contains the write-protect settings. This
Document Number: 001-86190 Rev. **
value will not be written to the memory array, so the
address is a don’t-care. Rather it will be held pending
the next cycle, which must be a write of the data
complement to the protection settings. If the
complement is correct, the write protect settings will
be adjusted. If not, the process is aborted and the
address sequence starts over. The data value written
after the correct six addresses will not be entered into
memory.
The protection data byte consists of 8-bits, each
associated with the write protect state of a sector. The
data byte must be driven to the lower 8-bits of the
data bus, DQ(7:0). Setting a bit to 1 write protects the
corresponding sector; a 0 enables writes for that
sector. The following table shows the write-protect
sectors with the corresponding bit that controls the
write-protect setting.
Write Protect Sectors – 32K x16 blocks
Sector 7
3FFFFh – 38000h
Sector 6
37FFFh – 30000h
Sector 5
2FFFFh – 28000h
Sector 4
27FFFh – 20000h
Sector 3
1FFFFh – 18000h
Sector 2
17FFFh – 10000h
Sector 1
0FFFFh – 08000h
Sector 0
07FFFh – 00000h
The write-protect read address sequence follows:
1.
24555h *
2.
3AAAAh
3.
02333h
4.
1CCCCh
5.
000FFh
6.
3EF00h
7.
3AAAAh
8.
1CCCCh
9.
0FF00h
10. 00000h
* If /CE is low entering the sequence, then an
address of 00000h must precede 24555h.
The address sequence provides a very secure way of
modifying the protection. The write-protect sequence
has a 1 in 3 x 1032 chance of randomly accessing
exactly the 1st six addresses. The odds are further
reduced by requiring three more write cycles, one that
requires an exact inversion of the data byte. A flow
chart of the entire write protect operation is shown in
Figure 2. The write-protect settings are nonvolatile.
The factory default: all blocks are unprotected.
Page 5 of 15
FM22LD16 - 256Kx16 FRAM
Normal Memory
Operation
Any other
operation
Write 3AAAA?
n
Write 1CCCC?
y
Read 24555h?
n
n
Read 3AAAAh?
y
Hold Data Byte
Read 1AAAA?
Write 1CCCC?
Drive write protect
data out
y
n
n
y
Read 00000?
y
Write 0FF00?
Read 02333h?
n
y
Read
1CCCCh?
Read 00000?
n
n
y
Read 000FFh?
y
n
Enter new write
y
protect settings
y
Read 3EF00?
Data
Complement?
n
y
Change Write Protect
Settings
Sequence Detector
Read Write Protect
Settings
Figure 2. Write-Protect State Machine
For example, the following sequence write-protects addresses from 18000h to 27FFFh (sectors 3 & 4):
Read
Read
Read
Read
Read
Read
Write
Write
Write
Read
Address
24555h
3AAAAh
02333h
1CCCCh
000FFh
3EF00h
3AAAAh
1CCCCh
0FF00h
00000h
Data
18h
E7h
-
Document Number: 001-86190 Rev. **
;
;
;
;
bits 3 & 4 = 1
complement of 18h
Data is don’t care
return to Normal Operation
Page 6 of 15
FM22LD16 - 256Kx16 FRAM
Software Write Protect Timing
CE
A(17:0)
24555
3AAAA
02333
1CCCC
000FF
3EF00
3AAAA
1CCCC
0FF00
00000
WE
OE
Data
DQ(15:0)
Data
SRAM Drop-In Replacement
The FM22LD16 has been designed to be a drop-in
replacement for standard asynchronous SRAMs. The
device does not require /CE to toggle for each new
address. /CE may remain low indefinitely. While /CE
is low, the device automatically detects address
changes and a new access is begun. This functionality
allows /CE to be grounded as you might with an
SRAM. It also allows page mode operation at speeds
up to 40MHz. Note that if /CE is tied to ground,
the user must be sure /WE is not low at powerup
or powerdown events. If /CE and /WE are both
low during power cycles, data corruption will
occur. Figure 3 shows a pullup resistor on /WE
which will keep the pin high during power cycles
assuming the MCU/MPU pin tri-states during the
reset condition. The pullup resistor value should
be chosen to ensure the /WE pin tracks VDD yet a
high enough value that the current drawn when
/WE is low is not an issue. A 10Kohm resistor
draws 330uA when /WE is low and VDD=3.3V.
