MAXIM DS32506N

+
DS32506/DS32508/DS32512
6-/8-/12-Port DS3/E3/STS-1 LIU
www.maxim-ic.com
FEATURES
GENERAL DESCRIPTION
Pin-Compatible Family of Products
Each Port Independently Configurable
Receive Clock and Data Recovery for Up to 457
meters (1500 feet) of 75Ω Coaxial Cable
Standards-Compliant Transmit Waveshaping
Uses 1:1 Transformers on Both Tx and Rx
Three Control Interface Options: 8/16-Bit
Parallel, SPI, and Hardware Mode
Jitter Attenuators (One Per Port) Can be Placed
in the Receive Path or the Transmit Path
Jitter Attenuators Have Provisionable Buffer
Depth: 16, 32, 64, or 128 Bits
Built-In Clock Adapter Generates All Line-Rate
Clocks from a Single Input Clock (DS3, E3, STS-1,
12.8MHz, 19.44MHz, 38.88MHz, 77.76MHz)
Per-Port Programmable Internal Line Termination
Requiring Only External Transformers
High-Impedance Tx and Rx, Even When VDD = 0,
Enables Hot-Swappable, 1:1 and 1+1 Board
Redundancy Without Relays
Per-Port BERT for PRBS and Repetitive Pattern
Generation and Detection
Tx and Rx Open and Short Detection Circuitry
Transmit Driver Monitor Circuitry
Receive Loss-of-Signal (LOS) Monitoring
Compliant with ANSI T1.231 and ITU G.775
Automatic Data Squelching on Receive LOS
Large Line Code Performance-Monitoring
Counters for Accumulation Intervals Up to 1s
Local and Remote Loopbacks
Transmit Common Clock Option
Power-Down Capability for Unused Ports
Low-Power 1.8V/3.3V Operation (5V Tolerant I/O)
Industrial Temperature Range: -40°C to +85°C
Small Package: 23mm x 23mm, 484-Pin BGA
IEEE 1149.1 JTAG Support
The DS32506 (6 port), DS32508 (8 port), and
DS32512 (12 port) line interface units (LIUs) are
highly integrated, low-power, feature-rich LIUs for
DS3, E3, and STS-1 applications. Each LIU port in
these devices has independent receive and transmit
paths, a jitter attenuator, full-featured pattern
generator and detector, performance-monitoring
counters, and a complete set of loopbacks. An onchip clock adapter generates all line-rate clocks from
a single input clock. Ports are independently software
configurable for DS3, E3, and STS-1 and can be
individually powered down. Control interface options
include 8-bit parallel, SPI™, and hardware mode.
APPLICATIONS
SONET/SDH and PDH
Multiplexers
ATM and Frame Relay
Equipment
WAN Routers and
Switches
Digital CrossConnects
Access Concentrators
CSUs/DSUs
PBXs
DSLAMs
FUNCTIONAL DIAGRAM
EACH LIU
LINE IN
DS3, E3,
OR STS-1
RXP
CLK
RXN
DATA
Dallas
Semiconductor
DS325xx
LINE OUT
DS3, E3,
OR STS-1
TXP
CLK
TXN
DATA
RECEIVE
CLOCK
AND DATA
CONTROL
AND
STATUS
TRANSMIT
CLOCK
AND DATA
ORDERING INFORMATION
PART
DS32506
DS32506N
DS32508
DS32508N
DS32512
DS32512N
LIUs
6
6
8
8
12
12
TEMP RANGE
0°C to +70°C
-40°C to +85°C
0°C to +70°C
-40°C to +85°C
0°C to +70°C
-40°C to +85°C
PIN-PACKAGE
484 BGA
484 BGA
484 BGA
484 BGA
484 BGA
484 BGA
Note: Add the “+” suffix for the lead-free package option.
Note: Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device
may be simultaneously available through various sales channels. For information about device errata, click here: www.maxim-ic.com/errata.
1 of 130
REV: 103008
DS32506/DS32508/DS32512
TABLE OF CONTENTS
1.
STANDARDS COMPLIANCE .............................................................................................6
2.
BLOCK DIAGRAM ..............................................................................................................7
3.
APPLICATION EXAMPLE ..................................................................................................8
4.
DETAILED DESCRIPTION..................................................................................................9
5.
DETAILED FEATURES.....................................................................................................11
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
GLOBAL FEATURES .......................................................................................................................11
RECEIVER .....................................................................................................................................11
TRANSMITTER ...............................................................................................................................11
JITTER ATTENUATOR .....................................................................................................................11
BIT ERROR-RATE TESTER (BERT) FEATURES ...............................................................................12
CLOCK ADAPTER ...........................................................................................................................12
PARALLEL MICROPROCESSOR INTERFACE FEATURES.....................................................................12
SPI SERIAL MICROPROCESSOR INTERFACE FEATURES ..................................................................12
MISCELLANEOUS FEATURES ..........................................................................................................12
TEST FEATURES............................................................................................................................12
LOOPBACK FEATURES ...................................................................................................................12
6.
CONTROL INTERFACE MODES......................................................................................13
7.
PIN DESCRIPTIONS .........................................................................................................14
7.1
7.2
8.
SHORT PIN DESCRIPTIONS ............................................................................................................14
DETAILED PIN DESCRIPTIONS ........................................................................................................17
FUNCTIONAL DESCRIPTION ..........................................................................................24
8.1
8.2
LIU MODE ....................................................................................................................................24
TRANSMITTER ...............................................................................................................................24
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6
8.2.7
8.2.8
8.2.9
8.2.10
8.2.11
8.2.12
8.3
RECEIVER .....................................................................................................................................30
8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.3.6
8.3.7
8.3.8
8.3.9
8.3.10
8.4
8.5
Transmit Clock .................................................................................................................................... 24
Framer Interface Format and the B3ZS/HDB3 Encoder..................................................................... 24
Error Insertion ..................................................................................................................................... 24
AIS Generation.................................................................................................................................... 25
Waveshaping ...................................................................................................................................... 25
Line Build-Out ..................................................................................................................................... 25
Line Driver........................................................................................................................................... 25
Interfacing to the Line ......................................................................................................................... 25
Driver Monitor and Output Failure Detection ...................................................................................... 26
Power-Down........................................................................................................................................ 26
Jitter Generation (Intrinsic).................................................................................................................. 26
Jitter Transfer ...................................................................................................................................... 26
Interfacing to the Line ......................................................................................................................... 30
Optional Preamp ................................................................................................................................. 30
Automatic Gain Control (AGC) and Adaptive Equalizer ..................................................................... 30
Clock and Data Recovery (CDR) ........................................................................................................ 31
Loss-of-Signal (LOS) Detector............................................................................................................ 31
Framer Interface Format and the B3ZS/HDB3 Decoder .................................................................... 32
Power-Down........................................................................................................................................ 33
Input Failure Detection........................................................................................................................ 33
Jitter and Wander Tolerance............................................................................................................... 34
Jitter Transfer ...................................................................................................................................... 35
JITTER ATTENUATOR .....................................................................................................................35
BERT...........................................................................................................................................36
2 of 130
DS32506/DS32508/DS32512
8.5.1
8.5.2
8.5.3
8.6
8.7
LOOPBACKS ..................................................................................................................................40
GLOBAL RESOURCES ....................................................................................................................40
8.7.1
8.7.2
8.7.3
8.7.4
8.7.5
8.8
Configuration and Monitoring.............................................................................................................. 36
Receive Pattern Detection .................................................................................................................. 37
Transmit Pattern Generation............................................................................................................... 39
Clock Rate Adapter (CLAD)................................................................................................................ 40
One-Second Reference Generator ..................................................................................................... 41
General-Purpose I/O Pins................................................................................................................... 42
Performance Monitor Register Update ............................................................................................... 42
Transmit Manual Error Insertion ......................................................................................................... 43
8-/16-BIT PARALLEL MICROPROCESSOR INTERFACE ......................................................................43
8.8.1
8.8.2
8.8.3
8.8.4
8.8.5
8.8.6
8-Bit and 16-Bit Bus Widths ................................................................................................................ 43
Byte Swap Mode ................................................................................................................................. 43
Read-Write And Data Strobe Modes .................................................................................................. 43
Multiplexed and Nonmultiplexed Operation ........................................................................................ 43
Clear-On-Read And Clear-On-Write Modes ....................................................................................... 44
Global Write Mode .............................................................................................................................. 44
8.9 SPI SERIAL MICROPROCESSOR INTERFACE ...................................................................................44
8.10 INTERRUPT STRUCTURE ................................................................................................................46
8.11 RESET AND POWER-DOWN ............................................................................................................47
9.
REGISTER MAPS AND DESCRIPTIONS.........................................................................49
9.1
OVERVIEW ....................................................................................................................................49
9.1.1
9.1.2
9.1.3
9.2
9.3
9.4
9.5
9.6
9.7
9.8
Status Bits ........................................................................................................................................... 49
Configuration Fields ............................................................................................................................ 49
Counters.............................................................................................................................................. 49
OVERALL REGISTER MAP ..............................................................................................................50
GLOBAL REGISTERS ......................................................................................................................51
PORT COMMON REGISTERS ..........................................................................................................62
LIU REGISTERS ............................................................................................................................70
B3ZS/HDB3 ENCODER REGISTERS ..............................................................................................79
B3ZS/HDB3 DECODER REGISTERS ..............................................................................................80
BERT REGISTERS ........................................................................................................................84
10.
JTAG INFORMATION ...................................................................................................91
11.
ELECTRICAL CHARACTERISTICS .............................................................................92
12.
PIN ASSIGNMENTS....................................................................................................106
13.
PACKAGE INFORMATION.........................................................................................127
13.1 484-LEAD BGA (23MM X 23MM) (56-G60038-001) .....................................................................127
14.
THERMAL INFORMATION .........................................................................................128
15.
ACRONYMS AND ABBREVIATIONS.........................................................................129
16.
TRADEMARK ACKNOWLEDGEMENTS....................................................................129
17.
DATA SHEET REVISION HISTORY ...........................................................................130
3 of 130
DS32506/DS32508/DS32512
LIST OF FIGURES
Figure 2-1. Block Diagram ........................................................................................................................................... 7
Figure 3-1. 12-Port Unchannelized DS3/E3 Card ....................................................................................................... 8
Figure 4-1. External Connections, Internal Termination Enabled................................................................................ 9
Figure 4-2. External Connections, Internal Termination Disabled............................................................................. 10
Figure 8-1. DS3 Waveform Template ........................................................................................................................ 27
Figure 8-2. STS-1 Waveform Template..................................................................................................................... 28
Figure 8-3. E3 Waveform Template........................................................................................................................... 29
Figure 8-4. STS-1 and E3 Jitter Tolerance................................................................................................................ 34
Figure 8-5. DS3 Jitter Tolerance................................................................................................................................ 34
Figure 8-6. DS3 and E3 Wander Tolerance .............................................................................................................. 35
Figure 8-7. Jitter Attenuation/Jitter Transfer .............................................................................................................. 36
Figure 8-8. PRBS Synchronization State Diagram.................................................................................................... 38
Figure 8-9. Repetitive Pattern Synchronization State Diagram................................................................................. 39
Figure 8-10. SPI Clock Polarity and Phase Options.................................................................................................. 45
Figure 8-11. SPI Bus Transactions............................................................................................................................ 46
Figure 8-12. Interrupt Signal Flow ............................................................................................................................. 47
Figure 11-1. Transmitter Framer Interface Timing Diagram...................................................................................... 95
Figure 11-2. Receiver Framer Interface Timing Diagram .......................................................................................... 95
Figure 11-3. Parallel CPU Interface Intel Read Timing Diagram (Nonmultiplexed) .................................................. 99
Figure 11-4. Parallel CPU Interface Intel Write Timing Diagram (Nonmultiplexed) .................................................. 99
Figure 11-5. Parallel CPU Interface Motorola Read Timing Diagram (Nonmultiplexed) ......................................... 100
Figure 11-6. Parallel CPU Interface Motorola Write Timing Diagram (Nonmultiplexed) ......................................... 100
Figure 11-7. Parallel CPU Interface Intel Read Timing Diagram (Multiplexed) ....................................................... 101
Figure 11-8. Parallel CPU Interface Intel Write Timing Diagram (Multiplexed) ....................................................... 101
Figure 11-9. Parallel CPU Interface Motorola Read Timing Diagram (Multiplexed)................................................ 102
Figure 11-10. Parallel CPU Interface Motorola Write Timing Diagram (Multiplexed).............................................. 102
Figure 11-11. SPI Interface Timing Diagram ........................................................................................................... 104
Figure 11-12. JTAG Timing Diagram....................................................................................................................... 105
Figure 12-1. DS32512 Pin Assignment, Hardware and Microprocessor Interfaces................................................ 109
Figure 12-2. DS32512 Pin Assignment, Hardware Interface Only .......................................................................... 111
Figure 12-3. DS32512 Pin Assignment, Microprocessor Interface Only ................................................................. 113
Figure 12-4. DS32508 Pin Assignment, Hardware and Microprocessor Interfaces................................................ 115
Figure 12-5. DS32508 Pin Assignment, Hardware Interface Only .......................................................................... 117
Figure 12-6. DS32508 Pin Assignment, Microprocessor Interface Only ................................................................. 119
Figure 12-7. DS32506 Pin Assignment, Hardware and Microprocessor Interfaces................................................ 121
Figure 12-8. DS32506 Pin Assignment, Hardware Interface Only .......................................................................... 123
Figure 12-9. DS32506 Pin Assignment, Microprocessor Interface Only ................................................................. 125
4 of 130
DS32506/DS32508/DS32512
LIST OF TABLES
Table 1-1. Applicable Telecommunications Standards ............................................................................................... 6
Table 7-1. Short Pin Descriptions .............................................................................................................................. 14
Table 7-2. Analog Line Interface Pin Descriptions .................................................................................................... 17
Table 7-3. Digital Framer Interface Pin Descriptions................................................................................................. 17
Table 7-4. Global Pin Descriptions ............................................................................................................................ 18
Table 7-5. Hardware Interface Pin Descriptions........................................................................................................ 19
Table 7-6. Parallel Interface Pin Descriptions ........................................................................................................... 21
Table 7-7. SPI Serial Interface Pin Descriptions ....................................................................................................... 22
Table 7-8. CLAD Pin Descriptions ............................................................................................................................. 22
Table 7-9. JTAG Pin Descriptions ............................................................................................................................. 23
Table 7-10. Power-Supply Pin Descriptions .............................................................................................................. 23
Table 7-11. Manufacturing Test Pin Descriptions...................................................................................................... 23
Table 8-1. Jitter Generation ....................................................................................................................................... 26
Table 8-2. DS3 Waveform Equations ........................................................................................................................ 27
Table 8-3. DS3 Waveform Test Parameters and Limits ............................................................................................ 27
Table 8-4. STS-1 Waveform Equations ..................................................................................................................... 28
Table 8-5. STS-1 Waveform Test Parameters and Limits......................................................................................... 28
Table 8-6. E3 Waveform Test Parameters and Limits............................................................................................... 29
Table 8-7. Transformer Characteristics ..................................................................................................................... 30
Table 8-8. Recommended Transformers................................................................................................................... 30
Table 8-9. Pseudorandom Pattern Generation.......................................................................................................... 37
Table 8-10. Repetitive Pattern Generation ................................................................................................................ 37
Table 8-11. CLAD Clock Source Settings ................................................................................................................. 41
Table 8-12. CLAD Clock Pin Output Settings............................................................................................................ 41
Table 8-13. Global One-Second Reference Source.................................................................................................. 41
Table 8-14. GPIO Pin Global Signal Assignments .................................................................................................... 42
Table 8-15. GPIO Pin Control.................................................................................................................................... 42
Table 8-16. Reset and Power-Down Sources ........................................................................................................... 48
Table 9-1. Overall Register Map................................................................................................................................ 50
Table 9-2. Port Registers........................................................................................................................................... 50
Table 9-3. Global Register Map................................................................................................................................. 51
Table 9-4. Port Common Register Map..................................................................................................................... 62
Table 10-1. JTAG ID Code ........................................................................................................................................ 91
Table 11-1. Recommended DC Operating Conditions .............................................................................................. 92
Table 11-2. DC Characteristics.................................................................................................................................. 93
Table 11-3. Framer Interface Timing ......................................................................................................................... 94
Table 11-4. Receiver Input Characteristics—DS3 and STS-1 Modes....................................................................... 96
Table 11-5. Receiver Input Characteristics—E3 Mode ............................................................................................. 96
Table 11-6. Transmitter Output Characteristics—DS3 and STS-1 Modes................................................................ 97
Table 11-7. Transmitter Output Characteristics—E3 Mode....................................................................................... 97
Table 11-8. Parallel CPU Interface Timing ................................................................................................................ 98
Table 11-9. SPI Interface Timing ............................................................................................................................. 103
Table 11-10. JTAG Interface Timing........................................................................................................................ 105
Table 12-1. Pin Assignments Sorted by Signal Name for DS32506/DS32508/DS32512 ....................................... 106
Table 14-1. Thermal Properties, Natural Convection .............................................................................................. 128
Table 14-2. Theta-JA (θJA) vs. Airflow...................................................................................................................... 128
5 of 130
DS32506/DS32508/DS32512
1. STANDARDS COMPLIANCE
Table 1-1. Applicable Telecommunications Standards
SPECIFICATION
T1.102-1993
T1.231-2003
T1.404-2002
TR54014
EN 300 686
EN 300 687
EN 300 689
TBR 24
G.703
G.751
G.755
G.775
G.823
G.824
O.151
O.161
O.152
GR-253-CORE
GR-499-CORE
GR-820-CORE
SPECIFICATION TITLE
ANSI
Digital Hierarchy—Electrical Interfaces
Digital Hierarchy—Layer 1 In-Service Digital Transmission Performance Monitoring
Network-to-Customer Installation—DS3 Metallic Interface Specification
AT&T
ACCUNET® T45 Service Description and Interface Specification, 05/92
ETSI
Business TeleCommunications; 34Mbps and 140Mbps Digital Leased Lines (D34U,
D34S, D140U, and D140S); Network Interface Presentation, v1.2.1 February 2001
Business TeleCommunications; 34Mbps Digital Leased Lines (D34U and D34S);
Connection Characteristics, v1.2.1 February 2001
Access and Terminals (AT); 34Mbps Digital Leased Lines (D34U and D34S); Terminal
equipment interface, v1.2.1July 2001
Business TeleCommunications; 34Mbps Digital Unstructured and Structured Lease Lines;
Attachment Requirements for Terminal Equipment Interface, July 1997
ITU-T
Physical/Electrical Characteristics of Hierarchical Digital Interfaces, November 2001
Digital Multiplex Equipment Operating at the Third-Order Bit Rate of 34,368kbps and the
Fourth-Order Bit Rate of 139,264kbps and Using Positive Justification, November 1988
Digital Multiplex Equipment Operating at 139,264 kbit/s and Multiplexing Three
Tributaries at 44,736 kbit/s, November 1988
Loss of Signal (LOS) and Alarm Indication Signal (AIS) Defect Detection and Clearance
Criteria, November 1994
The Control of Jitter and Wander within Digital Networks that are Based on the 2048kbps
Hierarchy, March, 2000
The Control of Jitter and Wander within Digital Networks that are Based on the 1544kbps
Hierarchy, March, 2000
Error Performance Measuring Equipment Operating at the Primary Rate and Above,
October 1992
In-Service Code Violation Monitors for Digital Systems, November 1988
Equipment To Perform In-Service Monitoring on 2048, 8448, 34,368 and 139,264 kbit/s
Signals, October 1992
TELCORDIA
SONET Transport Systems: Common Generic Criteria, Issue 3, September 2000
Transport Systems Generic Requirements (TSGR): Common Requirements, Issue 2,
December 1998
Generic Digital Transmission Surveillance, Issue 2, December 1997
6 of 130
DS32506/DS32508/DS32512
2. BLOCK DIAGRAM
JTRST
JTCLK
JTMS
JTDI
JTD0
RBIN
RLOSn
RPD
REFCLK
CLKA
CLKB
CLKC
CLKD
CLADBYP
RMONn
Figure 2-1. Block Diagram
CLAD
JTAG
Port n (1 of 12)
RXPn
RXNn
Pre-Amp
B3ZS/
HDB3
Decoder
AGC,
Equalizer,
and CDR
ARES
TDMn
Driver
Monitor
TXPn
TXNn
Line
Driver
ALB
JA
LLB
RCLKn
RPOSn / RDATn
RNEGn / RLCVn
Pattern
Detector
Pattern
Generator
DLB
B3ZS/
HDB3
Encoder
Waveshaping
AIS Generator
RCLKI
TCLKI
TCC
TCLKn
TPOSn / TDATn
TNEGn
TAISn
AIST
RST
HW
IFSEL[2:0]
CS
WR / R/W
RD / DS
ALE
A[10:1]
BSWAP / A[0]
D[15:8]
CPOL / D[7]
CPHA / D[6]
D[5:3]
SCLK / D[2]
SDI / D[1]
SDO / D[0]
INT
RDY / ACK
GPIOAn
GPIOBn
TEST
HIZ
TBIN
LMn[1:0]
LBn[1:0]
LBS
TPD
JAS[1:0]
JAD[1:0]
TLBOn
TOEn
Parallel and SPI Bus Interfaces
7 of 130
Dallas
Semiconductor
DS325xx
DS32506/DS32508/DS32512
3. APPLICATION EXAMPLE
Figure 3-1. 12-Port Unchannelized DS3/E3 Card
DS32512
12-PORT
DS3/E3/STS-1
LIU
DS31912
12-PORT
DS3/E3/STS-1
MAPPER
8 of 130
77.76MHz TELECOM BUS
DS32506/DS32508/DS32512
4. DETAILED DESCRIPTION
The DS32506 (6 port), DS32508 (8 port), and DS32512 (12 port) LIUs perform the functions necessary for
interfacing at the physical layer to DS3, E3, or STS-1 lines. Each LIU has independent receive and transmit paths
and a built-in jitter attenuator. The receiver performs clock and data recovery from a B3ZS- or HDB3-coded
alternate mark inversion (AMI) signal and monitors for loss of the incoming signal. The receiver optionally performs
B3ZS/HDB3 decoding and outputs the recovered data in either binary (NRZ) or digital bipolar format. The
transmitter accepts data in either binary (NRZ) or digital bipolar format, optionally performs B3ZS/HDB3 encoding,
and drives standard pulse-shape waveforms onto 75Ω coaxial cable. Both transmitter and receiver are highimpedance when VDD is out of spec to enable hot-swappable 1:1 and 1+1 board redundancy without relays. The
jitter attenuator can be mapped into the receiver data path, mapped into the transmitter data path, or disabled. An
on-chip clock adapter generates all line-rate clocks from a single input clock. Control interface options include 8- or
16-bit parallel, SPI, and hardware mode. The DS325xx LIUs conform to the telecommunications standards listed in
Table 1-1. The external components required for proper operation are shown in Figure 4-1 and Figure 4-2.
Figure 4-1. External Connections, Internal Termination Enabled
TXP
TXP
1:1
TVDD
0.01μF
0.1μF
1μF
RVDD
0.01μF
0.1μF
1μF
TXN
TXN
JVDD
0.01μF
0.1μF
1μF
RXP
TVSS
RVSS
1:1
RXN
JVSS
9 of 130
1.8V
POWER
PLANE
GROUND
PLANE
DS32506/DS32508/DS32512
Figure 4-2. External Connections, Internal Termination Disabled
42.2Ω
(1%)
0.05μF
42.2Ω
(1%)
1:1
38.3Ω
(1%)
38.3Ω
(1%)
1:1
TXP
TXP
TVDD
0.01μF
0.1μF
1μF
RVDD
0.01μF
0.1μF
1μF
TXN
TXN
JVDD
0.01μF
0.1μF
1μF
RXP
TVSS
0.05μF
RVSS
RXN
1.8V
POWER
PLANE
GROUND
PLANE
JVSS
Shorthand Notations. The notation “DS325xx” throughout this data sheet refers to either the DS32506, DS32508,
or DS32512. This data sheet is the specification for all three devices. The LIUs on the DS325xx devices are
identical. For brevity, this document uses the pin name and register name shorthand “NAMEn,” where “n” stands in
place of the LIU port number. For example, on the DS32506, TCLKn is shorthand notation for pins TCLK1, TCLK2,
TCLK3, TCLK4, TCLK5 and TCLK6 on LIU ports 1, 2, 3, 4, 5 and 6, respectively. This document also uses generic
pin and register names such as TCLK (without a number suffix) when describing LIU operation. When working with
a specific LIU on the DS325xx devices, generic names like TCLK should be converted to actual pin names, such
as TCLK1.
10 of 130
DS32506/DS32508/DS32512
5. DETAILED FEATURES
5.1
Global Features
Three interface modes: hardware, 8-/16-bit parallel bus, and SPI serial bus
Independent per-port operation (e.g., line rate, jitter attenuator placement, or loopback type)
Clock, data, and control signals can be inverted to allow a glueless interface to other devices
Manual or automatic one-second update of performance monitoring counters
Each port can be put into a low-power standby mode when not being used
Requires only a single reference clock for all three LIU data rates using internal clock rate adapter
Jitter attenuators can be used in either transmit or receive path
Detection of loss-of-transmit clock
Two programmable I/O pins per port
Optional global write mode configures all LIUs at the same time
Glueless interface to neighboring framer and mapper components
5.2
Receiver
AGC/equalizer block handles from 0 to 22dB of cable loss
Programmable internal termination resistor
Loss-of-lock (LOL) PLL status indication
Interfaces directly to a DSX monitor signal (~20dB flat loss) using built-in preamp
Digital and analog loss-of-signal (LOS) detectors (compliant with ANSI T1.231 and ITU G.775)
Software programmable B3ZS/HDB3 or AMI decoding
Detection and accumulation of bipolar violations (BPV), code violations (CV), and
excessive zeros occurrences (EXZ)
Detection of receipt of B3ZS/HDB3 codewords
Binary or bipolar framer interface
On-board programmable PRBS detector
Per-channel power-down control
5.3
Transmitter
Standards-compliant waveshaping
Programmable waveshaping
Programmable internal termination resistor
Binary or bipolar framer interface
Gapped clock capable up to 78MHz with jitter attenuator in transmit path
Wide 50 ±20% transmit clock duty cycle
Transmit common clock option
Software programmable B3ZS/HDB3 or AMI decoding
Programmable insertion of bipolar violations (BPV), code violations (CV), and excessive zeros (EXZ)
AIS generator: unframed all ones, framed DS3 AIS, and STS-1 AIS-L
Line build-out (LBO) control
High-impedance line-driver output mode to support protection-switching applications
Per-channel power-down control
Output driver monitor
5.4
Jitter Attenuator
One jitter attenuator per port
Fully integrated, requires no external components
Meets all applicable ANSI, ITU, ETSI, and Telcordia jitter transfer and output jitter requirements
Can be placed in the transmit path, receive path or disabled
Programmable FIFO depth: 16, 32, 64, or 128 bits
Overflow and underflow status indications
11 of 130
DS32506/DS32508/DS32512
5.5
Bit Error-Rate Tester (BERT) Features
One BERT per port
Software programmable for insertion toward the transmit line interface or the receive system interface
Generates and detects pseudo-random patterns of length 2n - 1 (n = 1 to 32) and repetitive patterns from 1 to
32 bits in length
Large 24-bit error counter and 32-bit bit counter allows testing to proceed for long periods without host
intervention
Errors can be inserted in the generated BERT patterns for diagnostic purposes (single bit errors or specific biterror rates)
Pattern synchronization even in the presence of 10-3 bit-error rate
5.6
Clock Adapter
Creates DS3, E3, STS-1, and/or telecom bus clocks from single input reference clock
Input reference clock can be DS3, E3, STS-1, 12.8MHz, 19.44MHz, 38.88MHz, or 77.76MHz
Use of common system timing frequencies such as 19.44MHz eliminates the need for any local oscillators,
reducing cost and board space
Very small jitter gain and intrinsic jitter generation
Derived clocks can be output for external system use
Transmit signals using CLAD clocks meet Telcordia (DS3) and ITU (E3) jitter and wander requirements
5.7
Parallel Microprocessor Interface Features
Multiplexed or nonmultiplexed 8- or 16-bit interface
Configurable for Intel mode (CS, WR, RD) or Motorola mode (CS, DS, R/W)
Ready (RDY/ACK) handshake output signal
5.8
SPI Serial Microprocessor Interface Features
Operation up to 10Mbps
Burst mode for multibyte read and write accesses
Programmable clock polarity and phase
Half-duplex operation gives option to tie SDI and SDO together externally to reduce wire count
5.9
Miscellaneous Features
Global reset input pin
Global interrupt output pin
Two programmable I/O pins per port
5.10 Test Features
Five pin JTAG port
All functional pins are in-out pins in JTAG mode
Standard JTAG instructions: SAMPLE/PRELOAD, BYPASS, EXTEST, CLAMP, HIGHZ, IDCODE
HIZ pin to force all digital output and I/O pins into a high-impedance state
TEST pin for manufacturing test modes
5.11 Loopback Features
Analog local loopback—ALB (transmit line output to receive line input)
Diagnostic local loopback—DLB (transmit framer interface to receive framer interface)
Line loopback—LLB (receive clock and data recover to transmit waveshaping)
Optional AIS generation on the line side of the loopback during diagnostic loopback
12 of 130
DS32506/DS32508/DS32512
6. CONTROL INTERFACE MODES
The DS325xx devices can be controlled by hardware interface, by microprocessor interface, or by a combination of
both interfaces at the same time. The hardware interface is configured (enabled or disabled) independently from
the microprocessor interface (8-bit parallel, 16-bit parallel, SPI, or disabled).
When the hardware interface is enabled (HW = 1), device configuration can be controlled by input pins, while
device status can be sensed on output pins. When the hardware interface is disabled (HW = 0), all the pins in
Table 7-5 are disabled (inputs are ignored; outputs are placed in a high-impedance state).
The microprocessor interface provides access to features, configuration options, and device status information that
the hardware interface does not support. The microprocessor interface is enabled and configured by the IFSEL
pins. When IFSEL = 01X, the SPI serial interface is enabled. When IFSEL = 10X, the 8-bit parallel interface is
enabled. When IFSEL = 11X, the 16-bit parallel interface is enabled. For both the 8- and 16-bit parallel interfaces,
IFSEL[0] = 0 specifies an Intel-style bus (CS, RD, and WR control signals) while IFSEL[0] = 1 specifies a Motorolastyle bus (CS, R/W, and DS control signals). Through the microprocessor interface an external microprocessor can
access a set of internal configuration and status registers inside the device. Pins that are not used by the selected
microprocessor interface type but are used in other microprocessor interface modes are disabled (inputs are
ignored and considered to be low and can be left floating or wired low or high; outputs are placed in a highimpedance state and can be left unconnected or wired low or high). When no microprocessor interface is selected
(IFSEL = 000) all microprocessor interface inputs are ignored, and all microprocessor interface outputs are put in a
high impedance state.
When both the hardware interface and the microprocessor interface are enabled at the same time, many internal
settings of the device can be configured by both a hardware interface pin and a microprocessor interface register
bit with identical names and functions. In this situation the actual internal device setting is the logical OR of pin
assertion and register bit assertion. For example, the transmitter output driver is enabled when the TOE pin is high
OR the TOE register bit is high. When both the hardware interface and the microprocessor interface are enabled at
the same time, the following hardware interface pins are ignored and replaced by equivalent configuration register
fields: LMn[1:0], JAS[1:0], JAD[1:0], LBn[1:0], and LBS.
13 of 130
DS32506/DS32508/DS32512
7. PIN DESCRIPTIONS
Note: All digital pins are I/O pins in JTAG mode. This feature is to increase the effectiveness of board-level ATPG
patterns to isolate interconnect failures.