VDD
For applications that require the lowest power
consumption, the /CE signal should be active only
during memory accesses. The FM22LD16 draws
supply current while /CE is low, even if addresses and
control signals are static. While /CE is high, the
device draws no more than the maximum standby
current ISB.
The FM22LD16 is backward compatible with the
1Mbit FM20L08 and 256Kbit FM18L08 devices.
That is, operating the FM22LD16 with /CE toggling
low on every address is perfectly acceptable.
The /UB and /LB byte select pins are active for both
read and write cycles. They may be used to allow the
device to be wired as a 512Kx8 memory. The upper
and lower data bytes can be tied together and
controlled with the byte selects. Individual byte
enables or the next higher address line A(18) may be
available from the system processor.
/CE
/WE
/OE
FM22LD16
R
MCU/
MPU
CE
4Mbit F-RAM
FM22LD16
WE
OE
A(17:0)
A(18)
A(17:0)
/UB
/LB
A(17:0)
DQ(15:8)
D(7:0)
DQ(7:0)
DQ
Figure 3. Use of Pullup Resistor on /WE
Figure 4. FM22LD16 Wired as 512Kx8
NOTE: If /CE is tied to ground, the user gives up
the ability to perform the software write-protect
sequence.
Document Number: 001-86190 Rev. **
Page 7 of 15
FM22LD16 - 256Kx16 FRAM
Electrical Specifications
Absolute Maximum Ratings
Symbol
Description
VDD
Power Supply Voltage with respect to VSS
VIN
Voltage on any signal pin with respect to VSS
TSTG
TLEAD
VESD
Storage Temperature
Lead Temperature (Soldering, 10 seconds)
Electrostatic Discharge Voltage
- Human Body Model (JEDEC Std JESD22-A114-D)
- Charged Device Model (JEDEC Std JESD22-C101-C)
- Machine Model (JEDEC Std JESD22-A115-A)
Package Moisture Sensitivity Level
Ratings
-1.0V to +4.5V
-1.0V to +4.5V and
VIN < VDD+1V
-55C to +125C
260 C
2.5kV
1.5kV
150V
MSL-3
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating
only, and the functional operation of the device at these or any other conditions above those listed in the operational section of this
specification is not implied. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.
DC Operating Conditions (TA = -40 C to + 85 C, VDD = 2.7V to 3.6V unless otherwise specified)
Symbol Parameter
Min
Typ
Max
Units Notes
VDD
Power Supply
2.7
3.3
3.6
V
IDD
Power Supply Current
8
12
mA
1
ISB
Standby Current
2
@ TA = 25°C
90
150
A
@ TA = 85°C
270
A
ILI
Input Leakage Current
3
1
A
ILO
Output Leakage Current
3
1
A
VIH
Input High Voltage
2.2
VDD + 0.3
V
VIL
Input Low Voltage
-0.3
0.6
V
VOH1
Output High Voltage (IOH = -1.0 mA)
2.4
V
VOH2
Output High Voltage (IOH = -100 A)
VDD-0.2
V
VOL1
Output Low Voltage (IOL = 2.1 mA)
0.4
V
VOL2
Output Low Voltage (IOL = 100 A)
0.2
V
Notes
1. VDD = 3.6V, /CE cycling at min. cycle time. All inputs toggling at CMOS levels (0.2V or VDD-0.2V), all DQ pins unloaded.
2. VDD = 3.6V, /CE at VDD, All other pins are static and at CMOS levels (0.2V or V DD-0.2V).
3. VIN, VOUT between VDD and VSS.
Document Number: 001-86190 Rev. **
Page 8 of 15
FM22LD16 - 256Kx16 FRAM
Read Cycle AC Parameters (TA = -40 C to + 85 C, VDD = 2.7V to 3.6V unless otherwise specified)
Symbol
tRC
tCE
tAA
tOH
tAAP
tOHP
tCA
tPC
tBA
tAS
tAH
tOE
tHZ
tOHZ
tBHZ
Parameter
Read Cycle Time
Chip Enable Access Time
Address Access Time
Output Hold Time
Page Mode Address Access Time
Page Mode Output Hold Time
Chip Enable Active Time
Precharge Time
/UB, /LB Access Time
Address Setup Time (to /CE low)
Address Hold Time (/CE-controlled)
Output Enable Access Time
Chip Enable to Output High-Z
Output Enable High to Output High-Z
/UB, /LB High to Output High-Z
Min
110
20
5
55
55
0
55
-
Max
55
110
25
20
15
10
10
10
Units
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Notes
1
1
1
Write Cycle AC Parameters (TA = -40 C to + 85 C, VDD = 2.7V to 3.6V unless otherwise specified)
Symbol
tWC
tCA
tCW
tPC
tPWC
tWP
tAS
tASP
tAHP
tWLC
tBLC
tWLA
tAWH
tBS
tBH
tDS
tDH
tWZ
tWX
tWS
tWH
Parameter
Write Cycle Time
Chip Enable Active Time
Chip Enable to Write Enable High
Precharge Time
Page Mode Write Enable Cycle Time
Write Enable Pulse Width
Address Setup Time (to /CE low)
Page Mode Address Setup Time (to /WE low)
Page Mode Address Hold Time (to /WE low)
Write Enable Low to /CE High
/UB, /LB Low to /CE High
Write Enable Low to A(17:2) Change
A(17:2) Change to Write Enable High
/UB, /LB Setup Time (to /CE low)
/UB, /LB Hold Time (to /CE high)
Data Input Setup Time
Data Input Hold Time
Write Enable Low to Output High Z
Write Enable High to Output Driven
Write Enable to /CE Low Setup Time
Write Enable to /CE High Hold Time
Min
110
55
55
55
25
16
0
8
15
25
25
25
110
2
0
14
0
10
0
0
Max
10
-
Units
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Notes
1
1
2
2
Notes
1
This parameter is characterized but not 100% tested.
2
The relationship between /CE and /WE determines if a /CE- or /WE-controlled write occurs. The parameters tWS and tWH
are not tested.
Capacitance (TA = 25 C , f=1 MHz, VDD = 3.3V)
Symbol
Parameter
CI/O
Input/Output Capacitance (DQ)
CIN
Input Capacitance
Document Number: 001-86190 Rev. **
Min
-
Max
8
6
Units
pF
pF
Notes
Page 9 of 15
FM22LD16 - 256Kx16 FRAM
Power Cycle Timing (TA = -40 C to + 85 C, VDD = 2.7V to 3.6V unless otherwise specified)
Symbol
Parameter
Min
Max
tPU
Power-Up (after VDD min. is reached) to First Access Time
450
tPD
Last Write (/WE high) to Power Down Time
0
tVR
VDD Rise Time
50
tVF
VDD Fall Time
100
-
Units
s
s
s/V
s/V
Notes
1,2
1,2
Notes
1
Slope measured at any point on VDD waveform.
2
Ramtron cannot test or characterize all VDD power ramp profiles. The behavior of the internal circuits is difficult to predict
when VDD is below the level of a transistor threshold voltage. Ramtron strongly recommends that VDD power up faster than
100ms through the range of 0.4V to 1.0V.
Data Retention (VDD = 2.7V to 3.6V)
Parameter
Data Retention
AC Test Conditions
Input Pulse Levels
Input Rise and Fall Times
Min
10
0 to 3V
3 ns
Units
Years
Notes
Input and Output Timing Levels
Output Load Capacitance
1.5V
30pF
Read Cycle Timing 1 (/CE low, /OE low)
tRC
tRC
A(17:0)
tOH
tAA
tAA
tOH
Previous Data
DQ(15:0)
Valid Data
Valid Data
Read Cycle Timing 2 (/CE-controlled)
tCA
tPC
CE
tAH
tAS
A(17:0)
tOE
tHZ
OE
tCE
tOHZ
tOH
DQ(15:0)
tBA
tBHZ
UB / LB
Document Number: 001-86190 Rev. **
Page 10 of 15
FM22LD16 - 256Kx16 FRAM
Page Mode Read Cycle Timing
tPC
tCA
CE
tAS
A(17:2)
A(1:0)
Col 0
Col 1
tOE
OE
Col 2
tAAP
tHZ
tOHZ
tOHP
tCE
DQ(15:0)
Data 0
Data 1
Data 2
Although sequential column addressing is shown, it is not required.