7.1
Short Pin Descriptions
n = port number (1 to 12 for DS32512, 1 to 8 for DS32508, 1 to 6 for DS32506). I = input, Ipu = input with internal pullup resistor, Ipd = input with
internal pulldown resistor, Ia = analog input, I/O = bidirectional in/out, I/Opd = bidirectional in/out with internal pulldown resistor, O = output,
Oz = high-impedance output (needs an external pullup or pulldown resistor to keep the node from floating), Oa = analog output (high
impedance), P = power supply or ground. All unused input pins without pullup should be tied low. Note: All internal pullup resistors are 50kΩ tied
to approximately 2.2V DC. See Section 12 for pin assignments.
Table 7-1. Short Pin Descriptions
NAME
TYPE
TXPn
TXNn
RXPn
RXNn
Oa
Oa
Ia
Ia
TCLKn
TPOSn/TDATn
TNEGn
RCLKn
RPOSn/RDATn
RNEGn/RLCVn
I
I
I
Oz
Oz
Oz
IFSEL[2:0]
HW
TEST
HIZ
RST
RESREF
I
Ipd
I
I
Ipu
Oa
LMn[1:0]
AIST
TAISn
TBIN
TCC
TCLKI
TDMn
TLBOn
TOEn
TPD
Ipd
Ipd
Ipd
Ipd
Ipd
Ipd
O
Ipd
Ipd
Ipd
I
Ipd
Ipd
O
Ipd
ITRE
RBIN
RCLKI
RLOSn
RMONn
FUNCTION
ANALOG LINE INTERFACE
Transmit Positive Analog (Port n)
Transmit Negative Analog (Port n)
Receive Positive Analog (Port n)
Receive Negative Analog (Port n)
DIGITAL FRAMER INTERFACE
Transmit Clock (Port n)
Transmit Positive AMI/Transmit NRZ Data (Port n)
Transmit Negative AMI (Port n)
Receive Clock (Port n)
Receive Positive AMI/Receive NRZ Data (Port n)
Receive Negative AMI/Receive Line Code Violation (Port n)
GLOBAL I/O
Microprocessor Interface Select
Hardware Interface Enable
Factory Test Enable (Active Low)
High-Impedance Test Enable (Active Low)
Reset (Active Low)
Reference Resistor
HARDWARE INTERFACE
LIU Mode Control (DS3, E3, or STS-1) (Port n)
AIS Type Control (All Ports)
Transmit AIS Control (Port n)
Transmit Binary Interface Control (All Ports)
Transmit Common Clock Control (All Ports)
Transmit Clock Invert Control (All Ports)
Transmit Driver Monitor Status (Port n)
Transmit Line Build-Out Control (Port n)
Transmit Output-Enable Control (Port n)
Transmit Power-Down (All Ports)
Internal Termination Resistance Enable (Tx and Rx) (All Ports)
Receive Binary Interface Control (All Ports)
Receive Clock Invert Control (All Ports)
Receive Loss-of-Signal Status (Port n)
Receive Monitor Preamp Control (Port n)
14 of 130
DS32506/DS32508/DS32512
NAME
TYPE
RPD
JAD[1:0]
JAS[1:0]
LBn[1:0]
LBS
Ipd
Ipd
Ipd
I
Ipd
CS
RD/DS
WR/R/W
ALE
A[10:1]
A[0]/BSWAP
D[15:0]
RDY/ACK
INT
GPIOAn
GPIOBn
CS
SCLK
SDI
SDO
CPHA
CPOL
INT
GPIOAn
GPIOBn
REFCLK
CLKA
CLKB
CLKC
CLKD
CLADBYP
JTCLK
JTMS
JTDI
JTDO
JTRST
VDD18
VDD33
VSS
JVDDn
JVSSn
RVDDn
FUNCTION
Receive Power-Down (All Ports)
Jitter Attenuator Depth (All Ports)
Jitter Attenuator Select (Tx, Rx, or Disabled) (Port n)
Loopback Control (Port n)
Loopback Select (all ports)
8-/16-BIT PARALLEL INTERFACE
I
Chip Select (Active Low)
I
Read Enable (Active Low)/Data Strobe (Active Low)
I
Write Enable (Active Low)/Read/Write Select
I
Address Latch Enable
I
Address Bus (Excluding LSB)
I
Address Bus LSB/Byte Swap
I/O
Data Bus [15:0]
Oz
Ready/Acknowledge (Active Low)
Oz
Interrupt (Active Low)
I/Opd General-Purpose I/O A (Port n)
I/Opd General-Purpose I/O B (Port n)
SPI SERIAL INTERFACE
I
Chip Select (Active Low)
I
Serial Clock
I
Serial Data Input
O
Serial Data Output
I
Clock Phase
I
Clock Polarity
Oz
Interrupt Output (Active Low)
I/Opd General-Purpose I/O A (Port n)
I/Opd General-Purpose I/O B (Port n)
CLAD
I
Reference Clock
I/O
Clock A—DS3 44.736MHz
I/O
Clock B—E3 34.368MHz
I/O
Clock C—STS-1 51.84MHz
O
Clock D—Telecom Bus 77.76MHz or 19.44MHz
I
CLAD Bypass
JTAG
I
JTAG Clock
IPU
JTAG Mode Select
IPU
JTAG Data Input
Oz
JTAG Data Output
IPU
JTAG Reset (Active Low)
POWER SUPPLY AND GROUND PINS
P
Digital Core 1.8V Power, 1.8V ±5%
P
I/O 3.3V Power, 3.3V ±5%
P
Ground for VDD18 and VDD33
P
Jitter Attenuator 1.8V Power, 1.8V ±5% (Port n)
P
Jitter Attenuator Ground (Port n)
P
Receive 1.8V Power, 1.8V ±5% (Port n)
15 of 130
DS32506/DS32508/DS32512
NAME
TYPE
RVSSn
TVDDn
TVSSn
CVDD
CVSS
P
P
P
P
P
MT[10:0]
Test
FUNCTION
Receive Ground (Port n)
Transmit 1.8V Power, 1.8V ±5% (Port n)
Transmit Ground (Port n)
CLAD 1.8V ±5%
CLAD Ground
MANUFACTURING TEST
Manufacturing Test Pins
16 of 130
DS32506/DS32508/DS32512
7.2
Detailed Pin Descriptions
n = port number (1 to 12 for DS32512, 1 to 8 for DS32508, 1 to 6 for DS32506). I = input, Ipu = input with internal pullup resistor, Ipd = input with
internal pulldown resistor, Ia = analog input, I/O = bidirectional in/out, I/Opd = bidirectional in/out with internal pulldown resistor, O = output, Oz =
high-impedance output (needs an external pullup or pulldown resistor to keep the node from floating), Oa = analog output (high impedance), P=
power supply or ground. All unused input pins without pullup should be tied low. Note: All internal pullup resistors are 50kΩ tied to 2.2V DC.
Table 7-2. Analog Line Interface Pin Descriptions
NAME
TYPE
FUNCTION
TXPn,
TXNn
Oa
Transmitter Analog Outputs. These differential AMI outputs are coupled to the outbound 75Ω
coaxial cable through a 1:1 transformer (Figure 4-1). These outputs can be disabled (high
impedance) using the TOEn pin or the TOE or TPD configuration bits. See Section 8.2.8.
RXPn,
RXNn
Ia
Receiver Analog Inputs. These differential AMI inputs are coupled to the inbound 75Ω coaxial
cable through a 1:1 transformer (Figure 4-1). See Section 8.3.1.
Table 7-3. Digital Framer Interface Pin Descriptions
NAME
TCLKn
TYPE
FUNCTION
I
Transmit Clock. A DS3 (44.736MHz ±20ppm), E3 (34.368MHz ±20ppm), or STS-1
(51.840MHz ±20ppm) clock should be applied at this pin. Data to be transmitted is clocked into
the device at TPOS/TDAT and TNEG either on the rising edge of TCLK (TCLKI = 0) or the
falling edge of TCLK (TCLKI = 1). When pin TCC = 1, all ports are clocked by TCLK1, and
TCLKx (x ≠ 1) are ignored. See Section 8.2.1 for additional details.
Transmit Positive AMI/Transmit NRZ Data. This pin is sampled either on the rising edge of
TCLK (TCLKI = 0) or on the falling edge of TCLK (TCLKI = 1). See Section 8.2.2.
TPOSn/
TDATn
I
TPOSn: When the transmitter is configured to have a bipolar interface (TBIN = 0), a positive
pulse is transmitted on the line when TPOS is high.
TDATn: When the transmitter is configured to have a binary interface (TBIN = 1), the data on
TDAT is transmitted after B3ZS or HDB3 encoding.
TNEGn
RCLKn
I
Oz
Transmit Negative AMI. When the transmitter is configured to have a bipolar interface (TBIN =
0), a negative pulse is transmitted on the line when TNEG is high. When the transmitter is
configured to have a binary interface (TBIN = 1), TNEG is ignored and should be wired either
high or low. TNEG is sampled either on the rising edge of TCLK (TCLKI = 0) or the falling edge
of TCLK (TCLKI = 1). See Section 8.2.2.
Receive Clock. The clock recovered from the receive signal is output on the RCLK pin.
Recovered data is output on the RPOS/RDAT and RNEG/RLCV pins on the falling edge of
RCLK (RCLKI = 0) or the rising edge of RCLK (RCLKI = 1). During a loss-of-signal condition
(RLOSn = 0), the RCLK output signal is derived from the LIU’s reference clock. See Section
8.3.6.
Receive Positive AMI/Receive NRZ Data. This pin is updated either on the falling edge of
RCLK (RCLKI = 0) or the rising edge of RCLK (RCLKI = 1). See Section 8.3.6.
RPOSn/
RDATn
Oz
RPOSn: When the receiver is configured to have a bipolar interface (RBIN = 0), RPOS pulses
high for each positive AMI pulse received.
RDATn: When the receiver is configured to have a binary interface (RBIN = 1), RDAT outputs
RNEGn/
RLCVn
decoded binary data.
Receive Negative AMI/Receive Line-Code Violation. This pin is updated either on the falling
edge of RCLK (RCLKI = 0) or the rising edge of RCLK (RCLKI = 1). See Section 8.3.6 for
further details on code violations.
Oz
RNEGn: When the receiver is configured to have a bipolar interface (RBIN = 0), RNEG pulses
high for each negative AMI pulse received.
RLCVn: When the receiver is configured to have a binary interface (RBIN = 1), RLCV pulses
high to flag code violations.
17 of 130
DS32506/DS32508/DS32512
Table 7-4. Global Pin Descriptions
NAME
IFSEL[2:0]
TYPE
I
FUNCTION
Microprocessor Interface Select. When no microprocessor interface is selected, all
microprocessor interface inputs are ignored and internally pulled low, and all microprocessor
interface outputs are put in a high-impedance state. See Section 6 for details.
000 = no microprocessor interface (must set HW = 1 and use hardware interface)
001 = reserved
010 = SPI serial interface, address and data MSB first
011 = SPI serial interface, address and data LSB first
100 = 8-bit parallel interface, Intel style (CS, RD, WR control signals)
101 = 8-bit parallel interface, Motorola style (CS, R/W, DS control signals)
110 = 16-bit parallel interface, Intel style (CS, RD, WR control signals)
111 = 16- bit parallel interface, Motorola style (CS, R/W, DS control signals)
Hardware Interface Enable. When the hardware interface pins are disabled, all hardware
control inputs are ignored and internally pulled low, and all hardware status outputs are put in a
high impedance state. See Section 6 for details.
0 = Hardware interface pins disabled
1 = Hardware interface pins enabled
HW
Ipd
TEST
I
Factory Test Enable (Active Low). This pin enables the internal scan test mode when low.
For normal operation tie high. This is an asynchronous input.
HIZ
I
High-Impedance Test Enable (Active Low). This signal is used to enable testing. When this
signal is low while JTRST is low, all the digital output and bidirectional pins are placed in the
high-impedance state. For normal operation this signal is high. This is an asynchronous input.
RST
Ipu
Reset (Active Low, Open Drain). When this global asynchronous reset is pulled low, all
internal circuitry is reset and all internal registers are forced to their default values. The device
is held in reset as long as RST is low. RST should be held low for at least two reference clock
cycles. See Section 8.11.
RESREF
Oa
Reference Resistor. This pin is tied to VSS through a 10kΩ ±1% resistor. This accurate
resistor is used to calibrate on-chip resistor values including internal transmit and receive
termination resistors.
18 of 130
DS32506/DS32508/DS32512
Table 7-5. Hardware Interface Pin Descriptions
NAME
TYPE
FUNCTION
LMn[1:0]
Ipd
LIU Mode Control (Port n). When only the hardware interface is enabled (IFSEL = 000 and
HW = 1), these pins set the LIU mode for port n. See Section 8.1.
00 = DS3
01 = E3
10 = STS-1
11 = reserved
AIST
Ipd
AIS Type Control (All Ports). See Section 8.2.3.
0 = Unframed all ones
1 = Framed DS3 AIS (DS3 mode), unframed all ones (E3 mode), or AIS-L (STS-1 mode)
Ipd
Transmit AIS Control (Port n). The type of AIS signal is specified by the LMn[1:0] and AIST
pins. See Section 8.2.3.
0 = transmit normal data
1 = transmit AIS
Ipd
Transmit Binary Interface Control (All Ports). See Section 8.2.2.
0 = Transmitter framer interface is bipolar on the TPOS and TNEG pins, and the B3ZS/HDB3
encoder is disabled.
1 = Transmitter framer interface is binary on the TDAT pin, and the B3ZS/HDB3 encoder is
enabled.
TCC
Ipd
Transmit Common Clock Control (All Ports). When this pin is high, the transmit paths of all
ports are clocked by the TCLK1 pin, and pins TCLKx (x ≠ 1) are ignored. In designs where the
transmit paths of all ports can be clocked synchronously with one another, this mode reduces
wiring complexity between the LIU and the neighboring framer or mapper component. See
Section 8.2.1.
TCLKI
Ipd
Transmit Clock Invert control (All Ports). See Section 8.2.1.
0 = TPOS/TDAT and TNEG are sampled on the rising edge of TCLK.
1 = TPOS/TDAT and TNEG are sampled on the falling edge of TCLK.
TAISn
TBIN
TDMn
O
TLBOn
Ipd
Transmit Driver Monitor Status (Port n). This pin reports the status of the transmit driver
monitor. See Section 8.2.9 for more information.
0 = Transmit line driver is operating properly.
1 = Transmit line driver is faulty.
Transmit Line Build-Out Control (Port n). This pin specifies cable length for waveform
shaping in DS3 and STS-1 modes. In E3 mode it is ignored and should be wired high or low.
See Section 8.2.6.
0 = Cable length ≥ 225ft
1 = Cable length < 225ft
TOEn
Ipd
Transmitter Output-Enable Control (Port n). This pin enables and disables the transmitter
outputs. The transmitter continues to operate internally when the outputs are disabled; only the
line driver and driver monitor are disabled. See Section 8.2.7.
0 = TXPn/TXNn output drivers disabled (high impedance)
1 = TXPn/TXNn output drivers enabled
TPD
Ipd
Transmit Power-Down (All Ports). See Section 8.2.10.
0 = Enable all transmitters
1 = Power down all transmitters (drivers become high impedance)
19 of 130
DS32506/DS32508/DS32512
NAME
TYPE
ITRE
I
RBIN
Ipd
RCLKI
Ipd
RLOSn
O
FUNCTION
Internal Termination Resistance Enable (Tx and Rx) (All Ports). This bit indicates when the
internal termination is enabled. See Section 8.2.8.
0 = Disabled. The transmitters and receivers are terminated externally.
1 = Enabled. The transmitters and receivers are terminated internally.
Receive Binary Interface Control (All Ports). See Section 8.3.6.
0 = Receiver framer interface is bipolar on the RPOS and RNEG pins, and the B3ZS/HDB3
encoder is disabled.
1 = Receiver framer interface is binary on the RDAT pin, and the B3ZS/HDB3 encoder is
enabled.
Receive Clock Invert Control (All Ports). See Section 8.3.6.3.
0 = RPOS/RDAT and RNEG/RLCV update on the falling edge of RCLK.
1 = RPOS/RDAT and RNEG/RLCV update on the rising edge of RCLK.
Receive Loss-of-Signal Status (Port n). This pin is asserted upon detection of 192
consecutive zeros in the receive data stream. It is deasserted when there are no excessive
zero occurrences over a span of 192 clock periods. An excessive zero occurrence is defined as
three or more consecutive zeros in DS3 and STS-1 modes or four or more zeros in E3 mode.
See Section 8.3.5.
Ipd
Receive Monitor Preamp Control (Port n). This pin determines whether or not the receiver
preamp is enabled in port n to provide flat gain to the incoming signal before the AGC/equalizer
block processes it. This feature should be enabled when the device is being used to monitor
signals that have been resistively attenuated by a monitor jack. See Section 8.3.2 for more
information.
0 = Disable the monitor preamp
1 = Enable the monitor preamp
Ipd
Receive Power-Down (All Ports). See Section 8.3.7.
0 = Enable all receivers
1 = Power down all receivers (RXPn/RXNn high impedance. RCLKn, RPOSn/RDATn, and
RNEGn/RLCVn high impedance.)
Ipd
Jitter Attenuator Depth (All Ports). These pins are ignored when a microprocessor interface
is enabled (IFSEL ≠ 000). See Section 8.4.
00 = 16 bits
01 = 32 bits
10 = 64 bits
11 = 128 bits
Ipd
Jitter Attenuator Select (All Ports). These pins select the location of the jitter attenuator.
These pins are ignored when a microprocessor interface is enabled (IFSEL ≠ 000). See Section
8.4.
00 = Disabled
01 = Receive path
1X = Transmit path
LBn[1:0]
Ipd
Loopback Control (Port n). When only the hardware interface is enabled (IFSEL = 000 and
HW = 1), these pins set the loopback mode for port n. See Section 8.6.
00 = No loopback
01 = Diagnostic loopback (DLB)
10 = Line loopback (LLB)
11 = (LBS = 0) Line loopback (LLB) and diagnostic loopback (DLB) simultaneously
11 = (LBS = 1) Analog loopback (ALB)
LBS
Ipd
Loopback Select (All Ports). This pin specifies how the device interprets the LBn[1:0] bits.
This pin is ignored when a microprocessor interface is enabled (IFSEL ≠ 000). See Section 8.6.
RMONn
RPD
JAD[1:0]
JAS[1:0]
20 of 130
DS32506/DS32508/DS32512
Table 7-6. Parallel Interface Pin Descriptions
NAME
TYPE
CS
I
FUNCTION
Chip Select (Active Low). This pin must be asserted to read or write internal registers. See
Section 8.8.3.
Read Enable (Active Low)/Data Strobe (Active Low)
RD/DS
I
RD: For the Intel-style bus (IFSEL = 1X0), RD is asserted to read internal registers.
DS: For the Motorola-style bus (IFSEL = 1X1), DS is asserted to access internal registers while
the R/W pin specifies whether the access is a read or a write. See Section 8.8.3.
Write Enable (Active Low)/Read/Write Select
WR: For the Intel-style bus (IFSEL = 1X0), WR is asserted to write internal registers.
WR/R/W
I
ALE
I
Address Latch Enable. This pin controls a latch on the A[10:0] inputs. For a nonmultiplexed
parallel bus, ALE is wired high to make the latch transparent. For a multiplexed parallel bus, the
falling edge of ALE latches the address. See Section 8.8.3.
A[10:1]
I
Address Bus (Excluding LSB). These inputs specify the address of the internal 16-bit register
to be accessed. A10 is not present on the DS32506. See Section 8.8.
R/W: For the Motorola-style bus (IFSEL = 1X1), R/W determines the type of bus transaction,
with R/W = 1 indicating a read and R/W = 0 indicating a write. See Section 8.8.3.
Address Bus LSB/Byte Swap. See Section 8.8.2.
A[0] /
BSWAP
D[15:0]
I
A[0]: This pin is connected to the lower address bit in 8-bit bus modes (IFSEL = 10X).
0 = Output register bits 7:0 on D[7:0]; D[15:8] high impedance
1 = Output register bits 15:8 on D[7:0]; D[15:8] high impedance
BSWAP: This pin is tied high or low in 16-bit bus modes (IFSEL = 11X).
0 = Output register bits 15:8 on D[15:8] and bits 7:0 on D[7:0]
1 = Output register bits 7:0 on D[15:8] and bits 15:8 on D[7:0]
I/O
Data Bus. A 8-bit or 16-bit bidirectional data bus. These pins are inputs during writes to internal
registers and outputs during reads. D[15:8] are disabled (high impedance) in 8-bit bus modes
(IFSEL = 10X). D[15:0] are disabled (high impedance) when CS = 1 or RST = 0. In 16-bit bus
modes (IFSEL = 11X) the upper and lower bytes can be swapped by pulling the BSWAP pin
high. See Section 8.8.
Ready Handshake (Tri-State)/Acknowledge Handshake (Tri-State, Active Low). Tri-stated
when CS = 1 or RST = 0. See Section 8.8.
RDY/ACK
Oz
RDY: Intel Mode (IFSEL = 100 or 110): RDY goes high when the read or write cycle can
progress.
ACK: Motorola Mode (IFSEL = 101 or 111): ACK goes low when the read or write cycle can
progress.
INT
Oz
Interrupt Output (Active Low, Open Drain, or Push-Pull). This pin is driven low in response
to one or more unmasked, active interrupt sources within the device. INT remains low until the
interrupt is serviced or masked. When GLOBAL.CR2:INTM = 0, INT is high impedance when
inactive (default). When INTM = 1, INT is driven high when inactive. INT is high impedance
when RST = 0. See Section 8.10.
GPIOAn
I/Opd
General-Purpose I/O A. When a microprocessor interface is enabled (IFSEL ≠ 000), this pin is
the “A” general-purpose I/O pin for port n. See Section 8.7.3.
GPIOBn
I/Opd
General-Purpose I/O B. When a microprocessor interface is enabled (IFSEL ≠ 000), this pin is
the “B” general-purpose I/O pin for port n. See Section 8.7.3. Note: GPIOB1, GPIOB2, and
GPIOB3 can also be programmed as global control/status pins.
21 of 130
DS32506/DS32508/DS32512
Table 7-7. SPI Serial Interface Pin Descriptions
NAME
TYPE
FUNCTION
CS
I
Chip Select (Active Low). This pin must be asserted to read or write internal registers.
See Section 8.9.
SCLK
I
Serial Clock. SCLK is always driven by the SPI bus master. See Section 8.9.
SDI
I
Serial Data Input. The SPI bus master transmits data to the device on this pin.
See Section 8.9.
SDO
O
Serial Data Output. The device transmits data to the SPI bus master on this pin.
See Section 8.9.
CPHA
I
Clock Phase. See Section 8.9.
0 = Data is latched on the leading edge of the SCLK pulse
1 = Data is latched on the trailing edge of the SCLK pulse
CPOL
I
Clock Polarity. See Section 8.9.
0 = SCLK is normally low and pulses high during bus transactions
1 = SCLK is normally high and pulses low during bus transactions
INT
Oz
GPIOAn
I/Opd
General-Purpose I/O A. See GPIOAn pin description in Table 7-6.
GPIOBn
I/Opd
General-Purpose I/O B. See GPIOBn pin description in Table 7-6.
Interrupt Output (Active Low, Open Drain).
See INT pin description in Table 7-6.
Table 7-8. CLAD Pin Descriptions
NAME
REFCLK
CLKA
TYPE
I
I/O
FUNCTION
Reference Clock. The signal on this pin is the input reference clock to the CLAD and
must be transmission quality (±20ppm, low jitter). In hardware mode, REFCLK must be
19.44MHz. In bus interface modes, REFCLK can be any of several frequencies. See
Section 8.7.1.
Clock A—DS3 44.736MHz. When the CLAD is bypassed, a transmission-quality DS3
clock (44.736MHz ±20ppm, low jitter) must be connected to this pin if any of the LIUs are
to operate in DS3 mode. When the CLAD is enabled this pin can be configured to output
the DS3 clock synthesized by PLL-A. See Section 8.7.1.
Clock B—E3 34.368MHz. When the CLAD is bypassed, a transmission-quality E3 clock
(34.368MHz ±20ppm, low jitter) must be connected to this pin if any of the LIUs are to
operate in E3 mode. When the CLAD is enabled, this pin can be configured to output the
E3 clock synthesized by PLL-B. See Section 8.7.1.
Clock C—STS-1 51.84MHz. When the CLAD is bypassed, a transmission-quality STS-1
clock (51.84MHz ±20ppm, low jitter) must be connected to this pin if any of the LIUs are
to operate in STS-1 mode. When the CLAD is enabled, this pin can be configured to
output the STS-1 clock synthesized by PLL-C. See Section 8.7.1.
CLKB
I/O
CLKC
I/O
CLKD
O
Clock D—Telecom Bus 77.76MHz or 19.44MHz. When the CLAD is bypassed, this pin
is driven low. When the CLAD is enabled this pin can output a 77.76MHz or 19.44MHz
clock synthesized by PLL-D. See Section 8.7.1.
I
CLAD Bypass Control. This pin controls whether the CLAD is used or bypassed. When
a microprocessor interface is enabled (IFSEL ≠ 000), CLADBYP should be wired low to
allow use of the GLOBAL.CR2:CLAD[6:0] field to control the CLAD. See Section 8.7.1.
0 = Synthesize the DS3, E3, and STS-1 clocks from the clock on the REFCLK pin.
1 = Source the DS3, E3, and STS-1 clocks from the CLKA, CLKB and CLKC pins.
CLADBYP
22 of 130
DS32506/DS32508/DS32512
Table 7-9. JTAG Pin Descriptions
NAME
TYPE
JTCLK
I
JTAG Clock. This pin shifts data into JTDI on the rising edge and out of JTDO on the
falling edge. JTCLK is typically a low frequency (less than 10MHz) 50% duty cycle clock
signal. If boundary scan is not used, JTCLK should be pulled high. See Section 10.
JTMS
Ipu
JTAG Mode Select. This pin is used to control the JTAG controller state machine. JTMS
is sampled on the rising edge of JTCLK. If boundary scan is not used, JTMS should be
left unconnected or pulled high. See Section 10.
JTDI
Ipu
JTAG Data Input. This pin is used to input data into the register that is enabled by the
JTAG controller state machine. JTDI is sampled on the rising edge of JTCLK. If boundary
scan is not used, JTDI should be left unconnected or pulled high. See Section 10.
Oz
JTAG Data Output. This pin is the output of an internal scan shift register enabled by
the JTAG controller state machine. JTDO is updated on the falling edge of JTCLK. JTDO
is in high-impedance mode when a register is not selected or when the JTRST pin is low.
JTDO goes into and out of high-impedance mode after the falling edge of JTCLK. See
Section 10.
Ipu
JTAG Reset (Active Low). When active, this pin forces the JTAG controller logic into
the reset state and forces the JTDO pin into high-impedance mode. The JTAG controller
is also reset when power is first applied via a power-on reset circuit. JTRST can be driven
high or low for normal operation, but must be high for JTAG operation. See Section 10.
JTDO
JTRST
FUNCTION
Table 7-10. Power-Supply Pin Descriptions
NAME
TYPE
VDD18
VDD33
VSS
JVDDn
JVSSn
RVDDn
RVSSn
TVDDn
TVSSn
CVDD
CVSS
P
P
P
P
P
P
P
P
P
P
P
FUNCTION
Digital Core 1.8V Power, 1.8V ±5%
I/O 3.3V Power, 3.3V ±5%
Ground for VDD18 and VDD33
Jitter Attenuator 1.8V Power, 1.8V ±5%
Jitter Attenuator Ground
Receive 1.8V Power, 1.8V ±5%
Receive Ground
Transmit 1.8V Power, 1.8V ±5%
Transmit Ground
CLAD 1.8V ±5%
CLAD Ground
Table 7-11. Manufacturing Test Pin Descriptions
NAME
TYPE
MT[10:0]
Test
FUNCTION
Manufacturing Test Pins 10 to 0. MT[0] and MT[2:10] must not be connected. MT[1]
must be connected to digital ground (same as VSS pins).
23 of 130
DS32506/DS32508/DS32512
8. FUNCTIONAL DESCRIPTION
8.1
LIU Mode
Each port is independently configurable for DS3, E3 or STS-1 operation. When only the hardware interface is
enabled (IFSEL = 000 and HW = 1), the LMn[1:0] pins specify the LIU mode. When a microprocessor interface is
enabled (IFSEL ≠ 000) the PORT.CR2:LM[1:0] control bits specify the LIU mode.
8.2
Transmitter
8.2.1
Transmit Clock
If the jitter attenuator is not enabled in the transmit path, the signal on TCLK is the transmit line clock and must be
transmission quality (i.e., ±20ppm frequency accuracy and low jitter). If the jitter attenuator is enabled in the
transmit path, the signal on TCLK can be jittery and/or periodically gapped, but must still have an average
frequency within ±20ppm of the nominal line rate. When enabled in the transmit path, the jitter attenuator generates
the transmit line clock. See Section 8.4 for more information about the jitter attenuator.
The polarity of TCLK can be inverted to support glueless interfacing to a variety of neighboring components.
Normally data is sampled on the TPOS/TDAT and TNEG pins on the rising edge of TCLK. To sample these pins on
the falling edge of TCLK, pull the TCLKI pin high or set the PORT.INV:TCLKI configuration bit.
8.2.1.1
Transmit Common Clock Mode
When the TCC pin is high, the transmit paths of all ports are clocked from TCLK1 and pins TCLKx (x ≠ 1) are
ignored. When the TCC pin is low, the PORT.CR2:TCC register bit specifies whether the transmit clock for port n
comes from TCLKn or TCLK1. In designs where the transmit paths of all ports can be clocked synchronously with
one another, common transmit clocking reduces wiring complexity between the LIU and the neighboring framer or
mapper component.
8.2.2
Framer Interface Format and the B3ZS/HDB3 Encoder
Data to be transmitted can be input in either bipolar or binary format.
8.2.2.1
Bipolar Interface Format
To select the bipolar interface format, pull the TBIN pin low and clear the PORT.CR2:TBIN configuration bit. In
bipolar format, the B3ZS/HDB3 encoder is disabled and the data to be transmitted is sampled on the TPOS and
TNEG pins. Positive-polarity pulses are indicated by TPOS = 1, while negative-polarity pulses are indicated by
TNEG = 1. If TPOS and TNEG are high at the same time the transmitter generates an AMI pulse that is the
opposite state of the pulse previously transmitted.
8.2.2.2
Binary Interface Format
To select the binary interface format, pull the TBIN pin high (all ports) or set the PORT.CR2:TBIN configuration bit
(per port). In binary format, the B3ZS/HBD3 encoder is enabled, and the NRZ data to be transmitted is sampled on
the TDAT pin. The TNEG pin is ignored in binary interface mode and should be wired low. In DS3 and STS-1
modes, B3ZS encoding is performed. In these modes, whenever three consecutive zeros are found in the transmit
data stream they are replaced with a B3ZS codeword. In E3 mode HDB3 encoding is performed. In this mode,
whenever four consecutive zeros are found in the transmit data stream they are replaced with an HDB3 codeword.
In all three modes, the B3ZS or HDB3 codeword is constructed such that the last bit is a BPV with the opposite
polarity of the most recently transmitted BPV.
8.2.3
Error Insertion
Bipolar violation (BPV) errors and excessive zeros (EXZ) errors can be inserted into the transmit data stream using
the transmit manual error insert (TMEI) logic (see Section 8.7.5). Configuration bit LINE.TCR:BPVI enables the
insertion of bipolar violations, while LINE.TCR:EXZI enables the insertion of excessive zero events. Note: BPV
errors and EXZ errors can only be inserted in the binary interface format.
If the transmitter is configured for binary interface format (Section 8.2.2.2) and BPVI = 1 then when the configured
manual error insert control goes from zero to one, the transmitter waits for the next occurrence of two consecutive
24 of 130
DS32506/DS32508/DS32512
1s where the polarity of the first 1 is opposite the polarity of the BPV in the last B3ZS/HDB3 codeword. The first 1 is
transmitted according to the normal AMI rule, but the second 1 is transmitted with the same polarity as the first 1,
thus making the second 1 a bipolar violation.
If the transmitter is configured for binary interface format (Section 8.2.2.2) and EXZI = 1, then when the configured
manual error insert control goes from zero to one, the transmitter waits for the next occurrence of three (four)
consecutive zeros in the transmit data stream and inhibits the replacement of those zeros with a B3ZS (HDB3)
codeword.
The transmitter ensures that there is at least one intervening 1 between consecutive BPV or EXZ errors. If a
second error insertion request of a given type (BPV or EXZ) is initiated before a previous request has been
completed, the second request is ignored.
8.2.4
AIS Generation
The transmitter can be configured to transmit an AIS signal by asserting the TAIS pin or the PORT.CR3:TAIS
configuration bit. The type of AIS signal to be generated is specified by the LIU mode (LMn[1:0] pins or
PORT.CR2:LM[1:0] configuration bits) and the AIS type (AIST pin or PORT.CR3:AIST configuration bit). When
AIST = 0, the AIS signal is unframed all ones for DS3, E3 and STS-1 modes. When AIST = 1, the AIS signal is the
framed DS3 AIS signal in DS3 mode, unframed all ones in E3 mode, and the AIS-L signal in STS-1 mode. The
AIS-L signal is normally scrambled, but scrambling can be disabled by setting PORT.CR3:SCRD = 1.
8.2.5
8.2.5.1
Waveshaping
Standards-Compliant Waveshaping
Waveshaping converts the transmit clock, positive data, and negative data signals into a single analog AMI signal
with the waveshape required for interfacing to DS3/E3/STS-1 lines. Figure 8-1 and Table 8-2 show the DS3
waveform equations and template. Figure 8-2 and Table 8-4 show the STS-1 waveform equations and template.
Figure 8-3 shows the E3 waveform template.
8.2.5.2 Programmable Waveshaping
The transmit waveshape can be adjusted with the TWSC[19:0] bits in the LIU.TWSCR1 and LIU.TWSCR2
registers. These signals control the amplitude, slew rates and various other aspects of the waveform template. See
the register descriptions for further details.
8.2.6
Line Build-Out
Because DS3 and STS-1 signals must meet the waveform templates at the cross-connect through any cable length
from 0 to 450 feet, the waveshaping circuitry includes a selectable LBO feature. For cable lengths of 225 feet or
greater, both the TLBO pin and the LIU.CR1:TLBO configuration bit should be low to disable the LBO circuitry.
When the LBO circuitry is disabled, output pulses are driven onto the coaxial cable without any preattenuation. For
cable lengths less than 225 feet, either the TLBO pin or the LIU.CR1:TLBO configuration bit should be high to
enable the LBO circuitry. When the LBO circuitry is enabled, pulses are preattenuated by the LBO circuitry before
being driven onto the coaxial cable to provide attenuation that mimics the attenuation of 225 feet of coaxial cable.
8.2.7
Line Driver
The transmit line driver can be disabled (TXP and TXN outputs high impedance) by deasserting the TOE pin and
deasserting the LIU.CR1:TOE configuration bit. Powering down the transmitter through the TPD pin or the
PORT.CR1:TPD configuration bit also disables the transmit line driver.
8.2.8
Interfacing to the Line
The transmitter interfaces to the outgoing DS3/E3/STS-1 coaxial cable (75Ω) through a 1:1 isolation transformer
connected to the TXP and TXN pins. The transmit line termination can be internal to the device, external to the
device, or a combination of both. Figure 4-1 shows the arrangement of the transformer when the internal
termination is enabled (LIU.CR1:TTRE = 1) and no external termination resistors are used. Figure 4-2 shows the
arrangement of the transformer and external termination resistors when the internal termination is disabled
(LIU.CR1:TTRE = 0). The internal termination resistor value for the transmitter is specified in LIU.CR1:TRESADJ.
Table 8-7 and Table 8-8 specify the required characteristics of the transformer and provide a list of recommended
transformers.
25 of 130
DS32506/DS32508/DS32512
8.2.9
Driver Monitor and Output Failure Detection
The transmit driver monitor compares the amplitude of the transmit waveform to thresholds VTXMIN and VTXMAX. If
the amplitude is less than VTXMIN or greater than VTXMAX for approximately 32 MCLK cycles, then the monitor
activates the TDM output pin (if the hardware interface is enabled) and sets the LIU.SR:TDM status bit. The setting
of LIU.SR:TDM can cause an interrupt if enabled by LIU.SRIE:TDMIE. When the transmitter is disabled, the
transmit driver monitor is also disabled. The transmit driver monitor is clocked by the LIU’s reference clock.
Note that the transmit driver monitor can be affected by reflections caused by shorts and opens on the line. A short
circuit at a distance less than a few inches (~11 inches for FR-4 material) can introduce inverted reflections that
reduce the outgoing pulse amplitude below the VTXMIN threshold and thereby activate the TDM pin and/or the TDM
status bit. Similarly an open circuit a similar distance away can introduce noninverted reflections that increase the
outgoing amplitude above the VTXMAX threshold and thereby activate the TDM pin and/or the TDM status bit. Shorts
and opens at larger distances away from TXP/TXN can also activate the TDM pin and/or the TDM status bit, but
this effect is data-pattern dependent.
If either TXP or TXN is not connected (open), shorted to VDD, or shorted to VSS, then a transmit failure alarm is
declared by setting the LIU.SR:TFAIL status bit. A change of state of the TFAIL status bit can cause an interrupt if
enabled by LIU.SRIE:TFAILIE. TFAIL is cleared when activity is detected on both TXP and TXN.
8.2.10 Power-Down
To minimize power consumption when the transmitter is not being used, the TPD pin (all ports) or the
PORT.CR1:TPD configuration bit (per port) can be asserted. When the transmitter is powered down, the TXP and
TXN pins are put in a high-impedance state and the transmit drivers are powered down.
8.2.11 Jitter Generation (Intrinsic)
The transmitter meets the jitter generation requirements of all applicable standards in Table 8-1, with or without the
jitter attenuator enabled. Generated jitter is measured with a jitter-free, 0ppm input clock.
Table 8-1. Jitter Generation
SIGNAL
DS3
DS3
DS3
E3
STS-1
STS-1
STANDARD REQUIREMENT
GR-499
T1.404
T1.404
G.751
GR-253
GR-253
0.3 UIRMS
0.5 UIP-P
0.05 UIP-P
0.05 UIP-P
0.01 UIRMS
0.10 UIP-P
BANDWIDTH
10Hz to 400kHz
10Hz to 400kHz
30kHz to 400kHz
100Hz to 800kHz
12kHz to 400kHz
12kHz to 400kHz
DS325xx JITTER
WITHOUT CLAD WITH CLAD
TYP
MAX
TYP MAX
0.01
0.02
0.01
0.02
0.02
0.03
0.05
0.06
0.015
0.025
0.04
0.05
0.02
0.03
0.04
0.05
0.005
0.008
0.007 0.01
0.04
0.06
0.06
0.08
UNITS
UIRMS
UIP-P
UIP-P
UIP-P
UIRMS
UIP-P
8.2.12 Jitter Transfer
Without the jitter attenuator on the transmit side, the transmitter passes jitter through unchanged. With the jitter
attenuator enabled on the transmit side, the transmitter meets the jitter transfer requirements of all applicable
telecommunication standards in Table 1-1. See Figure 8-7.
26 of 130
DS32506/DS32508/DS32512
Figure 8-1. DS3 Waveform Template
2nd Rise
1st Fall
DS325xx waveshape segments.
See the LIU.TWSCR register
descriptions.
1.2
1st Rise
2nd Fall
1.0
Normalized Amplitude
0.8
0.6
0.4
0.2
0
-0.2
-1.0
-0.75
-0.5
-0.25
0
0.25
0.5
0.75
1.0
1.25
1.5
Time (UI)
Table 8-2. DS3 Waveform Equations
TIME (IN UNIT INTERVALS)
-0.85 ≤ T ≤ -0.68
-0.68 ≤ T ≤ +0.36
0.36 ≤ T ≤ 1.4
-0.85 ≤ T ≤ -0.36
-0.36 ≤ T ≤ +0.36
0.36 ≤ T ≤ 1.4
NORMALIZED AMPLITUDE EQUATION
UPPER CURVE
0.03
0.5 {1 + sin[(π / 2)(1 + T / 0.34)]} + 0.03
0.08 + 0.407e-1.84(T - 0.36)
LOWER CURVE
-0.03
0.5 {1 + sin[(π / 2)(1 + T / 0.18)]} - 0.03
-0.03
Table 8-3. DS3 Waveform Test Parameters and Limits
PARAMETER
Rate
Line Code
Transmission Medium
Test Measurement Point
Test Termination
Pulse Amplitude
Pulse Shape
Unframed All-Ones Power Level at 22.368MHz
Unframed All-Ones Power Level at 44.736MHz
Pulse Imbalance of Isolated Pulses
SPECIFICATION
44.736Mbps (±20ppm)
B3ZS
Coaxial cable (AT&T 734A or equivalent)
At the end of 0 to 450ft of coaxial cable
75Ω (±1%) resistive
Between 0.36V and 0.85V
An isolated pulse (preceded by two zeros and followed by
one zero) falls within the curves listed in Table 8-2.
Between -1.8dBm and +5.7dBm
At least 20dB less than the power at 22.368MHz
Ratio of positive and negative pulses must be between 0.90
and 1.10
27 of 130
DS32506/DS32508/DS32512
Figure 8-2. STS-1 Waveform Template
2nd Rise
1st Fall
DS325xx waveshape segments.
See the LIU.TWSCR register
descriptions.
1.2
1st Rise
2nd Fall
1.0
Normalized Amplitude
0.8
0.6
0.4
0.2
0
-0.2
-1.0
-0.75
-0.5
-0.25
0
0.5
0.25
0.75
1.0
1.25
1.5
Time (UI)
Table 8-4. STS-1 Waveform Equations
TIME (IN UNIT INTERVALS)
-0.85 ≤ T ≤ -0.68
-0.68 ≤ T ≤ +0.26
0.26 ≤ T ≤ 1.4
-0.85 ≤ T ≤ -0.36
-0.36 ≤ T ≤ +0.36
0.36 ≤ T ≤ 1.4
NORMALIZED AMPLITUDE EQUATIONS
UPPER CURVE
0.03
0.5 {1 + sin[(π / 2)(1 + T / 0.34)]} + 0.03
0.1 + 0.61e-2.4(T - 0.26)
LOWER CURVE
-0.03
0.5 {1 + sin[(π / 2)(1 + T / 0.18)]} - 0.03
-0.03
Table 8-5. STS-1 Waveform Test Parameters and Limits
PARAMETER
Rate
Line Code
Transmission Medium
Test Measurement Point
Test Termination
Pulse Amplitude
Pulse Shape
Unframed All-Ones Power Level at 25.92MHz
Unframed All-Ones Power Level at 51.84MHz
SPECIFICATION
51.840Mbps (±20ppm)
B3ZS
Coaxial cable (AT&T 734A or equivalent)
At the end of 0 to 450ft of coaxial cable
75Ω (±1%) resistive
0.800V nominal (not covered in specs)
An isolated pulse (preceded by two zeros and followed by one
zero) falls within the curved listed in Table 8-4.
Between -1.8dBm and +5.7dBm
At least 20dB less than the power at 25.92MHz
28 of 130
DS32506/DS32508/DS32512
Figure 8-3. E3 Waveform Template
Zero Level
Overshoot
One Level
Undershoot
Zero Level
17.0 (14.55 + 2.45)
1.2
1.1
1.0
0.9
0.8
Normalized Amplitude
8.65 (14.55 - 5.90)
Nominal Pulse
0.6
0.5
12.1 (14.55 - 2.45)
0.4
14.55
0.2
24.5 (14.55 + 9.95)
0.1
0
-0.1
29.1 (14.55 +
14.55)
-0.2
-15
-10
-5
0
5
10
15
Time (ns)
Table 8-6. E3 Waveform Test Parameters and Limits
PARAMETER
Rate
Line Code
Transmission Medium
Test Measurement Point
Test Termination
Pulse Amplitude
Pulse Shape
Ratio of the Amplitudes of Positive and
Negative Pulses at the Center of the Pulse
Interval
Ratio of the Widths of Positive and Negative
Pulses at the Nominal Half Amplitude
SPECIFICATION
34.368Mbps (±20ppm)
HDB3
Coaxial cable (AT&T 734A or equivalent)
At the transmitter
75Ω (±1%) resistive
1.0V (nominal)
An isolated pulse (preceded by two zeros
and followed by one or more zeros) falls
within the template shown in Figure 8-3.
0.95 to 1.05
0.95 to 1.05
29 of 130
DS325xx waveshape
segments. See the
LIU.TWSCR register
descriptions.
DS32506/DS32508/DS32512
8.3
8.3.1
Receiver
Interfacing to the Line
The receiver can be transformer-coupled or capacitor-coupled to the line. Typically, the receiver interfaces to the
incoming coaxial cable (75Ω) through a 1:1 isolation transformer. The receive line termination can be internal to the
device, external to the device, or a combination of both. Figure 4-1 shows the arrangement of the transformer when
the internal termination is enabled (LIU.CR2:RTRE = 1) and no external termination resistors are used. Figure 4-2
shows the arrangement of the transformer and external termination resistors when the internal termination is
disabled (LIU.CR2:RTRE = 0). The internal termination resistor value is specified in LIU.CR2:RRESADJ[3:0]. Table
8-7 and Table 8-8 specify the required characteristics of the transformer and provide a list of recommended
transformers. The receiver expects the incoming signal to be in B3ZS- or HDB3-coded AMI format.
Table 8-7. Transformer Characteristics
PARAMETER
Turns Ratio
Bandwidth 75Ω
Primary Inductance
Leakage Inductance
Interwinding Capacitance
Isolation Voltage
VALUE
1:1 ±2%
0.200MHz to 340MHz (typ)
40μH (min)
0.12μH (max)
10pF (max)
1500VRMS (min)
Table 8-8. Recommended Transformers
MANUFACTURER
PART
TEMP RANGE
Pulse Engineering
Pulse Engineering
Pulse Engineering
Pulse Engineering
Pulse Engineering
Pulse Engineering
Pulse Engineering
Halo Electronics
Halo Electronics
Halo Electronics
Halo Electronics
PE-65967
PE-65966
T3001
TX3025
TX3036
TX3047
TX3051
TG01-0406NS
TD01-0406NS
TG01-0456NS
TD01-0456NE
0°C to +70°C
0°C to +70°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
0°C to +70°C
0°C to +70°C
-40°C to +85°C
-40°C to +85°C
PINPACKAGE/
SCHEMATIC
6 SMT LS-1/E
6 THT LC-1/E
6 SMT LS-2/E
16 SMT BH/3
24 SMT
32 SMT YB/1
48 SMT
6 SMT SMD/A
6 DIP DIP/A
6 SMT SMD/A
6 DIP DIP/A
OCL
PRIMARY
(μH) (min)
40
40
40
100
100
100
60
40
40
45
45
LL
(μH)
(max)
0.10
0.10
0.11
0.120
0.110
0.150
0.120
0.10
0.10
0.12
0.12
BANDWIDTH
75Ω (MHz)
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
Note: Table subject to change. Multiport transformers are also available. Contact the manufacturers for details at www.pulseeng.com and
www.haloelectronics.com.
8.3.2
Optional Preamp
The receiver can be used in monitoring applications that typically have series resistors with a resistive loss of
approximately 20dB. When the RMON pin is high or the LIU.CR2:RMON configuration bit is set, the receiver can
compensate for this resistive loss by applying 14dB of additional flat gain to the incoming signal before sending the
signal to the AGC/equalizer block (an additional 6dB of flat gain is applied in the AGC circuitry for a total gain of
20dB). When the preamp is enabled the receiver automatically determines whether or not to make use of the
preamp’s additional gain. Status bit LIU.SR:RPAS indicates whether or not the preamp is in use. A change of state
of LIU.SR:RPAS can cause an interrupt if enabled by LIU.SRIE:RPASIE.
8.3.3
Automatic Gain Control (AGC) and Adaptive Equalizer
The AGC circuitry applies flat (frequency independent) gain to the incoming signal to compensate for flat losses in
the transmission channel and variations in transmission power. Since the incoming signal also experiences
frequency-dependent losses as it passes through the coaxial cable, the adaptive equalizer circuitry applies
frequency-dependent gain to offset line losses and restore the signal. The AGC/equalizer circuitry automatically
adapts to coaxial cable losses from 0 to 22dB, which translates into 0 to 457 meters (1500 feet) of coaxial cable
30 of 130
DS32506/DS32508/DS32512
(AT&T 734A or equivalent). The AGC and the equalizer work simultaneously but independently to supply a signal
of nominal amplitude and pulse shape to the clock and data recovery block. The AGC/equalizer block automatically
handles direct (0 meters) monitoring of the transmitter output signal. The real-time receiver gain level can be read
from the LIU.RGLR register. Note: When the receiver preamp is on (LIU.SR:RPAS = 1), the actual receiver gain
level is the level read from the LIU.RGLR register plus 14dB.
8.3.4
Clock and Data Recovery (CDR)
The CDR block takes the amplified, equalized signal from the AGC/equalizer block and produces separate clock,
positive data, and negative data signals. The CDR operates from the LIU’s reference clock. See Section 8.7.1 for
more information about reference clocks and clock selection.
The receiver locks onto the incoming signal using a clock recovery PLL. The PLL lock status is indicated in the
LIU.SR:RLOL status bit. The RLOL bit is set when the difference between recovered clock frequency and reference
clock frequency is greater than 7900ppm and cleared when the difference is less than 7700ppm. A change of state
of the RLOL status bit can cause an interrupt if enabled by LIU.SRIE:RLOLIE. Note that if the reference clock is not
present, RLOL is not set.
8.3.5
Loss-of-Signal (LOS) Detector
The receiver contains analog and digital LOS detectors. The analog LOS (ALOS) detector resides in the
AGC/equalizer block. At approximately 23dB below nominal pulse amplitude ALOS is declared by setting the
LIU.SR:ALOS status bit. A change of state of the ALOS status bit can cause an interrupt if enabled by
LIU.SRIE:ALOSIE. When ALOS is declared the CDR block forces all zeros out of the data recovery circuit, causing
digital LOS (DLOS), which is indicated by the RLOS pin and the LINE.RSR:LOS status bit. During ALOS the RCLK
pin follows the LIU’s reference clock, since no clock information is being received on RXP/RXN. ALOS is cleared at
approximately 22dB below nominal pulse amplitude. When the preamp is enabled (Section 8.3.2) ALOS is declared
at approximately 37dB below nominal and cleared at approximately 36dB below nominal.
The digital LOS detector declares DLOS when it detects 192 consecutive zeros in the recovered data stream.
When DLOS occurs, the receiver asserts the RLOS pin (if the hardware interface is enabled) and the
LINE.RSR:LOS status bit. DLOS is cleared when there are no EXZ occurrences over a span of 192 clock periods.
An EXZ occurrence is defined as three or more consecutive zeros in DS3 and STS-1 modes and four or more
consecutive zeros in E3 mode. The RLOS pin and the LOS status bit are deasserted when the DLOS condition is
cleared. A change of state of the LINE.RSR:LOS status bit can cause an interrupt if enabled by
LINE.RSRIE:LOSIE. DLOS is only declared when B3ZS/HDB3 decoding is enabled (LINE.RCR:RZSD = 0). When
B3ZS/HDB3 decoding is disabled in the LIU, decoding should be enabled in the neighboring DS3/E3 framer, and
DLOS should be detected and report by the framer.
The requirements of ANSI T1.231 and ITU-T G.775 for DS3 LOS defects are met by the DLOS detector, which
asserts RLOS when it counts 192 consecutive zeros coming out of the CDR block and clears RLOS when it counts
192 consecutive pulse intervals without excessive zero occurrences.
The requirements of ITU-T G.775 for E3 LOS defects are met by a combination of the ALOS detector and the
DLOS detector, as follows:
For E3 RLOS Assertion:
1) The ALOS detector in the AGC/equalizer block detects that the incoming signal is less than or
equal to a signal level approximately 23dB below nominal, and mutes the data coming out of
the clock and data recovery block. (23dB below nominal is in the “tolerance range” of G.775,
where LOS may or may not be declared.)
2) The DLOS detector counts 192 consecutive zeros coming out of the CDR block and asserts
RLOS. (192 meets the 10 ≤ N ≤ 255 pulse-interval duration requirement of G.775.)
For E3 RLOS Clear:
1) The ALOS detector in the AGC/equalizer block detects that the incoming signal is greater than
or equal to a signal level approximately 22dB below nominal, and enables data to come out of
the CDR block. (22dB is in the “tolerance range” of G.775, where LOS may or may not be
declared.)
2) The DLOS detector counts 192 consecutive pulse intervals without EXZ occurrences and
deasserts RLOS. (192 meets the 10 ≤ N ≤ 255 pulse-interval duration requirement of G.775.)
31 of 130
DS32506/DS32508/DS32512
The DLOS detector supports the requirements of ANSI T1.231 for STS-1 LOS defects. At the STS-1 rate, the time
required for the DLOS detector to count 192 consecutive zeros falls in the range of 2.3 ≤ T ≤ 100μs required by
ANSI T1.231 for declaring an LOS defect. Although the time required for the DLOS detector to count 192
consecutive pulse intervals with no excessive zeros is less than the 125μs to 250μs period required by ANSI
T1.231 for clearing an LOS defect, a period of this length where LOS is inactive can easily be timed in software.
During LOS, the RCLK output pin is derived from the LIU’s reference clock. The ALOS detector has a longer time
constant than the DLOS detector. Thus, when the incoming signal is lost, the DLOS detector activates first
(asserting the RLOS pin and LOS status bit), followed by the ALOS detector. When a signal is restored, the DLOS
detector does not get a valid signal that it can qualify for no EXZ occurrences until the ALOS detector has seen the
signal rise above a signal level approximately 22dB below nominal.
8.3.6
Framer Interface Format and the B3ZS/HDB3 Decoder
The recovered data can be output in either bipolar or binary format. Reception of a B3ZS or HDB3 codeword is
flagged by the LINE.RSRL:ZSCDL latched status bit.
8.3.6.1
Bipolar Interface Format
To select the bipolar interface format, pull the RBIN pin low and clear the PORT.CR2:RBIN configuration bit. In
bipolar format, the B3ZS/HDB3 decoder is disabled and the recovered data is buffered and output on the RPOS
and RNEG outputs for subsequent decoding by a downstream framer or mapper. Received positive-polarity pulses
are indicated by RPOS = 1, while negative-polarity pulses are indicated by RNEG = 1.
In DS3 and STS-1 modes an excessive zeros error (EXZ) is declared whenever there is an occurrence of 3 or
more zeros in a row in the receive data stream. In E3 mode, an EXZ error is declared whenever there is an
occurrence of 4 or more zeros. EXZs are flagged by the LINE.RSRL:EXZL and EXZCL latched status bits and
accumulated in the LINE.REXZCR register.
In all three modes (DS3, E3, and STS-1) a bipolar violation is declared if two positive pulses are received without
an intervening negative pulse or if two negative pulses are received without an intervening positive pulse. Bipolar
violations (BPVs) are flagged by the LINE.RSRL:BPVL and BPVCL latched status bits and accumulated in the
LINE.RBPVCR register.
8.3.6.2
Binary Interface Format
To select the binary interface format, pull the RBIN pin high (all ports) or set the PORT.CR2:RBIN configuration bit
(per port). In binary format, the B3ZS/HBD3 decoder is enabled, and the recovered data is decoded and output as
a binary (NRZ) value on the RDAT pin, while bipolar violations, code violations, and excessive zero errors are
detected and flagged on the RLCV pin.
In DS3 and STS-1 modes, B3ZS decoding is performed. In these modes, whenever a B3ZS codeword is found in
the receive data stream it is replaced with three zeros. In E3 mode HDB3 decoding is performed. In this mode,
whenever an HDB3 codeword is found in the receive data stream it is replaced with four zeros. The decoding
search criteria for a B3ZS/HDB3 codeword is programmable using the LINE.RCR:RDZSF control bit.
An excessive zeros error (EXZ) is declared in DS3 and STS-1 modes whenever there is an occurrence of 3 or
more zeros in a row in the receive data stream. In E3 mode, an EXZ error is declared whenever there is an
occurrence of 4 or more zeros in a row. EXZs are flagged by the LINE.RSRL:EXZL and EXZCL latched status bits
and accumulated in the LINE.REXZCR register.
A bipolar violation error (BPV error) is declared in DS3 and STS-1 modes if a BPV is detected that is not part of a
valid B3ZS codeword. In E3 mode, a bipolar violation error is declared whenever a BPV is detected that is not part
of a valid HDB3 codeword. In E3 mode if LINE.RCR:E3CVE = 1, code violations are detected rather than bipolar
violation errors. A code violation is declared whenever consecutive BPVs (not BPV errors) have the same polarity
(ITU O.161 definition). The error detection search criteria for a B3ZS/HDB3 codeword is programmable using the
LINE.RCR:REZSF control bit. Bipolar violations (or code violations if LINE.RCR:E3CVE = 1) are flagged by the
LINE.RSRL:BPVL and BPVCL latched status bits and accumulated in the LINE.RBPVCR register.
In the discussion that follows, a valid pulse that conforms to the AMI rule is denoted as B. A BPV pulse that violates
the AMI rule is denoted as V.
In DS3 and STS-1 modes, B3ZS decoding is performed, and RLCV is asserted during any RCLK cycle where the
data RDAT causes ones of the following code violations:
32 of 130
DS32506/DS32508/DS32512
When LINE.RCR:E3CVE = 0:
– A BPV immediately preceded by a valid pulse (B, V).
– A BPV with the same polarity as the last BPV.
– The third zero in an EXZ.
8
When LINE.RCR:E3CVE = 1:
– A BPV immediately preceded by a valid pulse (B, V).
– A BPV with the same polarity as the last BPV.
In E3 mode, HDB3 decoding is performed, and RLCV is asserted during any RCLK cycle where the data on RDAT
causes one of the following code violations:
8
When LINE.RCR:E3CVE = 0:
– A BPV immediately preceded by a valid pulse (B, V) or by a valid pulse and a zero (B, 0, V).
– A BPV with the same polarity as the last BPV.
– The fourth zero in an EXZ.
18
When LINE.RCR:E3CVE = 1:
– A BPV with the same polarity as the last BPV.
In any cycle where RLCV is asserted to flag a BPV, the RDAT pin outputs a one. In any cycle where RLCV is
asserted to flag an EXZ, the RDAT pin outputs a zero. The state bit that tracks the polarity of the last BPV is
toggled on every BPV, whether part of a valid B3ZS/HDB3 codeword or not.
18
8.3.6.3
RCLK Inversion
The polarity of RCLK can be inverted to support a glueless interface to a variety of neighboring components.
Normally, data is output on the RPOS/RDAT and RNEG/RLCV pins on the falling edge of RCLK. To output data on
these pins on the rising edge of RCLK, pull the RCLKI pin high or set the PORT.INV:RCLKI configuration bit.
8.3.6.4
Receiver Output Disable
The RCLK, RPOS/RDAT and RNEG/RLCV pins can be disabled (put in a high-impedance state) to support
protection switching and redundant-LIU applications. This capability supports system configurations where two or
more LIUs are wire-ORed together and a system processor selects one to be active. To disable these pins, set the
PORT.CR2:ROD configuration bit.
8.3.7
Power-Down
To minimize power consumption when the receiver is not being used, assert the RPD pin (all ports) or the
PORT.CR1:RPD configuration bit (per port). When the receiver is powered down, the RCLK, RPOS/RDAT, and
RNEG/RLCV pins are disabled (high impedance). In addition, the RXP and RXN pins become high impedance.
8.3.8
Input Failure Detection
The LIU receiver can detect opens and shorts on the RXP and RXN differential inputs. By default, the receiver
detects the following problems, collectively labeled type 1 failures: open RXP connection, open RXN connection,
common-mode RXP/RXN short to VDD, and common-mode RXP/RXN short to VSS. Type 1 failures are reported on
LIU.SR:RFAIL1. RFAIL1 is cleared when activity is detected on both RXP and RXN.
If LIU.CR2:RFL2E = 1, the receiver also detects a type 2 failure, which is an open or high-impedance path between
RXP and RXN. In a board with the external components shown in Figure 4-1 or Figure 4-2, the receive transformer
normally presents a low-impedance path between RXP and RXN. To detect a type 2 failure, the receiver connects
an 40μA DC current source to RXP and measures the impedance between RXP and RXN. When this impedance is
greater than about 5kΩ the receiver declares a type 2 failure on LIU.SR:RFAIL2. When the type 2 failure detection
circuitry is enabled, internal termination must be disabled (LIU.CR2:RTRE = 0) and external termination must not
be present or a type 2 failure will not be detected because the impedance of the termination is below the type 2
failure threshold.
33 of 130
DS32506/DS32508/DS32512
8.3.9
Jitter and Wander Tolerance
The receiver exceeds the input jitter tolerance requirements of all applicable telecommunication standards in Table
1-1. See Figure 8-4 for STS-1 and E3 jitter tolerance characteristics. See Figure 8-5 for DS3 jitter tolerance
characteristics. See Figure 8-6 for DS3 and E3 wander tolerance characteristics. Note: Only G.823 and G.824 have
wander tolerance requirements.
Figure 8-4. STS-1 and E3 Jitter Tolerance
100
GR-253 (STS-1)
34.4
G.823 (E3)
15
Jitter Tolerance (UIp-p)
10
DS325xx
Jitter Tolerance
1.5
1.0
0.15
0.1
1.675
1
30
4.4
10
300
100
2k
1k
800k
1M
20k
10k
100k
Frequency (Hz)
Figure 8-5. DS3 Jitter Tolerance
100
G.824 (DS3)
67
GR-499 Cat I (DS3)
GR-499 Cat II (DS3)
Jitter Tolerance (UIp-p)
10
5
DS325xx
Jitter Tolerance
1.0
0.3
0.1
1.675
1
21.9
10
100
600
669 1k
2.3k
Frequency (Hz)
34 of 130
22.3k30k
10k
60k
100k
300k
400k
1M
DS32506/DS32508/DS32512
Figure 8-6. DS3 and E3 Wander Tolerance
Wander Tolerance (UIp-p)
1000
805
DS325xx
Wander Tolerance
G.824 (DS3)
137.5
G.823 (E3)
100
67
34.4
10
1.2
10-5
0.032
6.12
10-4
10-3
10-2
0.13
10-1
1.675
1
4.4
10
Frequency (Hz)
8.3.10 Jitter Transfer
Without the jitter attenuator on the receive side, the receiver attenuates jitter at frequencies above its corner
frequency (approximately 300kHz) and passes jitter at lower frequencies. With the jitter attenuator enabled on the
receive side, the receiver meets the jitter transfer requirements of all applicable telecommunication standards in
Table 1-1. See Figure 8-7.
8.4
Jitter Attenuator
Each LIU contains an on-board jitter attenuator that can be placed in the receive path or the transmit path or can
be disabled. When only the hardware interface is enabled (IFSEL = 000 and HW = 1), the JAS[1:0] and JAD[1:0]
pins specify the specify the JA location and buffer depth for all ports. When a microprocessor interface is enabled
(IFSEL ≠ 000), the JAS[1:0] and JAD[1:0] pins are ignored, and the LIU.CR1:JAS[1:0] and JAD[1:0] configuration
bits specify the JA location and buffer depth for each port individually. The JA buffer depth can be set to 16, 32, 64
or 128 bits. Figure 8-7 shows the minimum jitter attenuation for the device when the jitter attenuator is enabled.