Write Cycle Timing 1 (/WE-Controlled) Note: /OE (not shown) is low only to show effect of /WE on DQ pins
tCA
tPC
tCW
CE
tAS
tWLC
A(17:0)
tWP
tWX
WE
DQ(15:0)
tWZ
tDH
tDS
D out
D in
tHZ
D out
tBS
tBH
UB/LB
Write Cycle Timing 2 (/CE-Controlled)
tCA
tPC
CE
tAS
tBLC
A(17:0)
tWH
WE
tWS
tDS
DQ(15:0)
tDH
D in
UB/LB
Document Number: 001-86190 Rev. **
Page 11 of 15
FM22LD16 - 256Kx16 FRAM
Write Cycle Timing 3 (/CE low) Note: /OE (not shown) is low only to show effect of /WE on DQ pins
tWC
tAWH
A(17:0)
tWLA
WE
tWX
tWZ
DQ(15:0)
tDS
D out
tDH
D in
D out
D in
Page Mode Write Cycle Timing
tCA
tPC
tCW
CE
tWLC
tAS
A(17:2)
tASP
tAHP
A(1:0)
Col 0
Col 1
Col 2
tPWC
tWP
WE
OE
tDS
Data 0
DQ(15:0)
tDH
Data 1
Data 2
Although sequential column addressing is shown, it is not required.
Power Cycle Timing
VDD
VDD min.
VDD min.
t PU
R/W
Allowed
CE
t PD
WE
DQ
Document Number: 001-86190 Rev. **
D out
D in
Page 12 of 15
FM22LD16 - 256Kx16 FRAM
Mechanical Drawing
48-ball FBGA (0.75mm ball pitch)
Top View
Bottom View
6
Pin A1
5
4
3
2
1
A
0.75 typ
B
C
D
8.00
BSC
E
F
G
0.40±0.05
H
1.875
6.00 BSC
1.20 max
6.00 BSC
0.25
0.10 mm
Note: All dimensions in millimeters.
48 FBGA Package Marking Scheme
RAMTRON
XXXXXXX-S-P
LLLLLLL
YYWW
Legend:
XXXXXX= part number, S=speed, P=package
LLLLLL= lot code, YY=year, WW=work week
Examples: FM22LD16, “Green”/RoHS FBGA package,
Lot C8556953BG1, Year 2008, Work Week 44
RAMTRON
FM22LD16-55-BG
C8556953BG1
0844
Document Number: 001-86190 Rev. **
Page 13 of 15
FM22LD16 - 256Kx16 FRAM
Revision History
Revision
1.0
1.1
Date
10/2/2008
2/18/2009
2.0
12/22/2009
3.0
10/9/2012
Summary
Initial release.
Added UB/LB signals to timing diagrams and added timing parameters to AC
table. Added tape & reel ordering information.
Changed status to Pre-Production. Lowered IDD limit. Added UB/LB signals
to timing diagrams and added timing parameters to AC table. Expanded
explanation of precharge operation. Updated lead temperature rating in Abs
Max table. Removed VTP spec. Added tape & reel ordering information.
Moved to Production status
Document History
Document Title: FM22LD16 4Mbit (256Kx16) F-RAM Memory
Document Number: 001-86190
Revision
ECN
Orig. of
Change
Submission
Date
**
3912933
GVCH
02/25/2013
Document Number: 001-86190 Rev. **
Description of Change
New Spec
Page 14 of 15
FM22LD16 - 256Kx16 FRAM
Sales, Solutions, and Legal Information
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors.
To find the office closest to you, visit us at Cypress Locations.
Products
PSoC® Solutions
Automotive
cypress.com/go/automotive
Clocks & Buffers
cypress.com/go/clocks
Interface
cypress.com/go/interface
Lighting & Power Control
cypress.com/go/powerpsoc
cypress.com/go/plc
Cypress Developer Community
Memory
cypress.com/go/memory
Community | Forums | Blogs | Video | Training
PSoC
cypress.com/go/psoc
Touch Sensing
cypress.com/go/touch
Technical Support
USB Controllers
cypress.com/go/usb
cypress.com/go/support
psoc.cypress.com/solutions
PSoC 1 | PSoC 3 | PSoC 5
RAMTRON is a registered trademark and NoDelay™ is a trademark of Cypress Semiconductor Corp. All other trademarks or registered
trademarks referenced herein are the property of their respective owners.
© Cypress Semiconductor Corporation, 2011-2013. The information contained herein is subject to change without notice. Cypress
Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor
does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical,
life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore,
Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may
reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to
worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby
grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the
Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product
to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification,
translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written
permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume
any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use
as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to
the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer assumes all risk of such use
and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.
Document Number: 001-86190 Rev. **
Page 15 of 15