Figure 8-7 also shows the receive jitter transfer when the jitter attenuator is disabled.
The jitter attenuator consists of a narrowband PLL to retime the selected clock, a FIFO to buffer the associated
data while the clock is being retimed, and logic to prevent FIFO over/underflow in the presence of very large jitter
amplitudes. The JA has a loop bandwidth of reference_clock ÷ 2,058,874 (see corner frequencies in Figure 8-7).
The JA attenuates jitter at frequencies higher than the loop bandwidth, while allowing jitter (and wander) at lower
frequencies to pass through relatively unaffected.
The jitter attenuator requires a transmission-quality reference clock (i.e., ±20ppm frequency accuracy and low
jitter). See Section 8.7.1 for more information about reference clocks and clock selection.
When the microprocessor interface is enabled, the jitter attenuator indicates the fill status of its FIFO buffer in the
LIU.SRL:JAFL (JA full) and LIU.SRL:JAEL (JA empty) status bits. When the buffer becomes full, the JA
momentarily increases the frequency of the read clock by 6250ppm to avoid buffer overflow and consequent data
errors. When the buffer becomes empty, the JA momentarily decreases the frequency of the read clock by
6250ppm to avoid buffer underflow and consequent data errors. During these momentary frequency adjustments,
jitter is passed through the JA to avoid over/underflow. If the phase noise or frequency offset of the write clock is
large enough to cause the buffer to overflow or underflow, the JA sets both the JAFL bit and the JAEL bit to
indicate that data errors have occurred. JAFL and JAEL can cause an interrupt if enabled by the corresponding
enable bits in the LIU.SRIE register.
As shown in Figure 8-7, the jitter attenuator meets the jitter transfer requirements of all applicable standards listed
in Table 1-1.
35 of 130
DS32506/DS32508/DS32512
Figure 8-7. Jitter Attenuation/Jitter Transfer
21.7 Hz (DS3)
16.7 Hz (E3)
25.2 Hz (STS -1)
27Hz
40Hz
1k
40k 59.6k
>150k
0
DS3 [GR - 499 (1995)]
CATEGORY I
DS3 [GR - 253 (1999)]
CATEGORY I
DS325xx TYPICAL
RECEIVER JITTER
TRANSFER WITH
JITTER ATTENUATOR
DISABLED
JITTER A TTENUATION (dB)
STS- 1 [GR - 253 (1999)]
CATEGORY II
-10
-20
E3 [TBR24 (1997)]
DS325xx
DS3/E3/STS-1
MINIMUM
JITTER
ATTENUATION
WITH JITTER
ATTENUATOR
ENABLED
DS3 [GR - 499 (1999)]
CATEGORY II
-30
10
100
1k
10k
100k
1M
FREQUENCY (Hz)
8.5
BERT
Each LIU port has a built-in bit error-rate tester (BERT). The BERT is a software-programmable test-pattern
generator and monitor capable of meeting most error performance requirements for digital transmission equipment.
It can generate and synchronize to pseudo-random patterns with a generation polynomial of the form xn + xy + 1,
(where n and y can take on values from 1 to 32 with y < n) and to repetitive patterns of any length up to 32 bits.
The pattern generator generates the programmable test pattern, and inserts the test pattern into the data stream.
The pattern detector extracts the test pattern from the receive data stream and monitors it. Figure 2-1 shows the
location of the BERT Block within the DS325xx devices.
8.5.1
Configuration and Monitoring
The pattern detector is always enabled. The pattern generator is enabled by setting the PORT.CR3:BERTE
configuration bit. When the BERT is enabled and PORT.CR3:BERTD=0, the pattern is transmitted and received in
the line direction, i.e. the pattern generator is the data source for the transmitter, and the receiver is the data source
for the pattern detector. When the BERT is enabled and PORT.CR3:BERTD=1, the pattern is transmitted and
received in the system direction, i.e. the pattern generator is the data source for the RPOS/RDAT and RNEG/RLCV
pins, and the TPOS/TDAT and TNEG pins are the data source for the pattern detector. See Figure 2-1.
The I/O of the BERT are binary (NRZ) format. Thus while the BERT is enabled, both PORT.CR2:RBIN and
PORT.CR2:TBIN must be set to 1 for proper operation. In addition, while transmitting/receiving BERT patterns in
the system direction (PORT.CR3:BERTD = 1), the neighboring framer or mapper component must also be
configured for binary interface mode to match the LIU. If the LIU interface is normally bipolar, the interface can be
changed back to bipolar mode when the system is done using the BERT function (PORT.CR3:BERTE = 0).
The following tables show how to configure the BERT to send and receive common patterns.
36 of 130
DS32506/DS32508/DS32512
Table 8-9. Pseudorandom Pattern Generation
PATTERN TYPE
29-1 O.153 (511 type)
211-1 O.152 and
O.153 (2047 type)
215-1 O.151
BERT.PCR REGISTER
PTF[4:0]
PLF[4:0]
PTS QRSS
(hex)
(hex)
04
08
0
0
BERT.SPR2
BERT.SPR1
0xFFFF
0xFFFF
BERT.CR
TPIC,
RPIC
0
08
0A
0
0
0xFFFF
0xFFFF
0
0D
0E
0
0
0xFFFF
0xFFFF
1
20
10
13
0
0
0xFFFF
0xFFFF
0
20
02
13
0
1
0xFFFF
0xFFFF
0
23
11
16
0
0
0xFFFF
0xFFFF
1
BERT.SPR2
BERT.SPR1
0xFFFF
0xFFFF
2 -1 O.153
2 -1 O.151 QRSS
2 -1 O.151
Table 8-10. Repetitive Pattern Generation
PATTERN TYPE
All 1s
BERT.PCR REGISTER
PTF[4:0]
PLF[4:0]
PTS QRSS
(hex)
(hex)
NA
00
1
0
All 0s
NA
00
1
0
0xFFFF
0xFFFE
Alternating 1s and 0s
NA
01
1
0
0xFFFF
0xFFFE
11001100...
NA
03
1
0
0xFFFF
0xFFFC
3 in 24
NA
17
1
0
0xFF20
0x0022
1 in 16
NA
0F
1
0
0xFFFF
0x0001
1 in 8
NA
07
1
0
0xFFFF
0xFF01
1 in 4
NA
03
1
0
0xFFFF
0xFFF1
After configuring these bits, the pattern must be loaded into the BERT. This is accomplished via a zero-to-one
transition on BERT.CR.TNPL for the pattern generator and BERT.CR.RNPL for the pattern detector. The BERT
must be enabled (PORT.CR3:BERTE = 1) before the pattern is loaded for the pattern load operation to take effect.
Monitoring the BERT requires reading the BERT.SR register, which contains the Bit-Error Count (BEC) bit and the
Out of Synchronization (OOS) bit. The BEC bit is set to one when the bit error counter is one or more. The OOS bit
is set to one when the pattern detector is not synchronized to the incoming pattern, which occurs when it receives 6
or more bit errors within a 64-bit window. The Receive BERT Bit Count Register (BERT.RBCR) and the Receive
BERT Bit Error-Count Register (BERT.RBECR) are updated upon the reception of a Performance Monitor Update
signal (e.g., BERT.CR.LPMU). This signal updates the registers with the bit and bit-error counts since the last
update and then resets the counters. See Section 8.7.4 for more details about performance monitor updates.
8.5.2
Receive Pattern Detection
The pattern detector synchronizes the receive pattern generator to the incoming pattern. The receive pattern
generator is a 32-bit shift register that shifts data from the least significant bit (LSB) or bit 1 to the most significant
bit (MSB) or bit 32. The input to bit 1 is the feedback. For a PRBS pattern (generating polynomial xn + xy + 1), the
feedback is an XOR of bit n and bit y. For a repetitive pattern (length n), the feedback is bit n. The values for n and
y are individually programmable (1 to 32 with y < n) in the BERT.PCR:PLF and PTF fields. The output of the
receive pattern generator is the feedback. If QRSS is enabled (BERT.PCR:QRSS = 1), the feedback is forced to be
an XOR of bits 17 and 20, and the output is forced to one if the next 14 bits are all zeros. For PRBS and QRSS
patterns, the feedback is forced to one if bits 1 through 31 are all zeros. Depending on the type of pattern
programmed, pattern detection performs either PRBS synchronization or repetitive pattern synchronization.
37 of 130
DS32506/DS32508/DS32512
8.5.2.1
Receive PRBS Synchronization
PRBS synchronization synchronizes the receive pattern generator to the incoming PRBS or QRSS pattern. The
receive pattern generator is synchronized by loading 32 data stream bits into the receive pattern generator, and
then checking the next 32 data stream bits. Synchronization is achieved if all 32 bits match the incoming pattern. If
at least six incoming bits in the current 64-bit window do not match the receive pattern generator, automatic pattern
resynchronization is initiated. Automatic pattern resynchronization can be disabled by setting BERT.CR:APRD = 1.
Pattern resynchronization can also be initiated manually by a zero-to-one transition of the Manual Pattern
Resynchronization bit (BERT.CR:MPR). The incoming data stream can be inverted before comparison with the
receive pattern generator by setting BERT.CR:RPIC. See Figure 8-8 for the PRBS synchronization diagram.
Figure 8-8. PRBS Synchronization State Diagram
Sync
s
32
r
rro
bit
s
wit
ho
ut
he
wit
its
4b
err
ors
f6
6o
1 bit error
Verify
Load
32 bits loaded
8.5.2.2
Receive Repetitive Pattern Synchronization
Repetitive pattern synchronization synchronizes the receive pattern generator to the incoming repetitive pattern.
The receive pattern generator is synchronized by searching each incoming data stream bit position for the
repetitive pattern, and then checking the next 32 data stream bits. Synchronization is achieved if all 32 bits match
the incoming pattern. If at least six incoming bits in the current 64-bit window do not match the receive PRBS
pattern generator, automatic pattern resynchronization is initiated. Automatic pattern re-synchronization can be
disabled by setting BERT.CR:APRD = 1. Pattern resynchronization can also be initiated manually by a zero-to-one
transition of the Manual Pattern Resynchronization bit (BERT.CR:MPR). The incoming data stream can be inverted
before comparison with the receive pattern generator by setting BERT.CR:RPIC.
See Figure 8-9 for the repetitive pattern synchronization state diagram.
38 of 130
DS32506/DS32508/DS32512
Figure 8-9. Repetitive Pattern Synchronization State Diagram
Sync
its
4b
w it
ho
ut
err
ors
f6
6o
32
bit
s
rs
rro
he
w it
1 bit error
Verify
Match
Pattern Matches
8.5.2.3
Receive Pattern Monitoring
Receive pattern monitoring monitors the incoming data stream for both an OOS condition and bit errors and counts
the incoming bits. An Out Of Synchronization (BERT.SR:OOS = 1) condition is declared when the synchronization
state machine is not in the “Sync” state. An OOS condition is terminated when the synchronization state machine is
in the “Sync” state. A change of state of the OOS status bit sets the BERT.SRL:OOSL latched status bit and can
cause an interrupt if enabled by BERT.SRIE:OOSIE.
Bit errors are determined by comparing the incoming data stream bit to the receive pattern generator output. If the
two bits do not match, a bit error is declared (BERT.SRL:BEL = 1), and the bit error and bit counts are incremented
(BERT.RBECR and BERT.RBCR, respectively). If the two bits do match, only the bit count is incremented. The bit
count and bit error count are not incremented when an OOS condition exists. The setting of the BEL status bit can
cause an interrupt if enabled by BERT.SRIE:BEIE.
8.5.3
Transmit Pattern Generation
The pattern generator generates the outgoing test pattern. The transmit pattern generator is a 32-bit shift register
that shifts data from the least significant bit (LSB) or bit 1 to the most significant bit (MSB) or bit 32. The input to bit
1 is the feedback. For a PRBS pattern (generating polynomial xn + xy + 1), the feedback is an XOR of bit n and bit
y. For a repetitive pattern (length n), the feedback is bit n. The values for n and y are individually programmable (1
to 32 with y < n) in the BERT.PCR:PLF and PTF fields. The output of the receive pattern generator is the feedback.
If QRSS is enabled (BERT.PCR:QRSS = 1), the feedback is forced to be an XOR of bits 17 and 20, and the output
is forced to one if the next 14 bits are all zeros. For PRBS and QRSS patterns, the feedback is forced to one if bits
1 through 31 are all zeros. When a new pattern is loaded, the pattern generator is loaded with a seed/pattern value
before pattern generation starts. The seed/pattern value is programmable (0 - 2n - 1) in the BERT.SPR registers.
The generated pattern can be inverted by setting BERT.CR:TPIC.
39 of 130
DS32506/DS32508/DS32512
8.5.3.1
Transmit Error Insertion
Errors can be inserted into the generated pattern one at a time or at a rate of one out of every 10n bits. The value of
n is programmable (1 to 7 or off) in the BERT.TEICR:TEIR[2:0] configuration field. Single bit error insertion is
enabled by setting BERT.TEICR:BEI and can be initiated from the microprocessor interface or by the manual error
insertion pin (GPIOB2). See Section 8.7.5 for more information about manual error insertion.
8.6
Loopbacks
Each LIU has three internal loopbacks. See Figure 2-1. When only the hardware interface is enabled (IFSEL = 000
and HW = 1), loopbacks are controlled by the LBn[1:0] and LBS pins. When a microprocessor interface is enabled
(IFSEL ≠ 000), loopbacks are controlled by the LB[1:0] and LBS fields in the PORT.CR3 register.
Analog loopback (ALB) connects the outgoing transmit signal back to the receiver’s analog front end. During ALB
the transmit signal is output normally on TXP/TXN, but the received signal on RXP/RXN is ignored.
Line loopback (LLB) connects the output of the receiver to the input of the transmitter. The LLB path does not
include the B3ZS/HDB3 decoder and encoder so that the signal looped back is exactly the same as the signal
received, including bipolar violations and code violations. During LLB, recovered clock and data are output on
RCLK, RPOS/RDAT, and RNEG/RLCV, but the TPOS/TDAT and TNEG pins are ignored.
Diagnostic loopback (DLB) connects the TCLK, TPOS/TDAT and TNEG pins to the RCLK, RPOS/RDAT, and
RNEG/RLCV pins. During DLB (with LLB disabled), the signal on TXP/TXN can be the normal transmit signal or an
AIS signal from the AIS generator. DLB and LLB can be enabled simultaneously to provide simultaneous remote
and local loopbacks.
8.7
8.7.1
Global Resources
Clock Rate Adapter (CLAD)
The CLAD is used to create multiple transmission-quality reference clocks from a single transmission-quality
(±20ppm, low jitter) clock input on the REFCLK pin. The LIUs in the device need up to three different reference
clocks (DS3, E3, and STS-1) for use by the CDRs and jitter attenuators. Given one of these clock rates or any of
several other clock frequencies on the REFCLK pin, the CLAD can generate all three LIU reference clocks. The
internally generated reference clock signals can optionally be driven out on pins CLKA, CLKB, and CLKC for
external use. In addition a fourth frequency, either 77.76MHz or 19.44MHz, can be generated and driven out on the
CLKD pin for use in Telecom Bus applications.
When only the hardware interface is enabled (IFSEL = 000 and HW = 1), the CLAD is controlled by the CLADBYP
pin, and the REFCLK frequency is fixed at 19.44MHz. When the CLADBYP pin is high all PLLs in the CLAD are
bypassed and powered down, and the REFCLK pin is ignored. In this mode the CLKA, CLKB, and CLKC pins
become inputs, and the DS3, E3, and STS-1 reference clocks, respectively, are sourced from these pins.
Transmission-quality clocks (±20ppm, low jitter) must be provided to these pins for each line rate required by the
LIUs. When CLADBYP is low, all four PLLs in the CLAD are enabled, and the generated DS3, E3, STS-1, and
77.76MHz clocks are always output on CLKA, CLKB, CLKC and CLKD, respectively.
When a microprocessor interface is enabled (IFSEL ≠ 000), the CLAD clock mode and the REFCLK frequency are
set by the GLOBAL.CR2:CLAD[6:4] bits, as shown in Table 8-11. When CLAD[6:4] = 000, all PLLs in the CLAD are
bypassed and powered down, and the REFCLK pin is ignored. In this mode the CLKA, CLKB, and CLKC pins
become inputs, and the DS3, E3, and STS-1 reference clocks, respectively, are sourced from these pins.
Transmission-quality clocks (±20ppm, low jitter) must be provided to these pins for each line rate required by the
LIUs. CLAD[6:4] = 000 is equivalent to pulling the CLADBYP pin high. When CLAD[6:4] ≠ 000, the PLL circuits are
enabled as needed to generate the required clocks, as determined by the CLAD[6:0] bits and the LIU mode bits
(PORT.CR2:LM[1:0]). If a clock rate is not required as a reference clock, then the PLL used to generate that clock
is automatically disabled and powered down. The CLAD[3:0] bits are output enable controls for CLKA, CLKB,
CLKC and CLKD, respectively. Configuration bit GLOBAL.CR2:CLKD19 specifies the frequency to be output on the
CLKD pin (77.76MHz or 19.44MHz). Status register GLOBAL.SRL provides activity status for the REFCLK, CLKA,
CLKB and CLKC pins and lock status for the CLAD.
Each LIU block indicates the absence of the reference clock it requires by setting its LIU.SR:LOMC bit.
40 of 130
DS32506/DS32508/DS32512
Table 8-11. CLAD Clock Source Settings
CLAD[6:4]
000
001
010
011
100
101
110
111
REFCLK
Don't Care
DS3 input
E3 input
STS-1 input
77.76MHz input
19.44MHz input
38.88MHz input
12.80MHz input
CLKA
DS3 input
DS3 output
DS3 output
DS3 output
DS3 output
DS3 output
DS3 output
DS3 output
CLKB
E3 input
E3 output
E3 output
E3 output
E3 output
E3 output
E3 output
E3 output
CLKC
STS-1 input
STS-1 output
STS-1 output
STS-1 output
STS-1 output
STS-1 output
STS-1 output
STS-1 output
CLKD
Low output
77.76 or 19.44MHz output
77.76 or 19.44MHz output
77.76 or 19.44MHz output
77.76 or 19.44MHz output
77.76 or 19.44MHz output
77.76 or 19.44MHz output
77.76 or 19.44MHz output
Table 8-12. CLAD Clock Pin Output Settings
CLAD[3:0]*
XXX0
XXX1
XX0X
XX1X
X0XX
X1XX
0XXX
1XXX
CLKA PIN
Low output
PLL-A output
—
—
—
—
—
—
CLKB PIN
—
—Low output
PLL-B output
—
—
—
—
CLKC PIN
—
—
—
—
Low output
PLL-C output
—
—
CLKD PIN
—
—
—
—
—
—
Low output
PLL-D output
*When CLAD[6:4] = 000, CLKA, CLKB, and CLKC are inputs and CLKD is held low.
8.7.2
One-Second Reference Generator
The one-second reference signal can be used to update performance monitoring registers on a precise onesecond interval. The generated internal signal is a 50% duty cycle signal that is divided down from the indicated
reference signal. The low to high edge on this signal sets the GLOBAL.SRL:1SREFL latched one-second bit, which
can generate an interrupt if enabled. The low to high edge is used to initiate a performance monitor register update
when GLOBAL.CR1:GPM[1:0] = 1X. The internal one-second reference can be output on the GPIOB3 pin by
setting GLOBAL.CR1:G1SROE. The source for the one second reference is set by GLOBAL.CR1:G1SRS[3:0]. The
DS3, E3, and STS-1 reference clocks are sourced from the CLAD, if the CLAD is configured to generate them, or
from the CLKA, CLKB ,and CLKC pins, respectively.
Table 8-13. Global One-Second Reference Source
G1SRS[3:0]
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
SOURCE
Disabled
DS3 reference clock
E3 reference clock
STS-1 reference clock
Port 1 TCLK
Port 2 TCLK
Port 3 TCLK
Port 4 TCLK
Port 5 TCLK
Port 6 TCLK
Port 7 TCLK
Port 8 TCLK
Port 9 TCLK
Port 10 TCLK
Port 11 TCLK
Port 12 TCLK
41 of 130
DS32506/DS32508/DS32512
8.7.3
General-Purpose I/O Pins
When a microprocessor interface is enabled (IFSEL ≠ 000), there are two general-purpose I/O (GPIO) pins
available per port, each of which can be used as a general-purpose input, general-purpose output, or loss-of-signal
output. In addition, GPIOB1, GPIOB2, and GPIOB3 can be used as a global I/O signal. The GPIO pins are
independently configurable using the GPIOynS fields of the GLOBAL.GIOACR and GLOBAL.GIOBCR registers
(see Table 8-15). When a GPIO pin is configured as an input, its value can be read from the GLOBAL.GIOARR or
GLOBAL.GIOBRR registers. When a GPIO pins is configured as a loss-of-signal status output, its state mimics the
state of the LINE.RSR:LOS status bit. When a port is powered down and a GPIO pin has been programmed as an
associated loss-of-signal output, the pin is held low. Programming a GPIO pin as a global signal overrides the I/O
settings specified by the GPIOynS field for that pin and configures the pin as an input or an output as shown in
Table 8-14.
Table 8-14. GPIO Pin Global Signal Assignments
PIN
GPIOAn
GPIOB1
GPIOB2
GPIOB3
GPIOBk
GLOBAL SIGNAL
FUNCTION
CONTROL BIT
None
—
Global PMU input
GLOBAL.CR1.GPM[1:0]
Global TMEI input
GLOBAL.CR1.MEIMS
1SREF output
GLOBAL.CR1.G1SROE
None
—
Note: n = 1 to 12, k = 4 to 12.
Table 8-15. GPIO Pin Control
GPIOynS[1:0]
00
01
10
11
FUNCTION
Input
Output LOS status for port n
Output logic 0
Output logic 1
Note: n = 1 to 12, y = A or B.
8.7.4
Performance Monitor Register Update
Each performance monitor counter can count at least one second of events before saturating at the maximum
count. Each counter has an associated status bit that is set when the counter value is not zero, a latched status bit
that is set when the counter value changes from zero to one, and a latched status bit that is set each time the
counter is incremented.
There is a holding register for each performance monitor counter that is updated when a performance monitoring
update is performed. A performance monitoring update causes the counter value to be loaded into the holding
register and the counter to be cleared. If a counter increment occurs at the exact same time as the counter reset,
the counter is loaded with a value of one, and the “counter is non-zero” latched status bit is set.
The performance monitor update (PMU) signal initiates a performance monitoring update. The PMU signal can be
sourced from a general-purpose I/O pin (GPIOB1), the internal one-second reference, a global register bit
(GLOBAL.CR1:GPMU), or a port register bit (PORT.CR1:PMU). Note: The BERT PMU can be sourced from a
block level register bit (BERT.CR:LPMU). To use GPIOB1, GLOBAL.CR1.GPM[1:0] is set to 01, the appropriate
PORT.CR1:PMUM bits are set to 1, and the appropriate BERT.CR:PMUM bits are set to 1. To use the internal onesecond reference, GLOBAL.CR1:GPM[1:0] is set to 1X, the appropriate PORT.CR1:PMUM bits are set to 1, and
the appropriate BERT.CR:PMUM bits are set to 1. To use the global PMU register bit, GLOBAL.CR1:GPM[1:0] is
set to 00, the appropriate PORT.CR1:PMUM bits are set to 1, and the appropriate BERT.CR:PMUM bits are set to
1. To use the port PMU register bit, the associated PORT.CR1:PMUM bit is set to 0, and the appropriate
BERT.CR:PMUM bits are set to 1. To use the BERT.CR:LPMU register bit, the appropriate BERT.CR:PMUM bit is
set to 0.
When using the global or port PMU register bits, the PMU bit should be set to initiate the process and cleared when
the associated PMS status bit (GLOBAL.SR:GPMS or PORT.SR:PMS) is set. When using the GPIO pin or internal
one-second reference, the PMS bit is set shortly after the signal goes high, and cleared shortly after the signal
42 of 130
DS32506/DS32508/DS32512
goes low. The PMS has an associated latched status bit that can generate an interrupt if enabled. The port PMS
signal does not go high until an update of all the appropriately configured block-level performance monitoring
counters in the port has been completed. The global PMS signal does not go high until an update of all the
appropriately configured port-level performance monitoring counters in the entire chip has been completed.
8.7.5
Transmit Manual Error Insertion
Various types of errors can be inserted in the transmit data stream using the Transmit Manual Error Insertion
(TMEI) signal, which can be sourced from a block-level register bit, a port register bit (PORT.CR1:TMEI), a global
register bit (GLOBAL.CR1:TMEI), or a general-purpose I/O pin (GPIOB2). To use GPIOB2 as the TMEI signal,
GLOBAL.CR1.MEIMS is set to 1, the appropriate PORT.CR1.MEIMS bits are set to 1, and the appropriate blocklevel MEIMS bits are set to 1. To use the global TMEI register bit, GLOBAL.CR1.MEIMS is set to 0, the appropriate
PORT.CR1.MEIMS bits are set to 1, and the appropriate block-level MEIMS bits are set to 1. To use the port TMEI
register bit, the associated PORT.CR1.MEIMS is set to 0 and the appropriate block-level MEIMS bits are set to 1.
To use the block-level TSEI register bit, the associated block-level MEIMS bit is set to 0.
In order for an error of a particular type to be inserted, the error type must be enabled by setting the associated
error insertion enable bit in the associated block's error insertion register. Once enabled, a single error is inserted
at the next opportunity when the TMEI signal transitions from zero to one. Note: If the TMEI signal has multiple
zero-to-one transitions between error insertion opportunities, only a single error is inserted.
8.8
8-/16-Bit Parallel Microprocessor Interface
See Table 11-8 and Figure 11-3 to Figure 11-10 for parallel interface timing diagrams and parameters.
8.8.1
8-Bit and 16-Bit Bus Widths
When the IFSEL pins are set to 1XX, the device presents a parallel microprocessor interface. In 8-bit modes
(IFSEL = 10X), the address is composed of all the address bits including A[0], the lower 8 data lines D[7:0] are
used, and the upper 8 data lines D[15:8] are disabled (high impedance). In 16-bit modes (IFSEL = 11X), the
address does not include A[0], and all 16 data lines D[15:0] are used.
8.8.2
Byte Swap Mode
In 16-bit modes (IFSEL = 11X), the microprocessor interface can operate in byte swap mode. The BSWAP pin is
used to determine whether byte swapping is enabled. This pin should be static and not change during operation.
When the BSWAP pin is low the upper register bits REG[15:8] are mapped to the upper external data bus lines
D[15:8], and the lower register bits REG[7:0] are mapped to the lower external data bus lines D[7:0]. When the
BSWAP pin is high the upper register bits REG[15:8] are mapped to the lower external data bus lines D[7:0], and
the lower register bits REG[7:0] are mapped to the upper external data bus lines D[15:8].
8.8.3
Read-Write And Data Strobe Modes
The processor interface can operate in either read-write strobe mode (also known as "Intel" mode) or data strobe
mode (also known as "Motorola" mode). When IFSEL = 1X0 the read-write strobe mode is enabled. In this mode a
negative pulse on RD performs a read cycle, and a negative pulse on WR performs a write cycle.
When IFSEL = 1X1 the data strobe mode is enabled. In this mode, a negative pulse on DS when R/W is high
performs a read cycle, and a negative pulse on DS when R/W is low performs a write cycle.
8.8.4
Multiplexed and Nonmultiplexed Operation
In all parallel interface modes the interface supports both multiplexed and nonmultiplexed operation. For
multiplexed operation in 8-bit modes, wire A[10:8] to the processor’s A[10:8] pins, wire A[7:0] to D[7:0] and to the
processor’s multiplexed address/data bus, and connect the ALE pin to the appropriate pin on the processor. For
nonmultiplexed 8-bit operation, wire ALE high and wire A[10:0] and D[7:0] to the appropriate pins on the processor.
For multiplexed operation in 16-bit modes, wire A[10:0] to D[10:0], wire D[15:0] to the CPU’s multiplexed
address/data bus, and connect the ALE pin to the appropriate pin on the processor. For nonmultiplexed 16-bit
operation, wire ALE high and wire A[10:0] and D[15:0] to the appropriate pins on the processor.
43 of 130
DS32506/DS32508/DS32512
8.8.5
Clear-On-Read And Clear-On-Write Modes
The latched status register bits can be programmed to clear on a read access or clear on a write access. The
global control register bit GLOBAL.CR2.LSBCRE specifies the method used to clear all of the latched status
registers. When LSBCRE = 0, latched status register bits are cleared when written with a 1. When LSBCRE = 1,
latched status register bits are cleared when read.
The clear-on-write mode expects the user to use the following method: read the latched status register then write a
1 to the register bits to be cleared. This method is useful when multiple software tasks use the same latched status
register. Each task can clear the bits it uses without affecting any of the latched status bits used by other tasks.
The clear-on-read mode clears all latched status bits in a register automatically when the latched status register is
read. This method works well when no more than one software task uses any single latched status register. An
event that occurs while the associated latched status register is being read results in the associated latched status
bit being set after the read is completed.
8.8.6
Global Write Mode
When GLOBAL.CR2:GWRM = 1, a write to a register of any port causes the data to be written to the same register
in all the ports on the device. In this mode register reads are not supported and result in undefined data.
8.9
SPI Serial Microprocessor Interface
When the IFSEL pins are set to 01X the device presents an SPI interface on the CS, SCLK, SDI, and SDO pins.
SPI is a widely-used master/slave bus protocol that allows a master device and one or more slave devices to
communicate over a serial bus. The DS325xx is always a slave device. Masters are typically microprocessors,
ASICs or FPGAs. Data transfers are always initiated by the master device, which also generates the SCLK signal.
The DS325xx receives serial data on the SDI pin and transmits serial data on the SDO pin. SDO is high-impedance
except when the DS325xx is transmitting data to the bus master. Note that the ALE pin must be wired high for
proper operation of the SPI interface.
Bit Order. When IFSEL[2:0] = 010 the register address and all data bytes are transmitted MSB first on both SDI
and SDO. When IFSEL[2:0] = 011, the register address and all data bytes are transmitted LSB first on both SDI
and SDO. The Motorola SPI convention is MSB first.
Clock Polarity and Phase. The CPOL pin defines the polarity of SCLK. When CPOL = 0, SCLK is normally low
and pulses high during bus transactions. When CPOL = 1, SCLK is normally high and pulses low during bus
transactions. The CPHA pin sets the phase (active edge) of SCLK. When CPHA = 0, data is latched in on SDI on
the leading edge of the SCLK pulse and updated on SDO on the trailing edge. When CPHA = 1, data is latched in
on SDI on the trailing edge of the SCLK pulse and updated on SDO on the following leading edge. See Figure
8-10.
Device Selection. Each SPI device has its own chip-select line. To select the DS325xx, pull its CS pin low.
Control Word. After CS is pulled low, the bus master transmits the control word during the first 16 SCLK cycles. In
MSB-first mode, the control word has the form:
R/W A13 A12 A11 A10 A9 A8 A7
A6 A5 A4 A3 A2 A1 A0 BURST
where A[13:0] is the register address, R/W is the data direction bit (1 = read, 0 = write), and BURST is the burst bit
(1 = burst access, 0 = single-byte access). In LSB-first mode, the order of the 14 address bits is reversed. In the
discussion that follows, a control word with R/W = 1 is a read control word, while a control word with R/W = 0 is a
write control word. Note: The address range of the DS32512 is 000h–7FFh, so A[13:11] are ignored.
Single-Byte Writes. See Figure 8-11. After CS goes low, the bus master transmits a write control word with
BURST = 0 followed by the data byte to be written. The bus master then terminates the transaction by pulling CS
high.
Single-Byte Reads. See Figure 8-11. After CS goes low, the bus master transmits a read control word with
BURST = 0. The DS325xx then responds with the requested data byte. The bus master then terminates the
transaction by pulling CS high.
Burst Writes. See Figure 8-11. After CS goes low, the bus master transmits a write control word with BURST = 1
followed by the first data byte to be written. The DS325xx receives the first data byte on SDI, writes it to the
specified register, increments its internal address register, and prepares to receive the next data byte. If the master
44 of 130
DS32506/DS32508/DS32512
continues to transmit, the DS325xx continues to write the data received and increment its address counter. After
the address counter reaches 7FFh it rolls over to address 000h and continues to increment.
Burst Reads. See Figure 8-11. After CS goes low, the bus master transmits a read control word with BURST = 1.
The DS325xx then responds with the requested data byte on SDO, increments its address counter, and prefetches
the next data byte. If the bus master continues to demand data, the DS325xx continues to provide the data on
SDO, increment its address counter, and prefetch the following byte. After the address counter reaches 7FFh it
rolls over to address 000h and continues to increment.
Early Termination of Bus Transactions. The bus master can terminate SPI bus transactions at any time by
pulling CS high. In response to early terminations, the DS325xx resets its SPI interface logic and waits for the start
of the next transaction. If a write transaction is terminated prior to the SCLK edge that latches the LSB of a data
byte, the current data byte is not written.
Design Option: Wiring SDI and SDO Together. Because communication between the bus master and the
DS325xx is half-duplex, the SDI and SDO pins can be wired together externally to reduce wire count. To support
this option, the bus master must not drive the SDI/SDO line when the DS325xx is transmitting.
AC Timing. See Table 11-9 and Figure 11-11 for AC timing specifications for the SPI interface.
Figure 8-10. SPI Clock Polarity and Phase Options
CS
SCK
CPOL = 0, CPHA = 0
SCK
CPOL = 0, CPHA = 1
SCK
CPOL = 1, CPHA = 0
SCK
CPOL = 1, CPHA = 1
SDI/SDO
MSB
6
5
4
3
2
1
CLOCK EDGE USED FOR DATA CAPTURE (ALL MODES)
45 of 130
LSB
DS32506/DS32508/DS32512
Figure 8-11. SPI Bus Transactions
Single-Byte Write
CS
SDI
R/W Register Address Burst
0 (Write)
Data Byte
0 (single-byte)
SDO
Single-Byte Read
CS
SDI
R/W Register Address Burst
1 (Read)
0 (single-byte)
SDO
Data Byte
Burst Write
CS
SDI
R/W Register Address Burst Data Byte 1
0 (Write)
Data Byte N
1 (burst)
SDO
Burst Read
CS
SDI
R/W Register Address Burst
1 (Read)
SDO
1 (burst)
Data Byte 1
Data Byte N
8.10 Interrupt Structure
The interrupt structure is designed to efficiently guide the user to the source of an interrupt. The status bits in the
global interrupt status register (GLOBAL.ISR) are read to determine if the interrupt source comes from a global
event, such as a one-second timer interrupt, or one of the ports. If the interrupt source is a global event, the global
status register is read (GLOBAL.SRL) to determine the source. If the interrupt source is a port, the port interrupt
status register (PORT.ISR) is read to determine if the interrupt source comes from a port event, such as a
performance monitor update interrupt, or one of the functional blocks inside the port. If the interrupt source is a port
event, the port status register is read (PORT.SRL) to determine the source. If the interrupt source is from a
functional block inside the port, the associated block's status register is read to determine the source. The source
of an interrupt can be determined by reading no more than three 16-bit registers.
Once the interrupt source has been determined, the interrupt can be cleared by either reading or writing the latched
status register (see Section 8.8.5). An alternate method for clearing an interrupt is to disable the interrupt at the bit,
block, port, or global level by writing a zero to the associated interrupt enable bit. Note: Disabling the interrupt at
the block, port, or global level disables all interrupts sources at or below that level.
46 of 130
DS32506/DS32508/DS32512
Figure 8-12. Interrupt Signal Flow
PORT LATCHED
STATUS REGISTER
AND INTERRUPT
ENABLE REGISTER
GLOBAL LATCHED
STATUS REGISTER
AND INTERRUPT
ENABLE REGISTER
PORT.SRL bit
GLOBAL.SRL bit
PORT.SRIE bit
GLOBAL.SRIE bit
PORT.SRL bit
GLOBAL.SRL bit
PORT.SRIE bit
GLOBAL.SRIE bit
GLOBAL INTERRUPT
STATUS REGISTER
AND INTERRUPT
ENABLE REGISTER
GLOBAL.ISR bit
GLOBAL.ISRIE bit
GLOBAL.ISRIE bit
PORT.ISR bit
block SRL bit
block SRIE bit
GLOBAL.ISR bit
INT*
PORT.ISRIE bit
PORT.ISRIE bit
block SRL bit
PORT.ISR bit
block SRIE bit
BLOCK LATCHED
STATUS REGISTER
AND INTERRUPT
ENABLE REGISTER
PORT INTERRUPT
STATUS REGISTER
AND INTERRUPT
ENABLE REGISTER
8.11 Reset and Power-Down
When only the hardware interface is enabled (IFSEL = 000 and HW = 1), the device is can be reset via the RST
pin. The transmitters of all ports can be powered down using the TPD pin, while the receivers of all ports can be
powered down using the RPD pin.
When a microprocessor interface is enabled (IFSEL ≠ 000), the device presents a number of reset and power down
options. The device can be reset at a global level via the GLOBAL.CR1:RST bit or the RST pin, and at the port
level via the PORT.CR1:RST bit. Each port can be powered down via the PORT.CR1:TPD and RPD bits. The
JTAG logic is reset by the JTRST pin.
The external RST pin and the global reset bit (GLOBAL.CR1:RST) are combined to create an internal global reset
signal. The global reset signal resets all the status and control registers on the chip (except the GLOBAL.CR1:RST
bit), to their default values. It also resets all flip-flops in the global logic (including the CLAD block) and port logic to
their reset values. The GLOBAL.CR1:RST bit stays set after a one is written to it. It is reset to zero when a zero is
written to it or when the external RST pin is active.
At the port level, the global reset signal combines with the port reset bit (PORT.CR1:RST) to create a port reset
signal. The port reset signal resets all the status and control registers in the port (except PORT.CR1:RST bit) to
their default values. It also resets all flip-flops in the port logic to their reset values. The port reset bit
(PORT.CR1:RST) stays set after a one is written to it. It is reset to zero when a zero is written to it or when the
global reset signal is active.
The data path reset (RSTDP) resets all of the same registers and flip-flops as the “general” reset (RST), except for
the control registers. This allows the device to be programmed while the data path logic is in reset. It is
recommended that a port be placed in data path reset during configuration changes.
The global data path reset bit (GLOBAL.CR1:RSTDP) is set to one when the global reset signal is active. This bit is
cleared when a zero is written to it while the global reset signal is inactive. The global data path reset resets all of
the data path registers and flip-flops on the chip.
The port data path reset bit (PORT.CR1:RSTDP) is set to one when the port reset signal is active. It is cleared
when a zero is written to it while the port reset signal is inactive. The port data path reset resets all of the port logic
data path registers and flip-flops.
47 of 130
DS32506/DS32508/DS32512
Table 8-16. Reset and Power-Down Sources
PIN
RST
0
1
1
1
1
1
1
1
1
REGISTER BITS
GLOBAL.CR1
PORT.CR1
INTERNAL SIGNALS
RST RSTDP RST TPD RPD RSTDP
F0
1
0
0
0
0
0
0
0
F1
F1
1
0
0
0
0
0
0
F0
F0
0
1
0
0
0
0
0
F1
F1
0
F1
1
1
0
0
0
F1
F1
0
F1
1
0
1
0
0
F1
F1
0
F1
0
0
0
1
0
Global
Global
Port
Data Path
Reset
Reset
Reset
1
1
1
1
1
1
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Tx Port
PowerDown
1
1
0
1
1
1
0
0
0
Rx Port
PowerDown
1
1
0
1
1
0
1
0
0
Port Data
Path
Reset
1
1
1
1
1
0
0
1
0
Register bit states: F0 = forced to 0, F1 = forced to 1, 0 = set to 0, 1 = set to 1
The reset signals in the device are asserted asynchronously and do not require a clock to put the logic into the
reset state. The control registers do not require a clock to come out of the reset state, but all other logic does
require a clock to come out of the reset state.
The port transmit power-down function (PORT.CR1:TPD) disables all the transmit clocks and powers down the
transmit LIU to minimize power consumption. The port receive power-down function (PORT.CR1:RPD) disables all
of the receive clocks and powers down the receive LIU to minimize power consumption. The one-second timer
circuit can be powered down by disabling its reference clock. The CLAD can be powered down by disabling it
(setting GLOBAL.CR2:CLAD[6:0] = 0). The global logic cannot be powered down.
After a global reset, all of the control and status registers in all ports are set to their default values and all the other
flip-flops are reset to their reset values. The global data path reset (GLOBAL.CR1:RSTDP), all the port data path
resets (PORT.CR1:RSTDP), and all the port power-down (PORT.CR1:TPD and RPD) bits are set after the global
reset. A valid initialization sequence is to clear the port power-down bits in the ports that are to be active, write to all
of the configuration registers to set them in the desired modes, then clear the GLOBAL.CR1:RSTDP and
PORT.CR1:RSTDP bits. This causes all the logic to start up in a predictable manner. The device can also be
initialized by clearing the GLOBAL.CR1:RSTDP, PORT.CR1:RSTDP, and PORT.CR1:TPD and RPD bits, then
writing to all of the configuration registers to set them in the desired modes, and then clearing all of the latched
status bits. This second initialization scheme can cause the device to operate unpredictably for a brief period of
time.
Some of the I/O pins are put into a known state at reset. At the global level, the microprocessor interface output
and I/O pins (D[15:0]) are forced into the high impedance state when the RST pin is active, but not when the
GLOBAL.CR1:RST bit is active. The CLAD clock pins CLKA, CLKB, and CLKC are forced to be the LIU reference
clock inputs. The general-purpose I/O pins (GPIOAn and GPIOBn) are forced to be inputs until after the RST pin is
deasserted. At the port level, the LIU transmitter outputs TXP and TXN are forced into a high-impedance state.
Note: Setting any of the reset (RST), data path reset (RSTDP), or power-down (TPD, RPD) bits for less than 100
ns may result in the associated circuits coming up in a random state. When a power-down bit is cleared, it takes
approximately 1ms for all of the associated circuits to power-up.
48 of 130
DS32506/DS32508/DS32512
9. REGISTER MAPS AND DESCRIPTIONS
9.1
Overview
When a microprocessor interface is enabled (IFSEL[2:0] ≠ 000), the registers described in this section are
accessible. The overall memory map is shown in Table 9-1. The DS32512 register map covers the address range
of 000 to 7FFh. On the DS32508, writes in the address space for LIUs 9 through 12 are ignored, and reads from
these addresses return 00h. On the DS32506, address line A[10] is not present, and writes into the address space
for LIU 7 are ignored, and reads from these addresses return 00h. The address LSB A[0] is used to address the
upper and lower bytes of a register in 8-bit mode, and to swap the upper and lower bytes in 16-bit mode.
In each register, bit 15 is the MSB and bit 0 is the LSB. Register addresses not listed and bits marked “—“ are
reserved and must be written with 0 and ignored when read. Writing other values to these registers may put the
device in a factory test mode resulting in undefined operation. Bits labeled “0” or “1” must be written with that value
for proper operation. Register fields with underlined names are read-only fields; writes to these fields have no
effect. All other fields are read-write. Register fields are described in detail in the register descriptions in Sections
9.3 to 9.8.
9.1.1
Status Bits
The device has two types of status bits. Real-time status bits are read-only and indicate the state of a signal at the
time it is read. Latched status bit are set when the associated event occurs and remain set until cleared. Once
cleared, a latched status bit is not set again until the associated event recurs (goes away and comes back). A
latched-on-change bit is a latched status bit that is set when the event occurs and when it goes away. A latched
status bit can be cleared using either a clear-on-read or clear-on-write method (see Section 8.8.5). For clear-onread, all latched status bits in a latched status register are cleared when the register is read. In 16-bit mode, all 16
latched status bits are cleared. In 8-bit mode, only the eight bits read are cleared. For clear-on-write, a latched bit in
a latched status register is cleared when a logic 1 is written to that bit. For example, writing FFFFh to a 16-bit
latched status register clears all latched status bits in the register, whereas writing 0001h only clears bit 0 of the
register. When set, some latched status bits can cause an interrupt request if enabled to do so by corresponding
interrupt enable bits.
9.1.2
Configuration Fields
Configuration fields are read-write. During reset, each configuration field reverts to the default value shown in the
register definition. Configuration register bits marked “—“ are reserved and must be written with 0. Configuration
registers and bits can be written to and read from during a data path reset, however, all changes to these bits are
ignored during the data path reset. As a result, all bits requiring a zero-to-one transition to initiate an action must
have the transition occur after the data path reset has been removed. See Section 8.11 for more information about
resets and data path resets.
9.1.3
Counters
All counters stop counting at their maximum count. A counter register is updated by asserting (low to high
transition) the performance monitoring update signal (PMU). During a counter register update, the performance
monitoring status signal (PMS) is deasserted. A counter register update consists of loading the counter register
with the current count, resetting the counter, resetting the zero count status indication, and then asserting PMS. No
events are missed during an update. See Section 8.7.4 for more information about performance monitor register
updates.
49 of 130
DS32506/DS32508/DS32512
9.2
Overall Register Map
Table 9-1. Overall Register Map
BASE
ADDRESS
000h
080h
100h
180h
200h
280h
300h
380h
400h
480h
500h
580h
600h
680h
BLOCK
Global Registers
Port Registers for Port 1
Port Registers for Port 2
Port Registers for Port 3
Port Registers for Port 4
Port Registers for Port 5
Port Registers for Port 6
Port Registers for Port 7
Port Registers for Port 8
Port Registers for Port 9
Port Registers for Port 10
Port Registers for Port 11
Port Registers for Port 12
Unused
Table 9-2. Port Registers
ADDRESS
OFFSET
00h–1Fh
20h–2Fh
30h–3Fh
40h–4Fh
50h–6Fh
70h–7Fh
DESCRIPTION
BLOCK
Port Common Registers
LIU Registers
B3ZS/HDB3 Encoder Registers
B3ZS/HDB3 Decoder Registers
BERT Registers
Unused
PORT
LIU
LINE Tx
LINE Rx
BERT
—
Note: The address offsets given in this table are offsets from port base addresses shown in Table 9-1.
50 of 130
DS32506/DS32508/DS32512
9.3
Global Registers
Table 9-3. Global Register Map
ADDRESS
OFFSET
000h
002h
004h
006h–00Eh
010h
012h
014h
016h
018h–01Eh
020h
022h
024h–026h
028h
02Ah
02Ch
02Eh–036h
038h
03Ah
03Ch–07Eh
REGISTER
REGISTER DESCRIPTION
GLOBAL.IDR
GLOBAL.CR1
GLOBAL.CR2
—
GLOBAL.GIOACR1
GLOBAL.GIOACR2
GLOBAL.GIOBCR1
GLOBAL.GIOBCR2
—
GLOBAL.ISR
GLOBAL.ISRIE
—
GLOBAL.SR
GLOBAL.SRL
GLOBAL.SRIE
—
GLOBAL.GIOARR
GLOBAL.GIOBRR
—
Register Name:
Register Description:
Register Address:
ID Register
Global Control Register 1
Global Control Register 2
Unused
General-Purpose I/O A Control Register 1
General-Purpose I/O A Control Register 2
General-Purpose I/O B Control Register 1
General-Purpose I/O B Control Register 2
Unused
Global Interrupt Status Register
Global Interrupt Enable Register
Unused
Global Status Register
Global Status Register Latched
Global Status Register Interrupt Enable
Unused
General-Purpose I/O A Read Register
General-Purpose I/O B Read Register
Unused
GLOBAL.IDR
ID Register
000h
Bit #
Name
15
ID15
14
ID14
13
ID13
12
ID12
11
ID11
10
ID10
9
ID9
8
ID8
Bit #
Name
7
ID7
6
ID6
5
ID5
4
ID4
3
ID3
2
ID2
1
ID1
0
ID0
Bits 15 to 12: Device REV ID (ID[15:12]). These bits of the device ID register have the same information as the
four bits of the JTAG REV ID portion of the JTAG ID register, JTAG ID[31:28]. See Section 10.
Bits 11 to 0: Device CODE ID (ID[11:0]). These bits of the device ID register have the same information as the 12
bits of the JTAG CODE ID portion of the JTAG ID register, JTAG ID[23:12]. See Section 10.
51 of 130
DS32506/DS32508/DS32512
Register Name:
Register Description:
Register Address:
GLOBAL.CR1
Global Control Register #1
002h
Bit #
Name
Default
15
—
—
14
—
0
13
—
0
Bit #
Name
Default
7
TMEI
0
6
MEIMS
0
5
12
0
4
GPM[1:0]
0
0
11
10
G1SRS[3:0]
0
0
3
GPMU
0
2
—
0
9
0
8
G1SROE
0
1
RSTDP
1
0
RST
0
Bits 12 to 9: Global One-Second Reference Source (G1SRS[3:0]). These bits determine the source for the
internally generated one second reference. The source is selected from one of the CLAD clocks or from one of the
port transmit clocks. See Section 8.7.2.
0000 = Disabled
0001 = DS3 reference clock
0010 = E3 reference clock
0011 = STS-1 reference clock
0100 = Port 1 TCLK
0101 = Port 2 TCLK
0110 = Port 3 TCLK
0111 = Port 4 TCLK
1000 = Port 5 TCLK
1001 = Port 6 TCLK
1010 = Port 7 TCLK
1011 = Port 8 TCLK
1100 = Port 9 TCLK
1101 = Port 10 TCLK
1110 = Port 11 TCLK
1111 = Port 12 TCLK
Bit 8: Global One-Second Reference Output Enable (G1SROE). This bit determines whether the GPIOB3 pin is
used to output the global one second reference signal. See Section 8.7.2.
0 = GPIOB3 pin mode selected by GLOBAL.GIOBCR1:GIOB3S[1:0].
1 = GPIOB3 outputs the global one second reference signal specified by GLOBAL.CR1:G1SRS[3:0]
Bit 7: Transmit Manual Error Insert (TMEI). When GLOBAL.CR1:MEIMS = 0, this bit is used to insert errors in all
blocks in all ports where block-level MEIMS = 1 and PORT.CR1:MEIMS = 1. Error(s) are inserted at the next
opportunity after this bit transitions from low to high. See Section 8.7.5. Note: This bit should be set low
immediately after each error insertion.
Bit 6: Manual Error Insert Mode Select (MEIMS). This bit specifies the source of the manual error insertion signal
for all block-level error generators that have block-level MEIMS = 1 and PORT.CR1:MEIMS = 1. See Section 8.7.5.
0 = Global error insertion using GLOBAL.CR1:TMEI bit
1 = Global error insertion using the GPIOB2 pin
Bits 5 and 4: Global Performance Monitor Update Mode (GPM[1:0]). These bits specify the source of the
performance monitoring update signal for all blocks that have block-level PMUM = 1 and PORT.CR1:PMUM = 1.
See Section 8.7.4.
00 = Global PM update using the GLOBAL.CR1:GPMU bit
01 = Global PM update using the GPIOB1 pin
1X = One-second PM update using the internal one-second counter (see Section 8.7.2)
52 of 130
DS32506/DS32508/DS32512
Bit 3: Global Performance Monitor Register Update (GPMU). When GLOBAL.CR1:GPM[1:0] = 00, this bit is
used to update all of the performance monitor registers where block-level PMUM = 1 and PORT.CR1:PMUM = 1.
When this bit transitions from low to high, all configured performance monitoring registers are updated with the
latest counter value, and all associated counters are reset. This bit should remain high until the performance
monitor update status bit (GLOBAL.SR:GPMS) goes high, and then it should be brought back low, which clears the
GPMS status bit. If a counter increment occurs at the exact same time as the counter reset, the counter is loaded
with a value of one, and the “counter is non-zero” latched status bit is set. See Section 8.7.4.
Bit 1: Reset Data Path (RSTDP). When this bit is set, it forces all of the internal data path and status registers in
all ports to their default state. This bit must be set high for a minimum of 100ns. See Section 8.11.
0 = Normal operation
1 = Force all data path registers to their default values
Bit 0: Reset (RST). When this bit is set, all of the internal data path and status and control registers (except this
RST bit), on all of the ports, are reset to their default state. This bit must be set high for a minimum of 100ns. This
bit is logically ORed with the inverted hardware signal RST. See Section 8.11.
0 = Normal operation
1 = Force all internal registers to their default values
53 of 130
DS32506/DS32508/DS32512
Register Name:
Register Description:
Register Address:
GLOBAL.CR2
Global Control Register #2
004h
Bit #
Name
Default
15
—
—
14
13
12
10
9
8
0
11
CLAD[6:0]
0
0
0
0
0
0
Bit #
Name
Default
7
—
0
6
—
0
5
CLKD19
0
4
INTM
0
3
RAS
0
2
RAD
0
1
LSBCRE
0
0
GWRM
0
Bits 14 to 8: CLAD I/O Mode (CLAD[6:0]). These bits control the CLAD clock I/O pins REFCLK, CLKA, CLKB,
CLKC and CLKD. See Table 8-11 and Table 8-12 in Section 8.7.1.
Bit 5: CLKD Frequency is 19.44MHz (CLKD19). This bit specifies the frequency to be output on CLKD when the
CLAD[3] configuration bit is high.
0 = 77.76MHz
1 = 19.44MHz
Bit 4: INT Pin Mode (INTM). This bit determines the inactive mode of the INT pin. The INT pin always drives low
when an enabled interrupt source is active. See Section 8.10.
0 = Pin is high impedance when no enabled interrupts are active
1 = Pin drives high when no enabled interrupts are active
Bit 3: RDY/ACK Select (RAS). This bit controls the microprocessor interface output pin RDY/ACK in Intel mode
(IFSEL = 100 or 110) and Motorola mode (IFSEL = 101 or 111).
0 = Normal operation: RDY in Intel mode and ACK in Motorola mode
1 = Reverse operation: ACK in Intel mode and RDY in Motorola mode
Bit 2: RDY/ACK Disable (RAD). This bit disables the microprocessor interface output pin RDY/ACK.
0 = Enable, normal operation
1 = Disable, tri-state
Bit 1: Latched Status Bit Clear-on-Read Enable (LSBCRE). This bit determines when the latched status register
bits are cleared. See Section 8.8.5.
0 = Latched status register bits are cleared on a write
1 = Latched status register bits are cleared on a read
Bit 0: Global Write Mode (GWRM). This bit enables the global write mode. When this bit is set, a write to a
register of any port causes a write to the same register in all the ports. In this mode register reads are not
supported and result in undefined data. See Section 8.8.6.
0 = Normal write mode
1 = Global write mode
54 of 130
DS32506/DS32508/DS32512
Register Name:
Register Description:
Register Address:
GLOBAL.GIOACR1
General-Purpose I/O A Control Register #1
010h
Bit #
Name
Default
15
14
GIOA8S[1:0]
0
0
13
12
GIOA7S[1:0]
0
0
11
10
GIOA6S[1:0]
0
0
9
8
GIOA5S[1:0]
0
0
Bit #
Name
Default
7
6
GIOA4S[1:0]
0
0
5
4
GIOA3S[1:0]
0
0
3
2
GIOA2S[1:0]
0
0
1
0
GIOA1S[1:0]
0
0
Note: See Section 8.7.3 for more information.
Bits 15, 14: General-Purpose I/O A 8 Select (GIOA8S[1:0]). These bits specify the function of the GPIOA8 pin.
00 = Input
01 = Output LOS status for port 8
10 = Output logic 0
11 = Output logic 1
Bits 13, 12: General-Purpose I/O A 7 Select (GIOA7S[1:0]). These bits specify the function of the GPIOA7 pin.
00 = Input
01 = Output LOS status for port 7
10 = Output logic 0
11 = Output logic 1
Bits 11, 10: General-Purpose I/O A 6 Select (GIOA6S[1:0]). These bits specify the function of the GPIOA6 pin.
00 = Input
01 = Output LOS status for port 6
10 = Output logic 0
11 = Output logic 1
Bits 9, 8: General-Purpose I/O A 5 Select (GIOA5S[1:0]). These bits specify the function of the GPIOA5 pin.
00 = Input
01 = Output LOS status for port 5
10 = Output logic 0
11 = Output logic 1
Bits 7, 6: General-Purpose I/O A 4 Select (GIOA4S[1:0]). These bits specify the function of the GPIOA4 pin.
00 = Input
01 = Output LOS status for port 4
10 = Output logic 0
11 = Output logic 1
Bits 5, 4: General-Purpose I/O A 3 Select (GIOA3S[1:0]). These bits specify the function of the GPIOA3 pin
00 = Input
01 = Output LOS status for port 3
10 = Output logic 0
11 = Output logic 1
Bits 3, 2: General-Purpose I/O A 2 Select (GIOA2S[1:0]). These bits specify the function of the GPIOA2 pin.
00 = Input
01 = Output LOS status for port 2
10 = Output logic 0
11 = Output logic 1
Bits 1, 0: General-Purpose I/O A 1 Select (GIOA1S[1:0]). These bits specify the function of the GPIOA1 pin.
00 = Input
01 = Output LOS status for port 1
10 = Output logic 0
11 = Output logic 1
55 of 130
DS32506/DS32508/DS32512
Register Name:
Register Description:
Register Address:
GLOBAL.GIOACR2
General-Purpose I/O A Control Register #2
012h
Bit #
Name
Default
15
—
0
14
—
0
Bit #
Name
Default
7
6
GIOA12S[1:0]
0
0
13
—
0
12
—
0
5
4
GIOA11S[1:0]
0
0
11
—
0
10
—
0
3
2
GIOA10S[1:0]
0
0
9
—
0
8
—
0
1
0
GIOA9S[1:0]
0
0
Note: See Section 8.7.3 for more information.
Bits 7, 6: General-Purpose I/O A 12 Select (GIOA12S[1:0]). These bits specify the function of the GPIOA12 pin.
00 = Input
01 = Output LOS status for port 12
10 = Output logic 0
11 = Output logic 1
Bits 5, 4: General-Purpose I/O A 11 Select (GIOA11S[1:0]). These bits specify the function of the GPIOA11 pin
00 = Input
01 = Output LOS status for port 11
10 = Output logic 0
11 = Output logic 1
Bits 3, 2: General-Purpose I/O A 10 Select (GIOA10S[1:0]). These bits specify the function of the GPIOA10 pin.
00 = Input
01 = Output LOS status for port 10
10 = Output logic 0
11 = Output logic 1
Bits 1, 0: General-Purpose I/O A 9 Select (GIOA9S[1:0]). These bits specify the function of the GPIOA9 pin.
00 = Input
01 = Output LOS status for port 9
10 = Output logic 0
11 = Output logic 1
56 of 130
DS32506/DS32508/DS32512
Register Name:
Register Description:
Register Address:
GLOBAL.GIOBCR1
General-Purpose I/O B Control Register #1
014h
Bit #
Name
Default
15
14
GIOB8S[1:0]
0
0
13
12
GIOB7S[1:0]
0
0
11
10
GIOB6S[1:0]
0
0
9
8
GIOB5S[1:0]
0
0
Bit #
Name
Default
7
6
GIOB4S[1:0]
0
0
5
4
GIOB3S[1:0]
0
0
3
2
GIOB2S[1:0]
0
0
1
0
GIOB1S[1:0]
0
0
Note: See Section 8.7.3 for more information.
Bits 15, 14: General-Purpose I/O B 8 Select (GIOB8S[1:0]). These bits specify the function of the GPIOB8 pin.
00 = Input
01 = Output LOS status for port 8
10 = Output logic 0
11 = Output logic 1
Bits 13, 12: General-Purpose I/O B 7 Select (GIOB7S[1:0]). These bits specify the function of the GPIOB7 pin.
00 = Input
01 = Output LOS status for port 7
10 = Output logic 0
11 = Output logic 1
Bits 11, 10: General-Purpose I/O B 6 Select (GIOB6S[1:0]). These bits specify the function of the GPIOB6 pin.
00 = Input
01 = Output LOS status for port 6
10 = Output logic 0
11 = Output logic 1
Bits 9, 8: General-Purpose I/O B 5 Select (GIOB5S[1:0]). These bits specify the function of the GPIOB5 pin.
00 = Input
01 = Output LOS status for port 5
10 = Output logic 0
11 = Output logic 1
Bits 7, 6: General-Purpose I/O B 4 Select (GIOB4S[1:0]). These bits specify the function of the GPIOB4 pin.
00 = Input
01 = Output LOS status for port 4
10 = Output logic 0
11 = Output logic 1
Bits 5, 4: General-Purpose I/O B 3 Select (GIOB3S[1:0]). These bits specify the function of the GPIOB3 pin.
Note: If GLOBAL.CR1:G1SROE is set to 1, GPIOB3 is the global one second reference output signal.
00 = Input
01 = Output LOS status for port 3
10 = Output logic 0
11 = Output logic 1
Bits 3, 2: General-Purpose I/O B 2 Select (GIOB2S[1:0]). These bits specify the function of the GPIOB2 pin.
Note: If GLOBAL.CR1:MEIMS is set to 1, GPIOB2 is the global transmit manual error insertion (TMEI) input signal.
00 = Input
01 = Output LOS status for port 2
10 = Output logic 0
11 = Output logic 1
57 of 130
DS32506/DS32508/DS32512
Bits 1, 0: General-Purpose I/O B 1 Select (GIOB1S[1:0]). These bits specify the function of the GPIOB1 pin.
Note: If GLOBAL.CR1:GPM[1:0] is set to 01, GPIOB1 is the global performance monitoring update input signal.
00 = Input
01 = Output LOS status for port 1
10 = Output logic 0
11 = Output logic 1
Register Name:
Register Description:
Register Address:
GLOBAL.GIOBCR2
General-Purpose I/O B Control Register #2
016h
Bit #
Name
Default
15
—
0
14
—
0
Bit #
Name
Default
7
6
GIOB12S[1:0]
0
0
13
—
0
12
—
0
5
4
GIOB11S[1:0]
0
0
11
—
0
10
—
0
3
2
GIOB10S[1:0]
0
0
9
—
0
8
—
0
1
0
GIOB9S[1:0]
0
0
Note: See Section 8.7.3 for more information.
Bits 7, 6: General-Purpose I/O 12 Select (GIOB12S[1:0]). These bits specify the function of the GPIOB12 pin.
00 = Input
01 = Output LOS status for port 12
10 = Output logic 0
11 = Output logic 1
Bits 5, 4: General-Purpose I/O 11 Select (GIOB11S[1:0]). These bits specify the function of the GPIOB11 pin
00 = Input
01 = Output LOS status for port 11
10 = Output logic 0
11 = Output logic 1
Bits 3, 2: General-Purpose I/O 10 Select (GIOB10S[1:0]). These bits specify the function of the GPIOB10 pin.
00 = Input
01 = Output LOS status for port 10
10 = Output logic 0
11 = Output logic 1
Bits 1, 0: General-Purpose I/O 9 Select (GIOB9S[1:0]). These bits specify the function of the GPIOB9 pin.
00 = Input
01 = Output LOS status for port 9
10 = Output logic 0
11 = Output logic 1
58 of 130
DS32506/DS32508/DS32512
Register Name:
Register Description:
Register Address:
GLOBAL.ISR
Global Interrupt Status Register
020h
Bit #
Name
15
—
14
—
13
—
12
P12ISR
11
P11ISR
10
P10ISR
9
P9ISR
8
P8ISR
Bit #
Name
7
P7ISR
6
P6ISR
5
P5ISR
4
P4ISR
3
P3ISR
2
P2ISR
1
P1ISR
0
GSR
Bits 12 to 1: Port n Interrupt Status Register (PnISR). This bit is set when any of the bits in the port n interrupt
status register (PORT.ISR) are set and enabled for interrupt. When set, this bit causes an interrupt if
GLOBAL.ISRIE:PnISRIE is set. See Section 8.10.
Bit 0: Global Status Register (GSR). This bit is set when any of the latched status register bits in the global
latched status register (GLOBAL.SRL) are set and enabled for interrupt. When set, this bit causes an interrupt if
GLOBAL.ISRIE:GSRIE is set. See Section 8.10.
Register Name:
Register Description:
Register Address:
GLOBAL.ISRIE
Global Interrupt Status Register Interrupt Enable
022h
Bit #
Name
Default
15
—
0
14
—
0
13
—
0
12
P12ISRIE
0
11
P11ISRIE
0
10
P10ISRIE
0
9
P9ISRIE
0
8
P8ISRIE
0
Bit #
Name
Default
7
P7ISRIE
0
6
P6ISRIE
0
5
P5ISRIE
0
4
P4ISRIE
0
3
P3ISRIE
0
2
P2ISRIE
0
1
P1ISRIE
0
0
GSRIE
0
Bits 12 to 1: Port n Interrupt Status Register Interrupt Enable (PnISRIE). This bit is the interrupt enable for the
GLOBAL.ISR:PnISR status bit. See Section 8.10.
0 = mask the interrupt
1 = enable the interrupt
Bit 0: Global Status Register Interrupt Enable (GSRIE). This bit is the interrupt enable for the GLOBAL.ISR:GSR
status bit. See Section 8.10.
0 = mask the interrupt
1 = enable the interrupt
59 of 130
DS32506/DS32508/DS32512
Register Name:
Register Description:
Register Address:
GLOBAL.SR
Global Status Register
028h
Bit #
Name
Default
15
—
—
14
—
—
13
—
—
12
—
—
11
—
—
10
—
—
9
—
—
8
—
—
Bit #
Name
Default
7
—
—
6
—
—
5
—
—
4
—
—
3
—
—
2
CLOL
0
1
—
—
0
GPMS
0
Bit 2: CLAD Loss of Lock (CLOL). This bit is set when the CLAD is not locked to the reference frequency.
Bit 0: Global Performance Monitoring Update Status (GPMS). This bit is set when the PORT.SR:PMS status
bits are set in all of the ports that are enabled for global update control (i.e., all ports that have PORT.CR1:PMUM =
1). Ports that have PORT.CR1:PMUM = 0 have no effect on this bit. In global software update mode, the global
update request bit (GLOBAL.CR1:GPMU) should be held high until this status bit goes high. See Section 8.7.4.
0 = The associated update request signal is low or not all register updates are completed.
1 = The requested performance register updates are all completed.
Register Name:
Register Description:
Register Address:
GLOBAL.SRL
Global Status Register Latched
02Ah
Bit #
Name
15
—
14
—
13
—
12
—
11
—
10
—
9
—
8
—
Bit #
Name
7
—
6
CLKCL
5
CLKBL
4
CLKAL
3
CLADL
2
CLOLL
1
G1SREFL
0
GPMSL
Bit 6: CLAD C Clock Activity Latched (CLKCL). This bit is set when the signal on the CLKC pin is active. Note:
This bit should always be low when GLOBAL.CR2:CLAD[6:4] ≠ 000. See Section 8.7.1.
Bit 5: CLAD B Clock Activity Latched (CLKBL). This bit is set when the signal on the CLKB pin is active. Note:
This bit should always be low when GLOBAL.CR2:CLAD[6:4] ≠ 000. See Section 8.7.1.
Bit 4: CLAD A Clock Activity Latched (CLKAL). This bit is set when the signal on the CLKA pin is active. Note:
This bit should always be low when GLOBAL.CR2:CLAD[6:4] ≠ 000. See Section 8.7.1.
Bit 3: CLAD Reference Clock Activity Status Latched (CLADL). This bit is set when the CLAD PLL reference
clock signal on the REFCLK pin is active. Note: When GLOBAL.CR2:CLAD[6:4] = 000, the REFCLK pin is unused.
See Section 8.7.1.
Bit 2: CLAD Loss of Lock Latched (CLOLL). This bit is set when the GLOBAL.SR:CLOL status bit transitions
from low to high.
Bit 1: Global One-Second Status Latched (G1SREFL). This bit is set once each second when the internal global
one-second timer signal transitions low to high. When set, this bit causes an interrupt if interrupt enables
GLOBAL.SRIE:G1SREFIE and GLOBAL.ISRIE:GSRIE are both set. See Section 8.7.1.
Bit 0: Global Performance Monitoring Update Status Latched (GPMSL). This bit is set when the
GLOBAL.SR:GPMS status bit changes from low to high. When set, this bit causes an interrupt if interrupt enables
GLOBAL.SRIE:GPMSIE and GLOBAL.ISRIE:GSRIE are both set. See Section 8.7.1.
60 of 130
DS32506/DS32508/DS32512
Register Name:
Register Description:
Register Address:
GLOBAL.SRIE
Global Status Register Interrupt Enable
02Ch
Bit #
Name
Default
15
—
0
14
—
0
13
—
0
12
—
0
11
—
0
10
—
0
9
—
0
8
—
0
Bit #
Name
Default
7
—
0
6
—
0
5
—
0
4
—
0
3
—
0
2
CLOLIE
0
1
G1SREFIE
0
0
GPMSIE
0
Bit 2: CLAD Loss of Lock Interrupt Enable (CLOLIE). This bit is the interrupt enable for the
GLOBAL.SRL:CLOLL bit.
0 = mask the interrupt
1 = enable the interrupt
Bit 1: Global One-Second Interrupt Enable (G1SREFIE). This bit is the interrupt enable for the
GLOBAL.SRL:G1SREFL bit.
0 = mask the interrupt
1 = enable the interrupt
Bit 0: Global Performance Monitoring Update Status Interrupt Enable (GPMSIE). This bit is the interrupt
enable for the GLOBAL.SRL: GPMSL bit.
0 = mask the interrupt
1 = enable the interrupt
Register Name:
Register Description:
Register Address:
GLOBAL.GIOARR
General-Purpose I/O A Read Register
038h
Bit #
Name
15
—
14
—
13
—
12
—
11
GPIOA12
10
GPIOA11
9
GPIOA10
8
GPIOA9
Bit #
Name
7
GPIOA8
6
GPIOA7
5
GPIOA6
4
GPIOA5
3
GPIOA4
2
GPIOA3
1
GPIOA2
0
GPIOA1
Bits 11 to 0: General-Purpose I/O A n Status (GPIOAn). Bit n indicates the status of general-purpose I/O A pin n
(GPIOAn). See Section 8.7.3.
Register Name:
Register Description:
Register Address:
GLOBAL.GIOBRR
General-Purpose I/O B Read Register
03Ah
Bit #
Name
15
—
14
—
13
—
12
—
11
GPIOB12
10
GPIOB11
9
GPIOB10
8
GPIOB9
Bit #
Name
7
GPIOB8
6
GPIOB7
5
GPIOB6
4
GPIOB5
3
GPIOB4
2
GPIOB3
1
GPIOB2
0
GPIOB1
Bits 11 to 0: General-Purpose I/O B n Status (GPIOBn). Bit n indicates the status of general-purpose I/O B pin n
(GPIOBn). See Section 8.7.3.
61 of 130
DS32506/DS32508/DS32512
9.4
Port Common Registers
Table 9-4. Port Common Register Map
ADDRESS
OFFSET
00h
02h
04h
06h
08h
0Ah
0Ch
0Eh
10h
12h
14h
16h
18h
1Ah
1Ch
1Eh
REGISTER
REGISTER DESCRIPTION
PORT.CR1
PORT.CR2
PORT.CR3
—
—
PORT.INV
—
—
PORT.ISR
—
PORT.ISRIE
—
PORT.SR
PORT.SRL
PORT.SRIE
—
Port Control Register 1
Port Control Register 2
Port Control Register 3
Unused
Unused
Port I/O Invert Control Register
Unused
Unused
Port Interrupt Status Register
Unused
Port Interrupt Status Register Interrupt Enable
Unused
Port Status Register
Port Status Register Latched
Port Status Register Interrupt Enable
Unused
Register Name:
Register Description:
Register Address:
PORT.CR1
Port Control Register 1
n * 80h + 00h
Bit #
Name
Default
15
—
0
14
—
0
13
—
0
12
—
0
11
—
0
10
—
0
9
—
0
8
—
0
Bit #
Name
Default
7
TMEI
0
6
MEIMS
0
5
PMUM
0
4
PMU
0
3
TPD
1
2
RPD
1
1
RSTDP
1
0
RST
0
Bit 7: Transmit Manual Error Insert (TMEI). When PORT.CR1:MEIMS = 0, this bit is used to insert errors in all
blocks where block-level MEIMS = 1. Error(s) are inserted at the next opportunity after this bit transitions from low
to high. See Section 8.7.5. Note: This bit should be set low immediately after each error insertion.
Bit 6: Transmit Manual Error Insert Mode Select (MEIMS). This bit specifies the source of the error insertion
signal for all block-level error generators that have block-level MEIMS = 1. See Section 8.7.5.
0 = Port-level error insertion via PORT.CR1:TMEI
1 = Global error insertion as specified by GLOBAL.CR1:MEIMS
Bit 5: Port Performance Monitor Update Mode (PMUM). This bit specifies the source of the performance
monitoring update signal for all blocks that have block-level PMUM = 1. See Section 8.7.4.
0 = Port-level PM update via PORT.CR1:PMU
1 = Global PM update as specified by GLOBAL.CR1:GPM[1:0]
Bit 4: Port Performance Monitor Register Update (PMU). When PORT.CR1:PMUM = 0, this bit is used to
update all of the performance monitor registers where block-level PMUM = 1. When this bit transitions from low to
high, all configured performance monitoring registers are updated with the latest counter values, and all associated
counters are reset. This bit should remain high until the performance monitor update status bit (PORT.SR:PMS)
goes high, and then it should be brought back low, which clears the PMS status bit. If a counter increment occurs
at the exact same time as the counter reset, the counter is loaded with a value of one, and the “counter is nonzero” latched status bit is set. See Section 8.7.4.
62 of 130
DS32506/DS32508/DS32512
Bit 3: Transmit Power-Down (TPD). When this bit is set, the transmit path of the port is powered down and
considered “out of service”. The digital logic is powered down by stopping the clocks. See Section 8.11.
0 = Normal operation
1 = Power down the port transmit path (TXP and TXN become high impedance)
Bit 2: Receive Power-Down (RPD). When this bit is set, the receive path of the port is powered down and
considered “out of service”. The digital logic is powered down by stopping the clocks. See Section 8.11.
0 = Normal operation
1 = Power down the port receive path (RPOS/RDAT, RNEG/RLCV, and RCLK become high impedance)
Bit 1: Reset Data Path (RSTDP). When this bit is set, it forces all of the port’s internal data path and status
registers to their default state. This bit must be set high for a minimum of 100ns and then set back low. See Section
8.11.
0 = Normal operation
1 = Force all data path registers to their default values
Bit 0: Reset (RST). When this bit is set, all of the internal data path and status and control registers (except this
RST bit) of this port are reset to their default state. This bit must be set high for a minimum of 100ns. This bit is
logically ORed with the inverted hardware signal RST and the GLOBAL.CR1:RST bit. See Section 8.11.
0 = Normal operation
1 = Force all internal registers to their default values
63 of 130
DS32506/DS32508/DS32512
Register Name:
Register Description:
Register Address:
Bit #
Name
Default
15
—
0
Bit #
Name
Default
7
PORT.CR2
Port Control Register 2
n * 80h + 02h
14
—
0
13
—
0
12
—
0
11
—
0
10
—
0
9
—
0
8
—
0
6
5
—
0
4
ROD
0
3
TBIN
0
2
RBIN
0
1
TCC
0
0
—
0
LM[1:0]
0
0
Bits 7 and 6: LIU Mode (LM[1:0]). These bits select the operating mode of the port. See Section 8.1.
00 = DS3
01 = E3
10 = STS-1
11 = reserved
Bit 4: Receive Output Disable (ROD). See Section 8.3.6.4.
0 = enable the receiver outputs
1 = disable the receiver outputs (RCLK, RPOS/RDAT, and RNEG/RLCV)
Bit 3: Transmit Binary Interface Enable (TBIN). See Section 8.2.2.
0 = Transmitter framer interface is bipolar on the TPOS and TNEG pins. The B3ZS/HDB3 encoder
is disabled.
1 = Transmitter framer interface is binary on the TDAT pin. The B3ZS/HDB3 encoder is enabled.
Bit 2: Receive Binary Interface Enable (RBIN). See Section 8.3.6.
0 = Receiver framer interface is bipolar on the RPOS and RNEG pins. The B3ZS/HDB3 decoder is
disabled.
1 = Receiver framer interface is binary on the RDAT pin with the RLCV pin indicating line-code
violations. The B3ZS/HDB3 encoder is enabled.
Bit 1: Transmit Common Clock Mode (TCC). See Section 8.2.1.1.
0 = Source transmit clock for port n from TCLKn
1 = Source transmit clock for port n from TCLK1
64 of 130
DS32506/DS32508/DS32512
Register Name:
Register Description:
Register Address:
PORT.CR3
Port Control Register 3
n * 80h + 04h
Bit #
Name
Default
15
—
0
14
—
0
13
—
0
12
—
0
11
—
0
10
—
0
9
BERTE
0
8
BERTD
0
Bit #
Name
Default
7
SCRD
0
6
—
0
5
—
0
4
AIST
0
3
TAIS
0
2
LBS
0
1
0
LB[1:0]
0
0
Bit 9: BERT Enable (BERTE). See Section 8.5.
0 = disable the BERT pattern generator (the pattern detector is always enabled)
1 = enable the BERT pattern generator (the pattern detector is always enabled)
Bit 8: BERT Direction (BERTD). See Section 8.5.
0 = line direction (transmit to receive)
1 = system direction (receive to transmit)
Bit 7: STS-1 Scrambling Disable (SCRD). This bit controls STS-1 scrambling when AIS-L is generated in STS-1
mode. See Section 8.2.3.
0 = Perform scrambling
1 = Do not perform scrambling
Bit 4: AIS Type (AIST). See Section 8.2.4.
0 = Unframed all ones
1 = Framed DS3 AIS (DS3 mode), unframed all ones (E3 mode), or AIS-L (STS-1 mode)
Bit 3: Transmit AIS (TAIS). The type of AIS signal depends on the LIU mode (DS3, E3, or STS-1) and the
configured AIS type. See Section 8.2.4.
0 = transmit normal data
1 = transmit AIS signal
Bit 2: Loopback Select (LBS). This bit affects the function of the loopback mode (LBM[1:0]) bits.
Bits 1 and 0: Loopback Mode (LB[1:0]). These bits enable loopbacks. The effect of the LB = 11 decode is
controlled by the LBS configuration bit. See Section 8.6.
00 = No loopback
01 = Diagnostic loopback (DLB)
10 = Line loopback (LLB)
11 (LBS = 0) = Line loopback (LLB) and diagnostic loopback (DLB) simultaneously
11 (LBS = 1) = Analog loopback (ALB)
65 of 130
DS32506/DS32508/DS32512
Register Name:
Register Description:
Register Address:
PORT.INV
Port I/O Invert Control Register
n * 80h + 0Ah
Bit #
Name
Default
15
—
0
14
—
0
13
—
0
12
—
0
11
—
0
10
—
0
9
—
0
8
—
0
Bit #
Name
Default
7
—
0
6
TNEGI
0
5
TPOSI
0
4
TCLKI
0
3
—
0
2
RNEGI
0
1
RPOSI
0
0
RCLKI
0
Bit 6: TNEG Invert (TNEGI). This bit inverts the TNEG input pin when set.
0 = Noninverted
1 = Inverted
Bit 5: TPOS/TDAT Invert (TPOSI). This bit inverts the TPOS/TDAT input pin when set.
0 = Noninverted
1 = Inverted
Bit 4: TCLK Invert (TCLKI). This bit inverts the TCLK pin input pin when set. See Section 8.2.1.
0 = Noninverted; TPOS/TDAT and TNEG are sampled on the rising edge of TCLK.
1 = Inverted; TPOS/TDAT and TNEG are sampled on the falling edge of TCLK.
Bit 2: RNEG/RLCV Invert (RNEGI). This bit inverts the RNEG/RLCV output pin when set.
0 = Noninverted
1 = Inverted
Bit 1: RPOS/RDAT Invert (RPOSI). This bit inverts the RPOS/RDAT output pin when set.
0 = Noninverted
1 = Inverted
Bit 0: RCLK Invert (RCLKI). This bit inverts the RCLKn output pin when set. See Section 8.3.6.3.
0 = Noninverted; RPOS/RDAT and RNEG/RLCV are updated on the falling edge of RCLK.
1 = Inverted; RPOS/RDAT and RNEG/RLCV are updated on the rising edge of RCLK.
66 of 130
DS32506/DS32508/DS32512
Register Name:
Register Description:
Register Address:
PORT.ISR
Port Interrupt Status Register
n * 80h + 10h
Bit #
Name
15
—
14
—
13
—
12
—
11
—
10
—
9
—
8
—
Bit #
Name
7
—
6
—
5
—
4
—
3
LDSR
2
LIUSR
1
BSR
0
PSR
Bit 3: Line Decoder Status Register Interrupt Status (LDSR). This bit is set when any of the latched status
register bits in the B3ZS/HDB3 Line Decoder block are set and enabled for interrupt. When set, this bit causes an
interrupt if PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are both set. See Section 8.10.
Bit 2: LIU Status Register Interrupt Status (LIUSR). This bit is set when any of the latched status register bits in
the LIU block are set and enabled for interrupt. When set, this bit causes an interrupt if PORT.ISRIE:LIUSRIE and
GLOBAL.ISRIE: PnISRIE are both set. See Section 8.10.
Bit 1: BERT Status Register Interrupt Status (BSR). This bit is set when any of the latched status register bits in
the BERT block are set and enabled for interrupt. When set, this bit causes an interrupt if PORT.ISRIE:BSRIE and
GLOBAL.ISRIE: PnISRIE are both set. See Section 8.10.
Bit 0: Port Status Register Interrupt Status (PSR). This bit is set when any of the latched status register bits in
the port latched status register (PORT.SRL) are set and enabled for interrupt. When set, this bit causes an interrupt
if PORT.ISRIE:PSRIE and GLOBAL.ISRIE: PnISRIE are both set. See Section 8.10.
Register Name:
Register Description:
Register Address:
PORT.ISRIE
Port Interrupt Status Register Interrupt Enable
n * 80h + 14h
Bit #
Name
Default
15
—
0
14
—
0
13
—
0
12
—
0
11
—
0
10
—
0
9
—
0
8
—
0
Bit #
Name
Default
7
—
0
6
—
0
5
—
0
4
—
0
3
LDSRIE
0
2
LIUSRIE
0
1
BSRIE
0
0
PSRIE
0
Bit 3: Line Decoder Status Register Interrupt Enable (LDSRIE). This bit is the interrupt enable for the
PORT.ISR:LDSR status bit.
0 = mask the interrupt
1 = enable the interrupt
Bit 2: LIU Status Register Interrupt Enable (LIUSRIE). This bit is the interrupt enable for the PORT.ISR:LIUSR
status bit.
0 = mask the interrupt
1 = enable the interrupt
Bit 1: BERT Status Register Interrupt Enable (BSRIE). This bit is the interrupt enable for the PORT.ISR:BSR
status bit.
0 = mask the interrupt
1 = enable the interrupt
Bit 0: Port Status Register Interrupt Enable (PSRIE). This bit is the interrupt enable for the PORT.ISR:PSR
status bit.
0 = mask the interrupt
1 = enable the interrupt
67 of 130
DS32506/DS32508/DS32512
Register Name:
Register Description:
Register Address:
PORT.SR
Port Status Register
n * 80h + 18h
Bit #
Name
Default
15
—
—
14
—
—
13
—
—
12
—
—
11
—
—
10
—
—
9
—
—
8
—
—
Bit #
Name
Default
7
—
—
6
—
—
5
—
—
4
—
—
3
—
—
2
—
—
1
—
—
0
PMS
0
Bit 0: Performance Monitoring Update Status (PMS). This bit is set when the PMS bits are set in all of the port
functional blocks that are configured for port-level update control (i.e., all blocks that have PMUM = 1). Blocks that
have PMUM = 0 have no effect on this bit. In port-level software update mode, the port update request bit
(PORT.CR1:PMU) should be held high until this status bit goes high. See Section 8.7.4.
0 = The associated update request signal is low or not all register updates are completed.
1 = The requested performance register updates are all completed.
Register Name:
Register Description:
Register Address:
PORT.SRL
Port Status Register Latched
n * 80h + 1Ah
Bit #
Name
15
—
14
—
13
—
12
—
11
—
10
—
9
—
8
TCLKL
Bit #
Name
7
—
6
—
5
—
4
—
3
—
2
—
1
—
0
PMSL
Bit 8: Transmit Clock Activity Status Latched (TCLKL). This bit is set when the signal on the TCLK pin used by
this port (TCLKn when TCC = 0, TCLK1 when TCC = 1) is active. When set, this bit causes an interrupt if interrupt
enables PORT.SRIE:TCLKIE, PORT.ISRIE:PSRIE, and GLOBAL.ISRIE: PnISRIE are all set.
Bit 0: Performance Monitoring Update Status Latched (PMSL). This bit is set when the PORT.SR:PMS status
bit changes from low to high. When set, this bit causes an interrupt if interrupt enables PORT.SRIE:PMSIE,
PORT.ISRIE:PSRIE and GLOBAL.ISRIE:PnISRIE are all set. See Section 8.7.4.
68 of 130
DS32506/DS32508/DS32512
Register Name:
Register Description:
Register Address:
PORT.SRIE
Port Status Register Interrupt Enable
n * 80h + 1Ch
Bit #
Name
Default
15
—
0
14
—
0
13
—
0
12
—
0
11
—
0
10
—
0
9
—
0
8
TCLKIE
0
Bit #
Name
Default
7
—
0
6
—
0
5
—
0
4
—
0
3
—
0
2
—
0
1
—
0
0
PMSIE
0
Bit 8: Transmit Clock Activity Latched Status Interrupt Enable (TCLKIE). This bit is the interrupt enable for the
PORT.SRL:TCLKL bit.
0 = mask the interrupt
1 = enable the interrupt
Bit 0: Performance Monitoring Update Latched Status Interrupt Enable (PMSIE). This bit is the interrupt
enable for the PORT.SRL:PMSL bit.
0 = mask the interrupt
1 = enable the interrupt
69 of 130
DS32506/DS32508/DS32512
9.5
LIU Registers
ADDRESS
OFFSET
20h
22h
24h
26h
28h
2Ah
2Ch
2Eh
REGISTER
REGISTER DESCRIPTION
LIU.CR1
LIU.CR2
LIU.TWSCR1
LIU.TWSCR2
LIU.SR
LIU.SRL
LIU.SRIE
LIU.RGLR
Control Register 1
Control Register 2
Transmit Waveshaping Control Register 1
Transmit Waveshaping Control Register 2
Status Register
Status Register Latched
Status Register Interrupt Enable
Receive Gain Level Register
Register Name:
Register Description:
Register Address:
LIU.CR1
LIU Control Register 1
n * 80h + 20h
Bit #
Name
Default
15
—
0
14
—
0
13
—
0
12
—
0
11
10
9
0
0
0
0
Bit #
Name
Default
7
—
0
6
—
0
5
TLBO
0
4
TOE
0
3
TTRE
0
2
1
TRESADJ[2:0]
0
0
JAD[1:0]
8
JAS[1:0]
0
0
Bits 11, 10: Jitter Attenuator Depth (JAD[1:0]). These bits select the jitter attenuator buffer depth. See Section
8.4.
00 = 16 bits
01 = 32 bits
10 = 64 bits
11 = 128 bits
Bit 9, 8: Jitter Attenuator Select (JAS[1:0]). These bits select the location of the jitter attenuator. See Section 8.4.
00 = Disabled
01 = Receive Path
10 = Transmit Path
11 = Transmit Path
Bit 5: Transmit LIU LBO (TLBO). This bit is used to enable the transmit LBO circuit which causes the transmit
signal to be preattenuated to mimic the attenuation of approximately approximates about 225 feet of cable. This is
used to reduce near-end crosstalk when the cable lengths are short. This signal is only valid in DS3 and STS-1
modes. See Section 8.2.6.
0 = Disabled
1 = Enabled
Bit 4: Transmit Output Enable (TOE). This bit enables the transmitter outputs (TXP and TXN). The transmitter
continues to operate internally when the transmitter is tri-stated. Only the line driver and driver monitor are
disabled. See Section 8.2.7. Note: This bit is ORed with the associated TOE input pin.
0 = TXP and TXN are high impedance
1 = TXP and TXN are driven
Bit 3: Transmit Termination Resistor Enable (TTRE). This bit indicates when the transmitter internal termination
is enabled. See Section 8.2.8.
0 = Disabled, the transmitter is terminated externally
1 = Enabled, the transmitter is terminated internally
70 of 130
DS32506/DS32508/DS32512
Bits 2, 0: Transmit Resistor Adjustment (TRESADJ[2:0]). These bits are used to adjust the internal termination
resistance of the transmitter. See Section 8.2.8.
000 = 75Ω
001 = 82Ω
010 = 90Ω
011 = 100Ω
100 = 68Ω
101 = 62Ω
110 = 56Ω
111 = 50Ω
Register Name:
Register Description:
Register Address:
LIU.CR2
LIU Control Register 2
n * 80h + 22h
Bit #
Name
Default
15
—
0
14
—
0
13
—
0
12
—
0
11
—
0
10
—
0
9
—
0
8
—
0
Bit #
Name
Default
7
—
0
6
—
0
5
RFL2E
0
4
RMON
0
3
RTRE
0
2
1
RRESADJ[2:0]
0
0
0
0
Bit 5: Receive Fail 2 Enable (RFL2E). This bit is used to enable the receive failure type 2 detection. See Section
8.3.8.
0 = Disable receive failure type 2 detection
1 = Enable receive failure type 2 detection
Bit 4: Receive LIU Monitor Mode (RMON). This bit is used to enable the receive LIU monitor mode preamplifier.
Enabling the preamplifier adds about 14dB of linear amplification for use in monitor applications where the signal
has been reduced 20dB using resistive attenuator circuits. Note: When enabled, the preamp is turned on or off
automatically depending upon the input signal level. See Section 8.3.2.
0 = Disable the preamp
1 = Enable the preamp
Bit 3: Receive Termination Resistor Enable (RTRE). This bit indicates when the receiver internal termination is
enabled. See Section 8.3.1.
0 = Disabled, the receiver is terminated externally
1 = Enabled, the receiver is terminated internally
Bits 2 to 0: Receive Resistor Adjustment (RRESADJ[2:0]). These bits are used to adjust the internal termination
resistance of the receiver. See Section 8.3.1.
000 = 75Ω
001 = 82Ω
010 = 90Ω
011 = 100Ω
100 = 68Ω
101 = 62Ω
110 = 56Ω
111 = 50Ω
71 of 130
DS32506/DS32508/DS32512
Register Name:
Register Description:
Register Address:
LIU.TWSCR1
LIU Transmit Waveshaping Control Register 1
n * 80h + 24h
Bit #
Name
Default
15
14
13
10
9
8
0
12
11
TWSC[15:8]
0
0
0
0
0
0
0
Bit #
Name
Default
7
6
5
4
3
2
1
0
0
0
0
0
TWSC[7:0]
0
0
0
0
See Figure 8-1, Figure 8-2, and Figure 8-3 for illustrations of the first and second rise/fall time segments of the DS3
and STS-1 waveforms and the overshoot, one level, undershoot, and zero level segments for the E3 waveform.
Bits 15, 14: Transmit Waveshaping Control (TWSC[15:14]). In DS3 and STS-1 modes, this field adjusts the
width of the first of two rising-edge segments. In E3 mode this field adjusts the width of the leading edge overshoot.
E3 Behavior
DS3/STS-1 Behavior
00 - normal first rise time
normal overshoot width
01 - increase first rise time by 0.1ns
increase overshoot width
10 - decrease first rise time by 0.1ns
decrease overshoot width
11 - decrease first rise time by 0.2ns
decrease overshoot width
Bits 13, 12: Transmit Waveshaping Control (TWSC[13:12]). In DS3 and STS-1 modes, this field adjusts the
width of the second of two rising-edge segments. In E3 mode this field adjusts the width of the pulse plateau.
E3 Behavior
DS3/STS-1 Behavior
00 - normal second rise time
normal “one level” time
01 - increase second rise time by 0.1ns
increase “one level” time by 0.15ns
10 - decrease second rise time by 0.1ns
decrease “one level” time by 0.15ns
11 - decrease second rise time by 0.1ns
decrease “one level” time by 0.3ns
Bits 11, 10: Transmit Waveshaping Control (TWSC[11:10]). In DS3 and STS-1 modes, this field adjusts the
width of the first of two falling-edge segments. In E3 mode this field adjusts the width of the trailing edge
undershoot.
E3 Behavior
DS3/STS-1 Behavior
00 - normal first fall time
normal undershoot width
01 - increase first fall time by 0.1ns
increase undershoot width by 0.15ns
10 - decrease first fall time by 0.1ns
decrease undershoot width by 0.15ns
11 - decrease first fall time by 0.1ns
decrease undershoot width by 0.3ns
Bits 9, 8: Transmit Waveshaping Control (TWSC[9:8]). In DS3 and STS-1 modes, this field adjusts the width of
the second of two falling-edge segments. In E3 mode this field adjusts the width of the zero after the trailing edge.
E3 Behavior
DS3/STS-1 Behavior
00 - normal second fall time
normal “zero level” width
01 - increase second fall time by 0.1ns
increase “zero level” width by 0.15ns
10 - decrease second fall time by 0.1ns
decrease “zero level” width by 0.15ns
11 - decrease second fall time by 0.2ns
decrease “zero level” width by 0.3ns
Bits 7, 6: Transmit Waveshaping Control (TWSC[7:6]). In DS3 and STS-1 modes, this field adjusts the
amplitude of the first of two rising-edge segments. In E3 mode this field adjusts the amplitude of the leading edge
overshoot. The 11 value is a special case in which the entire pulse is made narrower.
E3 Behavior
DS3/STS-1 Behavior
00 - normal first rise amplitude
normal overshoot
01 - decrease first rise amplitude 15%
decrease overshoot amplitude 2%
10 - increase first rise amplitude 15%
increase overshoot amplitude 2%
11 - decrease pulse width by 0.15ns
decrease pulse width by 0.15ns
72 of 130
DS32506/DS32508/DS32512
Bits 5, 4: Transmit Waveshaping Control (TWSC[5:4]). In DS3 and STS-1 modes, this field adjusts the
amplitude of the second of two rising-edge segments. In E3 mode this field has no effect, except for the 11 value,
which is a special case in which the entire pulse is made wider.
E3 Behavior
DS3/STS-1 Behavior
00 - normal rise amplitude
normal pulse
01 - decrease second rise amplitude 15%
normal pulse
10 - increase second rise amplitude 15%
normal pulse
11 - increase pulse width by 0.15ns
increase pulse width by 0.15ns
Bits 3, 2: Transmit Waveshaping Control (TWSC[3:2]). In DS3 and STS-1 modes, this field adjusts the
amplitude of the first of two falling-edge segments. In E3 mode this field adjusts the amplitude of the trailing edge
overshoot. The 11 value is a special case in which the entire pulse is made wider.
E3 Behavior
DS3/STS-1 Behavior
00 - normal first fall time
normal undershoot
01 - decrease first fall time amplitude 15%
decrease undershoot 2%
10 - increase first fall time amplitude 15%
increase undershoot 2%
11 - increase pulse width by 0.15ns
increase pulse width by 0.15ns
Bits 1, 0: Transmit Waveshaping Control (TWSC[1:0]). In DS3 and STS-1 modes, this field adjusts the fall time
of the second of two falling-edge segments. In E3 mode this field has no effect, except for the 11 value, which is a
special case in which the entire pulse is made narrower.
E3 Behavior
DS3/STS-1 Behavior
00 - normal second fall time
normal pulse
01 - decrease second fall time amplitude 15% normal pulse
10 - increase second fall time amplitude 15% normal pulse
11 - decrease pulse width by 0.15ns
decrease pulse width by 0.15ns
73 of 130
DS32506/DS32508/DS32512
Register Name:
Register Description:
Register Address:
LIU.TWSCR2
LIU Transmit Waveshaping Control Register 2
n * 80h + 26h
Bit #
Name
Default
15
—
0
14
—
0
13
—
0
12
—
0
11
—
0
10
—
0
9
—
0
8
—
0
Bit #
Name
Default
7
—
0
6
—
0
5
—
0
4
—
0
3
2
1
TWSC[19:16]
0
0
0
0
0
Bits 3 to 0: Transmit Waveshaping Control (TWSC[19:16]). This field adjusts overall amplitude of the transmit
output pulse.
0000 - nominal amplitude (see Table 11-6 and Table 11-7)
0001 - increase amplitude by 3.75%
0010 - increase amplitude by 7.5%
0011 - increase amplitude by 11.25%
0100 - increase amplitude by 15%
0101 - increase amplitude by 20%
0110 - increase amplitude by 25%
0111 - increase amplitude by 30%
1000 - decrease amplitude by 12.5%
1001 - decrease amplitude by 9.375%
1010 - decrease amplitude by 6.25%
1011 - decrease amplitude by 3.125%
110X - increase amplitude to internal current limit
111X - increase amplitude to maximum, current limiting disabled
74 of 130
DS32506/DS32508/DS32512
Register Name:
Register Description:
Register Address:
LIU.SR
LIU Status Register
n * 80h + 28h
Bit #
Name
Default
15
—
0
14
—
0
13
—
0
12
—
0
11
—
0
10
TDM
0
9
TFAIL
0
8
LOMC
0
Bit #
Name
Default
7
—
1
6
—
1
5
—
0
4
RPAS
0
3
RFAIL1
0
2
RFAIL2
0
1
RLOL
0
0
ALOS
0
Bit 10: Transmit Driver Monitor (TDM). This bit indicates when the transmit driver is faulty. See Section 8.2.9.
0 = the transmit line driver is operating properly
1 = the transmit line driver is faulty
Bit 9: Transmit Output Failure (TFAIL). This bit indicates when there is a failure on the transmit differential
outputs (TXP/TXN). See Section 8.2.9.
0 = an open or short has not been detected on TXP or TXN
1 = an open or short has been detected on TXP or TXN
Bit 8: Loss of Master Clock (LOMC). This bit indicates whether or not the master reference clock (DS3, E3, or
STS-1, depending on PORT.CR2:LM[1:0] setting) is available from the CLAD block. See Section 8.7.1.
0 = the master reference clock is present
1 = that master reference clock is not present
Bit 4: Receive Preamp Status (RPAS). See Section 8.3.2.
0 = the receiver preamp is off
1 = the receiver preamp is on
Bit 3: Receive Failure Type 1 (RFAIL1). See Section 8.3.8.
0 = a receive failure type 1 has not been detected on RXP or RXN
1 = a receive failure type 1 has been detected on RXP or RXN.
Bit 2: Receive Failure Type 2 (RFAIL2). See Section 8.3.8.
0 = a receive failure type 2 has not been detected on RXP or RXN
1 = a receive failure type 2 has been detected on RXP or RXN.
Bit 1: Receive Loss of Lock (RLOL). See Section 8.3.4.
0 = the incoming clock frequency on RXP/RXN is within ±7700ppm of the master reference clock
1 = the incoming clock frequency on RXP/RXN is more than ±7900ppm away from the master
reference clock
Bit 0: Analog Loss of Signal (ALOS). See Section 8.3.5.
0 = an analog LOS (ALOS) condition has not been detected
1 = an ALOS condition has been detected
75 of 130
DS32506/DS32508/DS32512
Register Name:
Register Description:
Register Address:
LIU.SRL
LIU Status Register Latched
n * 80h + 2Ah
Bit #
Name
Default
15
—
0
14
—
0
13
—
0
12
JAFL
0
11
JAEL
0
10
TDML
0
9
TFAILL
0
8
LOMCL
0
Bit #
Name
Default
7
—
0
6
—
0
5
RGLCL
0
4
RPASL
0
3
RFAIL1L
0
2
RFAIL2L
0
1
RLOLL
0
0
ALOSL
0
Bit 12: Jitter Attenuator Full Latched (JAFL). This bit is set when the jitter attenuator buffer is full, or when data
has been lost due to a jitter attenuator buffer underflow or overflow. When set, this bit causes an interrupt if
interrupt enables LIU.SRIE:JAFIE, PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all set. See Section 8.4.
Bit 11: Jitter Attenuator Empty Latched (JAEL). This bit is set when the jitter attenuator buffer is empty, or when
data has been lost due to a jitter attenuator buffer underflow or overflow. When set, this bit causes an interrupt if
interrupt enables LIU.SRIE:JAEIE, PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all set. See Section 8.4.
Bit 10: Transmit Driver Monitor Change Latched (TDML). This bit is set when the LIU.SR:TDM bit changes
state. When set, this bit causes an interrupt if interrupt enables LIU.SRIE:TDMIE, PORT.ISRIE:LDSRIE and
GLOBAL.ISRIE:PnISRIE are all set.
Bit 9: Transmit Output Failure Change Latched (TFAILL). This bit is set when the LIU.SR:TFAIL bit changes
state. When set, this bit causes an interrupt if interrupt enables LIU.SRIE:TFAILIE, PORT.ISRIE:LDSRIE and
GLOBAL.ISRIE:PnISRIE are all set.
Bit 8: Loss of Master Clock Latched (LOMCL). This bit is set when the LIU.SR:LOMC bit is set. When set, this
bit causes an interrupt if interrupt enables LIU.SRIE:LOMCIE, PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE
are all set.
Bit 5: Receive Gain Level Change Latched (RGLCL). This bit is set when the receive gain level (LIU.RGLR:
RGL[7:0]) changes. When set, this bit causes an interrupt if interrupt enables LIU.SRIE:RGLCIE,
PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all set.
Bit 4: Receive Preamp Status Change Latched (RPASL). This bit is set when the LIU.SR:RPAS bit changes
state. When set, this bit causes an interrupt if interrupt enables LIU.SRIE:RPASIE, PORT.ISRIE:LDSRIE and
GLOBAL.ISRIE:PnISRIE are all set.
Bit 3: Receive Failure Type 1 Change Latched (RFAIL1L). This bit is set when the LIU.SR:RFAIL1 bit changes
state. When set, this bit causes an interrupt if interrupt enables LIU.SRIE:RFAIL1IE, PORT.ISRIE:LDSRIE and
GLOBAL.ISRIE:PnISRIE are all set.
Bit 2: Receive Failure Type 2 Change Latched (RFAIL2L). This bit is set when the LIU.SR:RFAIL2 bit changes
state. When set, this bit causes an interrupt if interrupt enables LIU.SRIE:RFAIL2IE, PORT.ISRIE:LDSRIE and
GLOBAL.ISRIE:PnISRIE are all set.
Bit 1: Receive Loss of Lock Change Latched (RLOLL). This bit is set when the LIU.SR:RLOL bit changes state.
When set, this bit causes an interrupt if interrupt enables LIU.SRIE:RLOLIE, PORT.ISRIE:LDSRIE and
GLOBAL.ISRIE:PnISRIE are all set.
Bit 0: Analog Loss of Signal Change Latched (ALOSL). This bit is set when the LIU.SR:ALOS bit changes state.
When set, this bit causes an interrupt if interrupt enables LIU.SRIE:ALOSIE, PORT.ISRIE:LDSRIE and
GLOBAL.ISRIE:PnISRIE are all set.
76 of 130
DS32506/DS32508/DS32512
Register Name:
Register Description:
Register Address:
LIU.SRIE
LIU Status Register Interrupt Enable
n * 80h + 2Ch
Bit #
Name
Default
15
—
0
14
—
0
13
—
0
12
JAFIE
0
11
JAEIE
0
10
TDMIE
0
9
TFAILIE
0
8
LOMCIE
0
Bit #
Name
Default
7
—
0
6
—
0
5
RGLCIE
0
4
RPASIE
0
3
RFAIL1IE
0
2
RFAIL2IE
0
1
RLOLIE
0
0
ALOSIE
0
Bit 12: Jitter Attenuator Full Interrupt Enable (JAFIE). This bit is the interrupt enable for the LIU.SRL:JAFL bit.
0 = interrupt disabled
1 = interrupt enabled
Bit 11: Jitter Attenuator Empty Interrupt Enable (JAEIE). This bit is the interrupt enable for the LIU.SRL:JAEL
bit.
0 = interrupt disabled
1 = interrupt enabled
Bit 10: Transmit Driver Monitor Interrupt Enable (TDMIE). This bit is the interrupt enable for the LIU.SRL:TDML
bit.
0 = interrupt disabled
1 = interrupt enabled
Bit 9: Transmit Output Failure Interrupt Enable (TFAILIE). This bit is the interrupt enable for the
LIU.SRL:TFAILL bit.
0 = interrupt disabled
1 = interrupt enabled
Bit 8: Loss of Master Clock Interrupt Enable (LOMCIE). This bit is the interrupt enable for the LIU.SRL:LOMCL
bit.
0 = interrupt disabled
1 = interrupt enabled
Bit 5: Receive Gain Level Change Interrupt Enable (RGLCIE). This bit is the interrupt enable for the
LIU.SRL:RGLCL bit.
0 = interrupt disabled
1 = interrupt enabled
Bit 4: Receive Preamp Status Interrupt Enable (RPASIE). This bit is the interrupt enable for the LIU.SRL:RPASL
bit.
0 = interrupt disabled
1 = interrupt enabled
Bit 3: Receive Failure Type 1 Interrupt Enable (RFAIL1IE). This bit is the interrupt enable for the
LIU.SRL:RFAIL1L bit.
0 = interrupt disabled
1 = interrupt enabled
Bit 2: Receive Failure Type 2 Interrupt Enable (RFAIL2IE). This bit is the interrupt enable for the
LIU.SRL:RFAIL2L bit.
0 = interrupt disabled
1 = interrupt enabled
Bit 1: Receive Loss of Lock Interrupt Enable (RLOLIE). This bit is the interrupt enable for the LIU.SRL:RLOLL
bit.
0 = interrupt disabled
1 = interrupt enabled
77 of 130
DS32506/DS32508/DS32512
Bit 0: Analog Loss Of Signal Interrupt Enable (ALOSIE). This bit is the interrupt enable for the LIU.SRL:ALOSL
bit.
0 = interrupt disabled
1 = interrupt enabled
Register Name:
Register Description:
Register Address:
LIU.RGLR
LIU Receive Gain Level Register
n * 80h + 2Eh
Bit #
Name
Default
15
—
0
14
—
0
13
—
0
12
—
0
11
—
0
10
—
0
9
—
0
8
—
0
Bit #
Name
Default
7
RGL7
0
6
RGL6
0
5
RGL5
0
4
RGL4
0
3
RGL3
0
2
RGL2
0
1
RGL1
0
0
RGL0
0
Bits 7 to 0: Receive Gain Level (RGL[7:0]). This field reports the real-time receiver gain level in 0.25 dB
increments. Values of 00–60h indicate receiver gain of 0dB to +24dB in 0.25dB increments. Values of F4–Fifth
indicate receiver gain of -3dB to -0.25dB in 0.25dB increments. See Section 8.3.3.
78 of 130
DS32506/DS32508/DS32512
9.6
B3ZS/HDB3 Encoder Registers
ADDRESS
OFFSET
30h
32h–3Eh
REGISTER
REGISTER DESCRIPTION
LINE.TCR
—
B3ZS/HDB3 Transmit Control Register
Unused
Register Name:
Register Description:
Register Address:
LINE.TCR
B3ZS/HDB3 Transmit Control Register
n * 80h + 30h
Bit #
Name
Default
15
—
0
14
—
0
13
—
0
12
—
0
11
—
0
10
—
0
9
—
0
8
—
0
Bit #
Name
Default
7
—
0
6
—
0
5
—
0
4
TZSD
0
3
EXZI
0
2
BPVI
0
1
TSEI
0
0
MEIMS
0
Bit 4: Transmit Zero Suppression Encoding Disable (TZSD)
0 = zero suppression (B3ZS or HDB3) encoding is enabled
1 = zero suppression (B3ZS or HDB3) encoding is disabled, and only AMI encoding is performed
Bit 3: Excessive Zero Insert Enable (EXZI). See Section 8.2.3.
0 = excessive zero event (EXZ) insertion is disabled
1 = excessive zero event insertion is enabled
Bit 2: Bipolar Violation Insert Enable (BPVI). See Section 8.2.3.
0 = bipolar violation (BPV) insertion is disabled
1 = bipolar violation insertion is enabled.
Bit 1: Transmit Single Error Insert (TSEI). When LINE.TCR:MEIMS = 0, this bit is used to insert errors of the
type(s) specified by EXZI and BPVI in the transmit data stream. A zero-to-one transition causes a single error to be
inserted. For a second error to be inserted, this bit must be set to 0, and then back to 1. Note: If LINE.TCR:MEIMS
is low, and this bit transitions more than once between error insertion opportunities, only one error is inserted. See
Section 8.7.5.
Bit 0: Manual Error Insert Mode Select (MEIMS). This bit specifies the source of the error insertion signal for the
transmit encoder/decoder block. Note: If the TMEI pin or TSEI bit is one, changing the state of this bit may cause
an error to be inserted. See Section 8.7.5.
0 = Block-level error insertion using the LINE.TCR:TSEI control bit
1 = Port-level or global-level error insertion as specified by PORT.CR1:MEIMS
79 of 130
DS32506/DS32508/DS32512
9.7
B3ZS/HDB3 Decoder Registers
ADDRESS
OFFSET
40h
42h
44h
46h
48h
4Ah
4Ch
4Eh
REGISTER
REGISTER DESCRIPTION
LINE.RCR
—
LINE.RSR
LINE.RSRL
LINE.RSRIE
—
LINE.RBPVCR
LINE.REXZCR
B3ZS/HDB3 Receive Control Register
Unused
B3ZS/HDB3 Receive Status Register
B3ZS/HDB3 Receive Status Register Latched
B3ZS/HDB3 Receive Status Register Interrupt Enable
Unused
B3ZS/HDB3 Receive Bipolar Violation Count Register
B3ZS/HDB3 Receive Excessive Zero Count Register
Register Name:
Register Description:
Register Address:
LINE.RCR
B3ZS/HDB3 Receive Control Register
n * 80h + 40h
Bit #
Name
Default
15
—
0
14
—
0
13
—
0
12
—
0
11
—
0
10
—
0
9
—
0
8
—
0
Bit #
Name
Default
7
—
0
6
—
0
5
—
0
4
—
0
3
E3CVE
0
2
REZSF
0
1
RDZSF
0
0
RZSD
0
Bit 3: E3 Code Violation Enable (E3CVE). In E3 mode (PORT.CR2:LM[1:0] = 01), this bit specifies whether the
LINE.RBPVCR register counts bipolar violations or E3 coding violations. Note: E3 line coding violations are defined
in ITU O.161 as consecutive bipolar violations of the same polarity. This bit is ignored in B3ZS mode. See Section
8.3.6.2.
0 = bipolar violations.
1 = E3 line coding violations
Bit 2: Receive BPV Error Detection Zero Suppression Code Format (REZSF). When REZSF = 0, BPV error
detection detects a B3ZS signature if a zero is followed by a bipolar violation (BPV), and an HDB3 signature if two
zeros are followed by a BPV. When REZSF = 1, BPV error detection detects a B3ZS signature if a zero is followed
by a BPV that has the opposite polarity of the BPV in the previous B3ZS signature, and an HDB3 signature if two
zeros are followed by a BPV that has the opposite polarity of the BPV in the previous HDB3 signature. Note:
Immediately after a reset (RST or DPRST bit high), this bit is ignored. The first B3ZS signature is defined as a zero
followed by a BPV, and the first HDB3 signature is defined as two zeros followed by a BPV. All subsequent
B3ZS/HDB3 signatures are determined by the setting of this bit. Note: The default setting (REZSF = 0) conforms to
ITU O.162. The default setting may falsely ignore actual BPVs that are not codewords. It is recommended that
REZSF be set to one for most applications. This setting is more robust to accurately detect codewords. See
Section 8.3.6.2.
Bit 1: Receive Zero Suppression Decoding Zero Suppression Code Format (RDZSF). When RDZSF = 0, zero
suppression decoding detects a B3ZS signature if a zero is followed by a bipolar violation (BPV), and an HDB3
signature if two zeros are followed by a BPV. When RDZSF = 1, zero suppression decoding detects a B3ZS
signature if a zero is followed by a BPV that has the opposite polarity of the BPV in the previous B3ZS signature,
and an HDB3 signature if two zeros are followed by a BPV that has the opposite polarity of the BPV in the previous
HDB3 signature. Note: Immediately after a reset (RST or DPRST bit high), this bit is ignored. The first B3ZS
signature is defined as a zero followed by a BPV, and the first HDB3 signature is defined as two zeros followed by
a BPV. All subsequent B3ZS/HDB3 signatures are determined by the setting of this bit. Note: The default setting
(RDZSF = 0) may falsely decode actual BPVs that are not codewords. It is recommended that RDZSF be set to
one for most applications. This setting is more robust to accurately detect codewords. See Section 8.3.6.2.
Bit 0: Receive Zero Suppression Decoding Disable (RZSD)
0 = zero suppression (B3ZS or HDB3) decoding is enabled
1 = zero suppression (B3ZS or HDB3) decoding is disabled, and only AMI decoding is performed
80 of 130
DS32506/DS32508/DS32512
Register Name:
Register Description:
Register Address:
LINE.RSR
B3ZS/HDB3 Receive Status Register
n * 80h + 44h
Bit #
Name
Default
15
—
0
14
—
0
13
—
0
12
—
0
11
—
0
10
—
0
9
—
0
8
—
0
Bit #
Name
Default
7
—
0
6
—
0
5
—
0
4
—
0
3
EXZC
0
2
—
0
1
BPVC
0
0
LOS
0
Bit 3: Excessive Zero Count (EXZC). See Section 8.3.6.
0 = the Receive Excessive Zero Count Register (LINE.REXZCR) is zero
1 = the Receive Excessive Zero Count Register (LINE.REXZCR) is one or more
Bit 1: Bipolar Violation Count (BPVC). See Section 8.3.6.
0 = the Receive Bipolar Violation Count Register (LINE.RBPVCR) is zero
1 = the Receive Bipolar Violation Count Register (LINE.RBPVCR) is one or more
Bit 0: Loss of Signal (LOS). See Section 8.3.5.
0 = receive line interface is not in a LOS condition
1 = receive line interface is in an LOS condition
Register Name:
Register Description:
Register Address:
LINE.RSRL
B3ZS/HDB3 Receive Status Register Latched
n * 80h + 46h
Bit #
Name
Default
15
—
0
14
—
0
13
—
0
12
—
0
11
—
0
10
—
0
9
—
0
8
—
0
Bit #
Name
Default
7
—
0
6
—
0
5
ZSCDL
0
4
EXZL
0
3
EXZCL
0
2
BPVL
0
1
BPVCL
0
0
LOSL
0
Bit 5: Zero Suppression Code Detect Latched (ZSCDL). This bit is set when a B3ZS or HDB3 signature is
detected. When set, this bit causes an interrupt if interrupt enables LINE.RSRIE:ZSCDIE, PORT.ISRIE:LDSRIE
and GLOBAL.ISRIE:PnISRIE are all set. See Section 8.3.6.
Bit 4: Excessive Zero Latched (EXZL). This bit is set when an excessive zero event is detected on the incoming
bipolar data stream. When set, this bit causes an interrupt if interrupt enables LINE.RSRIE:EXZIE,
PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all set. See Section 8.3.6.
Bit 3: Excessive Zero Count Latched (EXZCL). This bit is set when LINE.RSR:EXZC transitions from zero to
one. When set, this bit causes an interrupt if interrupt enables LINE.RSRIE:EXZCIE, PORT.ISRIE:LDSRIE and
GLOBAL.ISRIE:PnISRIE are all set. See Section 8.3.6.
Bit 2: Bipolar Violation Latched (BPVL). This bit is set when a bipolar violation (or E3 LCV if enabled) is detected
on the incoming bipolar data stream. When set, this bit causes an interrupt if interrupt enables LINE.RSRIE:BPVIE,
PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE are all set. See Section 8.3.6.
Bit 1: Bipolar Violation Count Latched (BPVCL). This bit is set when LINE.RSR:BPVC transitions from zero to
one. When set, this bit causes an interrupt if interrupt enables LINE.RSRIE:BPVCIE, PORT.ISRIE:LDSRIE and
GLOBAL.ISRIE:PnISRIE are all set. See Section 8.3.6.
Bit 0: Loss of Signal Change Latched (LOSL). This bit is set when LINE.RSR:LOS changes state. When set, this
bit causes an interrupt if interrupt enables LINE.RSRIE:LOSIE, PORT.ISRIE:LDSRIE and GLOBAL.ISRIE:PnISRIE
are all set. See Section 8.3.5.
81 of 130
DS32506/DS32508/DS32512
Register Name:
Register Description:
Register Address:
LINE.RSRIE
B3ZS/HDB3 Receive Status Register Interrupt Enable
n * 80h + 48h
Bit #
Name
Default
15
—
0
14
—
0
13
—
0
12
—
0
11
—
0
10
—
0
9
—
0
8
—
0
Bit #
Name
Default
7
—
0
6
—
0
5
ZSCDIE
0
4
EXZIE
0
3
EXZCIE
0
2
BPVIE
0
1
BPVCIE
0
0
LOSIE
0
Bit 5: Zero Suppression Code Detect Interrupt Enable (ZSCDIE). This bit is the interrupt enable for the
LINE.RSRL:ZSCDL status bit.
0 = mask the interrupt
1 = enable the interrupt
Bit 4: Excessive Zero Interrupt Enable (EXZIE). This bit is the interrupt enable for the LINE.RSRL:EXZL status
bit.
0 = mask the interrupt
1 = enable the interrupt
Bit 3: Excessive Zero Count Interrupt Enable (EXZCIE). This bit is the interrupt enable for the
LINE.RSRL:EXZCL status bit.
0 = mask the interrupt
1 = enable the interrupt
Bit 2: Bipolar Violation Interrupt Enable (BPVIE). This bit is the interrupt enable for the LINE.RSRL:BPVL status
bit.
0 = mask the interrupt
1 = enable the interrupt
Bit 1: Bipolar Violation Count Interrupt Enable (BPVCIE). This bit is the interrupt enable for the
LINE.RSRL:BPVCL status bit.
0 = mask the interrupt
1 = enable the interrupt
Bit 0: Loss-of-Signal Interrupt Enable (LOSIE). This bit is the interrupt enable for the LINE.RSRL:LOSL status
bit.
0 = mask the interrupt
1 = enable the interrupt
82 of 130
DS32506/DS32508/DS32512
Register Name:
Register Description:
Register Address:
LINE.RBPVCR
B3ZS/HDB3 Receive Bipolar Violation Count Register
n * 80h + 4Ch
Bit #
Name
Default
15
14
13
12
0
0
0
0
Bit #
Name
Default
7
6
5
4
11
10
9
8
0
0
0
0
3
2
1
0
0
0
0
0
BPV[15:8]
BPV[7:0]
0
0
0
0
Bits 15 to 0: Bipolar Violation Count (BPV[15:0]). These 16 bits indicate the number of bipolar violations
detected on the incoming bipolar data stream. See Section 8.3.6.
Register Name:
Register Description:
Register Address:
LINE.REXZCR
B3ZS/HDB3 Receive Excessive Zero Count Register
n * 80h + 4Eh
Bit #
Name
Default
15
14
13
12
0
0
0
0
Bit #
Name
Default
7
6
5
4
11
10
9
8
0
0
0
0
3
2
1
0
0
0
0
0
EXZ[15:8]
EXZ[7:0]
0
0
0
0
Bit 15 to 0: Excessive Zero Count (EXZ[15:0]). These 16 bits indicate the number of excessive zero conditions
detected on the incoming bipolar data stream. See Section 8.3.6.
83 of 130
DS32506/DS32508/DS32512
9.8
BERT Registers
ADDRESS
OFFSET
50h
52h
54h
56h
58h
5Ah
5Ch
5Eh
60h
62h
64h
66h
68h
6Ah
6Ch
6Eh
REGISTER
REGISTER DESCRIPTION
BERT.CR
BERT.PCR
BERT.SPR1
BERT.SPR2
BERT.TEICR
—
BERT.SR
BERT.SRL
BERT.SRIE
—
BERT.RBECR1
BERT.RBECR2
BERT.RBCR1
BERT.RBCR2
—
—
BERT Control Register
BERT Pattern Configuration Register
BERT Seed/Pattern Register 1
BERT Seed/Pattern Register 2
Transmit Error Insertion Control Register
Unused
BERT Status Register
BERT Status Register Latched
BERT Status Register Interrupt Enable
Unused
Receive Bit Error Count Register 1
Receive Bit Error Count Register 2
Receive Bit Count Register 1
Receive Bit Count Register 2
Unused
Unused
Register Name:
Register Description:
Register Address:
BERT.CR
BERT Control Register
n * 80h + 50h
Bit #
Name
Default
15
—
0
14
—
0
13
—
0
12
—
0
11
—
0
10
—
0
9
—
0
8
—
0
Bit #
Name
Default
7
PMUM
0
6
LPMU
0
5
RNPL
0
4
RPIC
0
3
MPR
0
2
APRD
0
1
TNPL
0
0
TPIC
0
Bit 7: Performance Monitoring Update Mode (PMUM). This bit specifies the source of the performance
monitoring update signal for the BERT block. See Section 8.7.4. Note: If RPMU or LPMU is one, changing the state
of this bit may cause a performance monitoring update to occur.
0 = Block-level update via BERT.CR:LPMU
1 = Port-level or global update as specified by PORT.CR1:PMUM
Bit 6: Local Performance Monitoring Update (LPMU). When BERT.CR:PMUM = 0, this bit updates the
performance monitoring registers in the BERT block. When this bit transitions from low to high, the BERT.RBECR
and BERT.RBCR registers are updated with the latest counter values and the counters are reset. This bit should
remain high until the performance monitor update status bit (BERT.SR:PMS) goes high, and then it should be
brought back low, which clears the PMS status bit. If a counter increment occurs at the exact same time as the
counter reset, the counter is loaded with a value of one, and the “counter is non-zero” latched status bit is set. See
Section 8.7.4.
Bit 5: Receive New Pattern Load (RNPL). A zero-to-one transition of this bit causes the programmed test pattern
(QRSS, PTS, PLF[4:0], PTF[4:0] in the BERT.PCR register, and BSP[31:0] in the BERT.SPR registers) to be
loaded into the receive pattern generator. This bit must be changed to zero and back to one for another pattern to
be loaded. Loading a new pattern forces the receive pattern generator out of the “Sync” state which causes a
resynchronization to be initiated. Note: The test pattern fields mentioned above must not change for four RCLK
cycles after this bit transitions from zero to one. See Section 8.5.1.
84 of 130
DS32506/DS32508/DS32512
Bit 4: Receive Pattern Inversion Control (RPIC). See Section 8.5.1.
0 = do not invert the incoming data stream
1 = invert the incoming data stream
Bit 3: Manual Pattern Resynchronization (MPR). A zero-to-one transition of this bit causes the receive pattern
generator to resynchronize to the incoming pattern. This bit must be changed to zero and back to one for another
resynchronization to be initiated. Note: A manual resynchronization forces the pattern detector out of the “Sync”
state. See Section 8.5.2.
Bit 2: Automatic Pattern Resynchronization Disable (APRD). When APRD = 0, the receive pattern generator
automatically resynchronizes to the incoming pattern if six or more times during the current 64-bit window the
incoming data stream bit and the receive pattern generator output bit did not match. When APRD = 1, the receive
pattern generator does not automatically resynchronize to the incoming pattern. Note: Automatic synchronization is
prevented by not allowing the receive pattern generator to automatically exit the “Sync” state. See Section 8.5.2.
Bit 1: Transmit New Pattern Load (TNPL). A zero-to-one transition of this bit causes the programmed test pattern
(QRSS, PTS, PLF[4:0], PTF[4:0] in the BERT.PCR register, and BSP[31:0] in the BERT.SPR registers) to be
loaded into the transmit pattern generator. This bit must be changed to zero and back to one for another pattern to
be loaded. Note: The test pattern fields mentioned above must not change for four TCLK cycles after this bit
transitions from zero to one. See Section 8.5.1.
Bit 0: Transmit Pattern Inversion Control (TPIC). See Section 8.5.1.
0 = do not invert the outgoing data stream
1 = invert the outgoing data stream
Register Name:
Register Description:
Register Address:
BERT.PCR
BERT Pattern Configuration Register
n * 80h + 52h
Bit #
Name
Default
15
—
0
14
—
0
13
—
0
12
11
0
0
Bit #
Name
Default
7
—
0
6
QRSS
0
5
PTS
0
4
3
0
0
10
PTF[4:0]
0
2
PLF[4:0]
0
9
8
0
0
1
0
0
0
Bits 12 to 8: Pattern Tap Feedback (PTF[4:0]). These five bits control the PRBS “tap” feedback of the pattern
generator. The “tap” feedback is from bit y of the pattern generator (y = PTF[4:0] + 1). These bits are ignored when
the BERT block is programmed for a repetitive pattern (PTS = 1). For a PRBS signal, the feedback is an XOR of bit
n and bit y. See Section 8.5.1.
Bit 6: QRSS Enable (QRSS). See Section 8.5.1.
0 = Disabled: the pattern generator configuration is controlled by PTS, PLF[4:0], PTF[4:0], and
BSP[31:0]
1 = Enabled: the pattern generator configuration is forced to a PRBS pattern with a generating
polynomial of x20 + x17 + 1, and the output of the pattern generator is forced to one if the next
14 output bits are all zero.
Bit 5: Pattern Type Select (PTS). See Section 8.5.1.
0 = PRBS pattern
1 = repetitive pattern.
Bits 4 to 0: Pattern Length Feedback (PLF[4:0]). This field controls the “length” feedback of the pattern
generator. The “length” feedback is from bit n of the pattern generator (n = PLF[4:0] + 1). For a PRBS signal, the
feedback is an XOR of bit n and bit y. For a repetitive pattern the feedback is bit n. See Section 8.5.1.
85 of 130
DS32506/DS32508/DS32512
Register Name:
Register Description:
Register Address:
BERT.SPR1
BERT Seed/Pattern Register #1
n * 80h + 54h
Bit #
Name
Default
15
14
13
12
0
0
0
0
Bit #
Name
Default
7
6
5
4
11
10
9
8
0
0
0
0
3
2
1
0
0
0
0
0
10
9
8
0
0
0
3
2
1
0
0
0
0
0
BSP[15:8]
BSP[7:0]
0
0
0
0
Bits 15 to 0: BERT Seed/Pattern (BSP[15:0])
Register Name:
Register Description:
Register Address:
BERT.SPR2
BERT Seed/Pattern Register #2
n * 80h + 56h
Bit #
Name
Default
15
14
13
0
0
0
12
11
BSP[31:24]
0
0
Bit #
Name
Default
7
6
5
4
BSP[23:16]
0
0
0
0
Bits 15 to 0: BERT Seed/Pattern (BSP[31:16])
BERT Seed/Pattern (BSP[31:0]). This 32-bit field is the programmable seed for a transmit PRBS pattern, or the
programmable pattern for a transmit or receive repetitive pattern. BSP[31] is the first bit output on the transmit side
for a 32-bit repetitive pattern or 32-bit PRBS. BSP[31] is the first bit input on the receive side for a 32-bit repetitive
pattern. See Section 8.5.1.
86 of 130
DS32506/DS32508/DS32512
Register Name:
Register Description:
Register Address:
BERT.TEICR
BERT Transmit Error Insertion Control Register
n * 80h + 58h
Bit #
Name
Default
15
—
0
14
—
0
13
—
0
12
—
0
11
—
0
10
—
0
9
—
0
8
—
0
Bit #
Name
Default
7
—
0
6
—
0
5
4
TEIR[2:0]
0
3
2
BEI
0
1
TSEI
0
0
MEIMS
0
0
0
Bits 5 to 3: Transmit Error Insertion Rate (TEIR[2:0]). This field indicates the rate at which errors are
automatically inserted in the output data stream. One out of every 10n bits is inverted, where n = TEIR[2:0]. A value
of 0 disables error insertion. A value of 1 results in every 10th bit being inverted. A value of 2 result in every 100th
bit being inverted. Error insertion starts when this field is written with a non-zero value. If this field is written during
an error insertion, the new error rate is used after the next error is inserted. See Section 8.5.3.1.
Bit 2: Bit Error Insertion Enable (BEI). See Section 8.5.3.1.
0 = single-bit error insertion is disabled
1 = single-bit error insertion is enabled
Bit 1: Transmit Single Error Insert (TSEI). When BERT.TEICR:MEIMS = 0 and BEI = 1, this bit is used to insert
single-bit errors in the outgoing BERT data stream. A zero-to-one transition causes a single bit error to be inserted.
For a second bit error to be inserted, this bit must be set to 0, and back to 1. Note: If MEIMS is low, and this bit
transitions more than once between error insertion opportunities, only one error is inserted. See Section 8.7.5.
Bit 0: Manual Error Insert Mode Select (MEIMS). This bit specifies the source of the error insertion signal for the
BERT block. Note: If TMEI or TSEI is one, changing the state of this bit may cause a bit error to be inserted. See
Section 8.7.5.
0 = error insertion is initiated by the BERT.TEICR:TSEI register bit
1 = error insertion is initiated by the transmit manual error insertion signal (TMEI) specified by the
PORT.CR1:MEIMS register bit.
87 of 130
DS32506/DS32508/DS32512
Register Name:
Register Description:
Register Address:
BERT.SR
BERT Status Register
n * 80h + 5Ch
Bit #
Name
Default
15
—
0
14
—
0
13
—
0
12
—
0
11
—
0
10
—
0
9
—
0
8
—
0
Bit #
Name
Default
7
—
0
6
—
0
5
—
0
4
—
0
3
PMS
1
2
—
0
1
BEC
0
0
OOS
0
Bit 3: Performance Monitoring Update Status (PMS). This bit is set when the performance monitoring registers
(BERT.RBCR and BERT.RBECR) have been updated. PMS is asynchronously forced low when the
BERT.CR:LPMU bit (BERT.CR:PMUM = 0) or RPMU signal (BERT.CR:PMUM = 1) goes low. See Section 8.7.4.
0 = The associated update request signal is low or not all register updates are completed
1 = The requested performance register updates are all completed
Bit 1: Bit Error Count (BEC). See Section 8.5.1.
0 = the bit error count is zero
1 = the bit error count is one or more
Bit 0: Out of Synchronization (OOS). See Section 8.5.1.
0 = the receive pattern generator is synchronized to the incoming pattern
1 = the receive pattern generator is not synchronized to the incoming pattern
Register Name:
Register Description:
Register Address:
BERT.SRL
BERT Status Register Latched
n * 80h + 5Eh
Bit #
Name
Default
15
—
0
14
—
0
13
—
0
12
—
0
11
—
0
10
—
0
9
—
0
8
—
0
Bit #
Name
Default
7
—
0
6
—
0
5
—
0
4
—
0
3
PMSL
0
2
BEL
0
1
BECL
0
0
OOSL
0
Bit 3: Performance Monitoring Update Status Latched (PMSL). This bit is set when the BERT.SR:PMS bit
transitions from zero to one. When set, this bit causes an interrupt if interrupt enables BERT.SRIE:PMSIE,
PORT.ISRIE:BSRIE and GLOBAL.ISRIE:PnISRIE are all set.
Bit 2: Bit Error Latched (BEL). This bit is set when a bit error is detected in the received pattern. When set, this
bit causes an interrupt if interrupt enables BERT.SRIE:BEIE, PORT.ISRIE:BSRIE and GLOBAL.ISRIE:PnISRIE are
all set.
Bit 1: Bit Error Count Latched (BECL). This bit is set when the BERT.SR:BEC bit transitions from zero to one.
When set, this bit causes an interrupt if interrupt enables BERT.SRIE:BECIE, PORT.ISRIE:BSRIE and
GLOBAL.ISRIE:PnISRIE are all set.
Bit 0: Out of Synchronization Latched (OOSL). This bit is set when the BERT.SR:OOS bit changes state. When
set, this bit causes an interrupt if interrupt enables BERT.SRIE:OOSIE, PORT.ISRIE:BSRIE and
GLOBAL.ISRIE:PnISRIE are all set.
88 of 130
DS32506/DS32508/DS32512
Register Name:
Register Description:
Register Address:
BERT.SRIE
BERT Status Register Interrupt Enable
n * 80h + 60h
Bit #
Name
Default
15
—
0
14
—
0
13
—
0
12
—
0
11
—
0
10
—
0
9
—
0
8
—
0
Bit #
Name
Default
7
—
0
6
—
0
5
—
0
4
—
0
3
PMSIE
0
2
BEIE
0
1
BECIE
0
0
OOSIE
0
Bit 3: Performance Monitoring Update Status Interrupt Enable (PMSIE). This bit is the interrupt enable for the
BERT.SRL:PMSL status bit.
0 = mask the interrupt
1 = enable the interrupt
Bit 2: Bit Error Interrupt Enable (BEIE). This bit is the interrupt enable for the BERT.SRL:BEL status bit.
0 = mask the interrupt
1 = enable the interrupt
Bit 1: Bit Error Count Interrupt Enable (BECIE). This bit is the interrupt enable for the BERT.SRL:BECL status
bit.
0 = mask the interrupt
1 = enable the interrupt
Bit 0: Out of Synchronization Interrupt Enable (OOSIE). This bit is the interrupt enable for the BERT.SRL:OOSL
status bit.
0 = mask the interrupt
1 = enable the interrupt
Register Name:
Register Description:
Register Address:
BERT.RBECR1
BERT Receive Bit Error Count Register #1
n * 80h + 64h
Bit #
Name
Default
15
14
13
12
0
0
0
0
Bit #
Name
Default
7
6
5
4
11
10
9
8
0
0
0
0
3
2
1
0
0
0
0
0
BEC[15:8]
BEC[7:0]
0
0
0
0
Bits 15 to 0: Bit Error Count (BEC[15:0])
89 of 130
DS32506/DS32508/DS32512
Register Name:
Register Description:
Register Address:
BERT.RBECR2
BERT Receive Bit Error Count Register #2
n * 80h + 66h
Bit #
Name
Default
15
—
0
14
—
0
13
—
0
12
—
0
11
—
0
10
—
0
9
—
0
8
—
0
Bit #
Name
Default
7
6
5
4
3
2
1
0
0
0
0
0
BEC[23:16]
0
0
0
0
Bits 7 to 0: Bit Error Count (BEC[23:16])
Bit Error Count (BEC[23:0]). This field is the holding register for an internal BERT bit error counter that tracks the
number of bit errors detected in the incoming data stream since the last performance monitoring update. The
internal counter stops incrementing when it reaches a count of FF FFFFh and does not increment when an OOS
condition exists. This register is updated when a performance monitoring update is performed. See Section 8.7.4.
The source for the performance monitoring update signal is specified by the BERT.CR:PMUM bit.
Register Name:
Register Description:
Register Address:
BERT.RBCR1
BERT Receive Bit Count Register #1
n * 80h + 68h
Bit #
Name
Default
15
14
13
12
0
0
0
0
Bit #
Name
Default
7
6
5
4
11
10
9
8
0
0
0
0
3
2
1
0
0
0
0
0
11
10
9
8
0
0
0
0
3
2
1
0
0
0
0
0
BC[15:8]
BC[7:0]
0
0
0
0
Bits 15 to 0: Bit Count (BC[15:0])
Register Name:
Register Description:
Register Address:
BERT.RBCR2
BERT Receive Bit Count Register #2
n * 80h + 6Ah
Bit #
Name
Default
15
14
13
12
0
0
0
0
Bit #
Name
Default
7
6
5
4
BC[31:24]
BC[23:16]
0
0
0
0
Bits 15 to 0: Bit Count (BC[31:16])
Bit Count (BC[31:0]). This field is the holding register for an internal BERT bit counter that tracks the total number
of bit received in the incoming data stream since the last performance monitoring update. The internal counter
stops incrementing when it reaches a count of FFFF FFFFh and does not increment when an OOS condition
exists. This register is updated when a performance monitoring update is performed. See Section 8.7.4. The
source for the performance monitoring update signal is specified by the BERT.CR:PMUM bit.
90 of 130
DS32506/DS32508/DS32512
10.
JTAG INFORMATION
The DS325xx LIUs support the standard instruction codes SAMPLE/PRELOAD, BYPASS, and EXTEST. Optional
public instructions included are HIGHZ, CLAMP, and IDCODE. The devices contain the following items, which
meet the requirements set by the IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture:
Test Access Port (TAP)
TAP Controller
Instruction Register
Bypass Register
Boundary Scan Register
Device Identification Register
The TAP has the necessary interface pins, namely JTCLK, JTRST, JTDI, JTDO, and JTMS. Details on these pins
can be found in Table 7-9. Details about the boundary scan architecture and the TAP can be found in IEEE 1149.11990, IEEE 1149.1a-1993, and IEEE 1149.1b-1994.
IEEE 1149.1 requires a minimum of two test registers—the bypass register and the boundary scan register. The
bypass register is a 1-bit shift register used with the BYPASS, CLAMP, and HIGHZ instructions to provide a short
path between JTDI and JTDO. The boundary scan register contains a shift register path and a latched parallel
output for control cells and digital I/O cells. DS325xx BSDL files are available at
www.maxim-ic.com/TechSupport/telecom/bsdl.htm. An optional test register, the identification register, has also
been included in the device design. The identification register contains a 32-bit shift register and a 32-bit latched
parallel output. Table 10-1 shows the identification register contents for the DS32506, DS32508, and DS32512
devices.
Table 10-1. JTAG ID Code
PART
DS32506
DS32508
DS32512
REVISION
Consult factory
Consult factory
Consult factory
DEVICE CODE
0000 0000 0111 1000
0000 0000 0111 1001
0000 0000 0111 1010
91 of 130
MANUFACTURER CODE
00010100001
00010100001
00010100001
REQUIRED
1
1
1
DS32506/DS32508/DS32512
11.
ELECTRICAL CHARACTERISTICS
ABSOLUTE MAXIMUM RATINGS
Voltage Range on Any Input or Output Lead with Respect to VSS…………………………………………-0.3V to +5.5V
Supply Voltage Range with Respect to VSS
VDD33………………………………………………………………………………………………...-0.3V to +3.63V
VDD18 ………………………………………………………………………………………………..-0.1V to +1.89V
Ambient Operating Temperature Range*..…………………………………………………………………..-40°C to +85°C
Junction Operating Temperature Range……………………………………………………………………-40°C to +125°C
Storage Temperature Range………………………………………………………………………………...-55°C to +125°C
Soldering Temperature………………………………………………………….See IPC/JEDEC J-STD-020 Specification
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not
implied. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.
*Ambient operating temperature range when device is mounted on a four-layer JEDEC test board with no airflow.
Note: The typical values listed in the following tables and operation at -40oC are not production tested, but are guaranteed by
design (GBD).
Table 11-1. Recommended DC Operating Conditions
(TA = -40°C to +85°C)
PARAMETER
Digital Supply Voltage
Analog Supply Voltage
SYMBOL
MIN
TYP
MAX
VDD18
1.71
1.8
1.89
VDD33
3.135
3.300
3.465
1.71
1.80
1.89
V
AVDD
CONDITIONS
CVDD, JVDD, RVDD, and
TVDD
UNITS
V
Logic 1, All Other Input Pins
VIH
2.0
3.6
V
Logic 0, All Other Input Pins
VIL
-0.3
+0.8
V
92 of 130
DS32506/DS32508/DS32512
Table 11-2. DC Characteristics
(VDD18 = 1.8V ±5%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.)
PARAMETER
SYMBOL
TYP
MAX
DS32506
DS32508
DS32512
DS32506
DS32508
DS32512
DS32506
DS32508
DS32512
DS32506
DS32508
DS32512
248
324
476
90
120
180
170
220
320
90
120
180
320
420
620
165
220
330
200
260
380
165
220
330
IDDPD18
DS32506, DS32508,
DS32512
16
40
mA
IDDPD33
DS32506, DS32508,
DS32512
5.3
10
mA
7
10
+10
+10
+10
VDD33
0.4
pF
μA
μA
μA
V
V
Supply Current, VDD18 (Note 1)
IDD18
Supply Current, VDD33 (Note 1)
IDD33
Supply Current, Transmitters Disabled
(All TOE = 0), VDD18 (Note 2)
IDDTTS18
Supply Current, Transmitters Disabled
(All TOE = 0), VDD33 (Note 2)
IDDTTS33
Supply Current, Power-Down
(All TPD = RPD = 1), VDD18
(Notes 2, 3)
Supply Current, Power-Down
(All TPD = RPD = 1), VDD33
(Notes 2, 3)
Lead Capacitance
Input Leakage, Input Pins with Pullup
Input Leakage, All Other Input Pins
Output Leakage (when High-Z)
Output Voltage (IO = -4.0mA)
Output Voltage (IO = +4.0mA)
CIO
IIL
IIL
ILO
VOH
VOL
CONDITIONS
(Note 4)
(Note 4)
(Note 4)
MIN
-300
-50
-10
2.4
0
UNITS
mA
mA
mA
mA
Note 2:
TCLKn = CLKC = 51.84MHz; LMn[1:0] = 10 (STS-1 mode); TXPn/TXNn driving all ones into 75Ω resistive loads; analog loopback
enabled; all other inputs at VDD33 or grounded; all other outputs open.
TCLKn = CLKC = 51.84MHz; LMn[1:0] = 10 (STS-1 mode); other inputs at VDD33 or grounded; digital outputs left open circuited.
Note 3:
HW = 0, CLAD[6:0] = 0000000 (disabled), G1SRS[3:0] = 0000 (disable), CS = 1 (inactive).
Note 4:
0V < VIN < VDD18 for all other digital inputs.
Note 1:
93 of 130
DS32506/DS32508/DS32512
Table 11-3. Framer Interface Timing
(VDD18 = 1.8V ±5%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.) (See Figure 11-1
and Figure 11-2.)
PARAMETER
RCLK/TCLK Clock Period
RCLK Duty Cycle
TCLK Duty Cycle
LIU Reference Clock Duty Cycle
TPOS/TDAT, TNEG to TCLK Setup Time
TPOS/TDAT, TNEG Hold Time
RCLK to RPOS/RDAT, RNEG/RLCV
Value Change
RCLK Rise and Fall Time
TCLK Rise and Fall Time
SYMBOL
CONDITIONS
MIN
(Notes 1, 2)
(Notes 2, 3)
(Notes 2, 4)
(Notes 5, 6)
(Note 6)
(Notes 6, 7)
(Notes 6, 8)
(Notes 6, 8)
45
30
30
3
1
t6
(Notes 5, 6, 9)
1
t7
t8
(Notes 6, 10 )
(Notes 5, 11)
t1
t2/t, t3/t1
t2/t, t3/t1
t2/t, t3/t1
t4
t5
TYP
22.4
29.1
19.3
50
1
MAX
UNITS
ns
55
70
70
%
%
%
ns
ns
7
ns
2
2
ns
ns
Note 1:
DS3 mode.
Note 2:
Note 3:
78MHz is the maximum instantaneous frequency for a gapped clock. The maximum average frequency is 45.094MHz for DS3,
34.643MHz for E3, and 52.255MHz for STS-1.
E3 mode.
Note 4:
STS-1 mode.
Note 5:
Outputs loaded with 25pF, measured at 50% threshold.
Note 6:
Not tested during production test.
Note 7:
The LIU reference clock must be a ±20ppm low-jitter clock. See Section 8.7.1 for more information on reference clocks.
Note 8:
Note 10:
When TCLKI = 0, TPOS/TDAT and TNEG are sampled on the rising edge of TCLK. When TCLKI = 1, TPOS/TDAT and TNEG are
sampled on the falling edge of TCLK.
When RCLKI = 0, RPOS/RDAT and RNEG/RLCV are updated on the falling edge of RCLK. When RCLKI = 1, RPOS/RDAT and
RNEG/RLCV are updated on the rising edge of RCLK.
Outputs loaded with 25pF, measured between VOL(MAX) and VOH(MIN).
Note 11:
Measured between VIL(MAX) and VIH(MIN).
Note 9:
94 of 130
DS32506/DS32508/DS32512
Figure 11-1. Transmitter Framer Interface Timing Diagram
t1
t2
t3
TCLK (NORMAL)
TCLK (INVERTED)
t
8
t4
t5
TPOS/TDAT
TNEG
Figure 11-2. Receiver Framer Interface Timing Diagram
t1
t2
t3
RCLK (NORMAL)
RCLK (INVERTED)
t6
t7
RPOS/RDAT
RNEG/RLCV
95 of 130
DS32506/DS32508/DS32512
Table 11-4. Receiver Input Characteristics—DS3 and STS-1 Modes
(VDD18 = 1.8V ±5%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.)
PARAMETER
MIN
Receive Sensitivity (Length of Cable)
Signal-to-Noise Ratio, Interfering Signal Test (Notes 1, 2)
Input Pulse Amplitude, RMON = 0 (Notes 2, 3)
Input Pulse Amplitude, RMON = 1 (Note 2, 3)
Analog LOS Declare, RMON = 0 (Note 4)
Analog LOS Clear, RMON = 0 (Note 4)
Analog LOS Declare, RMON = 1 (Note 4)
Analog LOS Clear, RMON = 1 (Note 4)
Intrinsic Jitter Generation (Note 2)
Note 1:
Note 2:
Note 3:
Note 4:
TYP
MAX
UNITS
1500
10
-20
-34
-23
-22
-37
-36
0.02
ft
1000
200
-25
-39
mVpk
mVpk
dB
dB
dB
dB
UIP-P
15
An interfering signal (2 - 1 PRBS, B3ZS encoded, compliant waveshape, nominal bit rate) is added to the input signal. The combined
signal is passed through 0 to 900 feet of coaxial cable and presented to the DS325xx receiver. This spec indicates the lowest signal-9
to-noise ratio that results in a bit error ratio ≤10 .
Not tested during production test.
Measured on the line side (i.e., the BNC connector side) of the 1:1 receive transformer (See Figure 4-1). During measurement,
15
incoming data traffic is unframed 2 - 1 PRBS.
With respect to nominal 800mVpk signal.
Table 11-5. Receiver Input Characteristics—E3 Mode
(VDD18 = 1.8V ±5%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.)
PARAMETER
Receive Sensitivity (Length of Cable)
Signal-to-Noise Ratio, Interfering Signal Test (Notes 1, 2)
Input Pulse Amplitude, RMON = 0 (Notes 2, 3)
Input Pulse Amplitude, RMON = 1 (Notes 2, 3)
Analog LOS Declare, RMON = 0 (Note 4)
Analog LOS Clear, RMON = 0 (Note 4)
Analog LOS Declare, RMON = 1 (Note 4)
Analog LOS Clear, RMON = 1 (Note 4)
Intrinsic Jitter Generation (Note 2)
Note 1:
Note 2:
Note 3:
Note 4:
MIN
900
TYP
1200
12
MAX
1500
UNITS
ft
1300
260
-24
mVpk
mVpk
dB
dB
dB
dB
UIP-P
-18
-44
-38
0.03
23
An interfering signal (2 - 1 PRBS, HDB3 encoded, compliant waveshape, nominal bit rate) is added to the input signal. The
combined signal is passed through 0 to 900 feet of coaxial cable and presented to the DS325xx receiver. This spec indicates the
-9
lowest signal-to-noise ratio that results in a bit error ratio ≤10 .
Not tested during production test.
Measured on the line side (i.e., the BNC connector side) of the 1:1 receive transformer (See Figure 4-1). During measurement,
23
incoming data traffic is unframed 2 - 1 PRBS.
With respect to nominal 1000mVpk signal.
96 of 130
DS32506/DS32508/DS32512
Table 11-6. Transmitter Output Characteristics—DS3 and STS-1 Modes
(VDD18 = 1.8V ±5%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.)
PARAMETER
MIN
TYP
MAX
UNITS
DS3 Output Pulse Amplitude, TLBO = 0 (Note 1)
700
800
900
mVpk
DS3 Output Pulse Amplitude, TLBO = 1 (Note 1)
500
600
700
mVpk
STS-1 Output Pulse Amplitude, TLBO = 0 (Note 1)
700
800
900
mVpk
STS-1 Output Pulse Amplitude, TLBO = 1 (Note 1)
500
600
700
mVpk
Ratio of Positive and Negative Pulse-Peak Amplitudes
0.9
1.0
1.1
DS3 Power Level at 22.368MHz (Note 2)
-1.8
DS3 Power Level at 44.736MHz vs. Power Level at 22.368MHz (Note 2)
+5.7
dBm
-20
dB
Transmit Driver Monitor Minimum Threshold (VTXMIN), TLBO = 0
680
mVpk
Transmit Driver Monitor Minimum Threshold (VTXMIN), TLBO = 1
480
mVpk
Transmit Driver Monitor Maximum Threshold (VTXMAX), TLBO = 0
920
mVpk
Transmit Driver Monitor Maximum Threshold (VTXMAX), TLBO = 1
720
mVpk
Note 1:
Measured on the line side (i.e., the BNC connector side) of the 1:1 transmit transformer (Figure 4-1).
Note 2:
Unframed all-ones output signal, 3kHz bandwidth.
Table 11-7. Transmitter Output Characteristics—E3 Mode
(VDD18 = 1.8V ±5%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.)
PARAMETER
Output Pulse Amplitude (Note 1)
MIN
TYP
MAX
UNITS
900
1000
1100
mVpk
Pulse Width (Note 1)
14.55
ns
Positive/Negative Pulse Amplitude Ratio (at Centers of Pulses) (Note 1)
0.95
1.00
1.05
Positive/Negative Pulse Width Ratio (at Nominal Half Amplitude)
0.95
1.00
1.05
Transmit Driver Monitor Minimum Threshold (VTXMIN)
880
mVpk
Transmit Driver Monitor Maximum Threshold (VTXMAX)
1120
mVpk
Note 1:
Measured on the line side (i.e., the BNC connector side) of the 1:1 transmit transformer (Figure 4-1).
97 of 130
DS32506/DS32508/DS32512
Table 11-8. Parallel CPU Interface Timing
(VDD18 = 1.8V ±5%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.)
(See Figure 11-3, Figure 11-4, Figure 11-5, Figure 11-6, Figure 11-7, Figure 11-8, Figure 11-9, and
Figure 11-10.)
PARAMETER
SYMBOL MIN TYP MAX
UNITS
Setup Time for A[10:0] Valid to RD, WR, or DS Active (Notes 1, 2)
t1
0
ns
Setup Time for CS Active to RD, WR, or DS Active
t2
0
ns
Delay Time from RD or DS Active to D[15:0] Valid Without RDY/ACK
Handshake
Delay Time from RDY or ACK Active to D[15:0] Valid
t3a
65
ns
t3b
20
ns
Hold Time from RD, WR, or DS Inactive to CS Inactive
t4
0
ns
Delay from CS, RD, or DS Inactive to D[15:0] Invalid (Note 3)
t5
2
ns
t6a
65
ns
Wait Time from WR or DS Active to Latch D[15:0] Without RDY/ACK
Handshake
Wait Time from RDY or ACK Active to Latch D[15:0]
t6b
20
ns
D[15:0] Setup Time to WR or DS Inactive
t7
10
ns
D[15:0] Hold Time from WR or DS Inactive
t8
2
ns
A[10:0] Hold Time from WR, RD, or DS Inactive
t9a
5
ns
Delay from WR, RD, or DS Inactive to ALE Active
t9b
20
ns
RD, WR, or DS Inactive Time
Muxed Address Valid to ALE Inactive (Note 4)
Muxed Address Hold Time from ALE Inactive (Note 4)
ALE Pulse Width (Note 4)
t10
75
ns
t11
t12
t13
10
10
20
ns
ns
ns
Setup Time for ALE High or Muxed Address Valid to CS Active
(Notes 4, 5, 6)
t14
0
ns
Delay from CS Inactive to D[15:0] Disable
t15
15
ns
Delay from CS Active to RDY/ACK Enable
t16
15
ns
Delay from CS, RD, WR, or DS Inactive to RDY/ACK Inactive (Note 7)
t17
Delay from CS Inactive to RDY/ACK Disable
t18
2
ns
15
ns
Note 1:
D[15:0] loaded with 50pF when tested as outputs.
Note 2:
If a gapped clock is applied on TCLK and local loopback is enabled, read cycle time must be extended by the length of the largest
TCLK gap.
Not tested during production test.
Note 3:
Note 5:
In nonmultiplexed bus applications (Figure 11-3 to Figure 11-6), ALE should be wired high. In multiplexed bus applications (Figure
11-7 to Figure 11-10), A[10:0] should be wired to D[15:0] and the falling edge of ALE latches the address.
t14 starts at the occurrence of the rising edge of ALE or A[10:0] valid whichever occurs later.
Note 6:
In order to avoid bus contention, during a read cycle A[10:0] should be disabled prior to RD or DS being active.
Note 7:
RDY/ACK may be disabled (t18) before going inactive (t17).
Note 4:
98 of 130
DS32506/DS32508/DS32512
Figure 11-3. Parallel CPU Interface Intel Read Timing Diagram (Nonmultiplexed)
t1
t9a
A[10:0]
WR
t2
CS
t4
t10
RD
t3a
t5
t15
D[15:0]
t16
t3b
t18
RDY
t17
Figure 11-4. Parallel CPU Interface Intel Write Timing Diagram (Nonmultiplexed)
t1
t9a
A[10:0]
RD
CS
t2
t4
t6a
WR
t10
t7
t8
D[15:0]
t16
t18
RDY
t6b
99 of 130
t17
DS32506/DS32508/DS32512
Figure 11-5. Parallel CPU Interface Motorola Read Timing Diagram (Nonmultiplexed)
t1
t9a
A[10:0]
R/W
t2
CS
t4
t10
DS
t3a
t5
t15
D[15:0]
t16
t3b
t18
RDY
t17
Figure 11-6. Parallel CPU Interface Motorola Write Timing Diagram (Nonmultiplexed)
t1
t9a
A[10:0]
R/W
CS
t2
t4
t6a
DS
t10
t7
t8
D[15:0]
t16
t18
RDY
t6b
100 of 130
t17
DS32506/DS32508/DS32512
Figure 11-7. Parallel CPU Interface Intel Read Timing Diagram (Multiplexed)
ALE
9b
t13
t11
t12
A[10:0]
t14
WR
t2
CS
t4
t10
RD
t3a
t5
t15
D[15:0]
t16
t3b
t18
RDY
t17
Figure 11-8. Parallel CPU Interface Intel Write Timing Diagram (Multiplexed)
ALE
9b
t13
t11
t12
A[10:0]
t14
RD
CS
t2
t4
t6a
WR
t10
t7
t8
D[15:0]
t16
RDY
t18
t6b
101 of 130
t17
DS32506/DS32508/DS32512
Figure 11-9. Parallel CPU Interface Motorola Read Timing Diagram (Multiplexed)
ALE
9b
t13
t11
t12
A[10:0]
t14
R/W
t2
CS
t4
t10
DS
t3a
t5
t15
D[15:0]
t16
t3b
t18
RDY
t17
Figure 11-10. Parallel CPU Interface Motorola Write Timing Diagram (Multiplexed)
ALE
9b
t13
t11
t12
A[10:0]
t14
R/W
CS
t2
t4
t6a
DS
t10
t7
t8
D[15:0]
t16
RDY
t18
t6b
102 of 130
t17
DS32506/DS32508/DS32512
Table 11-9. SPI Interface Timing
(VDD18 = 1.8V ±5%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.)
(See Figure 11-11.) (Note 1)
PARAMETER
SYMBOL
MIN
TYP
MAX
UNITS
10
SCLK Frequency
SCLK Cycle Time
fBUS
tCYC
100
MHz
ns
CS Setup to First SCLK Edge
tSUC
15
ns
CS Hold Time After Last SCLK Edge
SCLK High Time
SCLK Low Time
SDI Data Setup Time
SDI Data Hold Time
SDO Enable Time (High Impedance to Output Active)
SDO Disable Time (Output Active to High Impedance)
SDO Data Valid Time
SDO Data Hold Time After Update SCLK Edge
tHDC
15
ns
tCLKH
tCLKL
tSUI
tHDI
tEN
tDIS
tDV
tHDO
50
50
5
15
0
ns
ns
ns
ns
ns
ns
ns
ns
Note 1:
All timing is specified with 100 pF load on all SPI pins.
103 of 130
25
40
5
DS32506/DS32508/DS32512
Figure 11-11. SPI Interface Timing Diagram
CPHA = 0
CS
tSUC
tHDC
tCYC
tCLKL
SCLK,
CPOL=0
tCLKH
tCLKL
SCLK,
CPOL=1
tSUI
tCLKH
tHDI
SDI
tDV
tDIS
SDO
tEN
tHDO
CPHA = 1
CS
tSUC
SCLK,
CPOL=0
SCLK,
CPOL=1
tHDC
tCYC
tCLKL
tCLKH
tCLKL
tSUI
tCLKH
tHDI
SDI
tDV
SDO
tEN
tHDO
104 of 130
tDIS
DS32506/DS32508/DS32512
Table 11-10. JTAG Interface Timing
(VDD18 = 1.8V ±5%, VDD33 = 3.3V ±5%, AVDD = 1.8V ±5%, TA = -40°C to +85°C.)
(See Figure 11-12.)
PARAMETER
SYMBOL
JTCLK Clock Period
JTCLK Clock High/Low Time (Note 1)
JTCLK to JTDI, JTMS Setup Time
JTCLK to JTDI, JTMS Hold Time
JTCLK to JTDO Delay
JTCLK to JTDO High-Z Delay (Note 2)
t1
t2/t3
t4
t5
t6
t7
50
50
50
2
2
t8
100
JTRST Width Low Time
Note 1:
Clock can be stopped high or low.
Note 2:
Not tested during production test.
MIN
Figure 11-12. JTAG Timing Diagram
t1
t2
t3
JTCLK
t4
t5
JTDI
JTMS
JTRST
t6
t7
JTDO
t8
JTRST
105 of 130
TYP
MAX
UNITS
50
50
ns
ns
ns
ns
ns
ns
1000
500
ns
DS32506/DS32508/DS32512
12.
PIN ASSIGNMENTS
Table 12-1. Pin Assignments Sorted by Signal Name for DS32506/DS32508/DS32512
SIGNAL
BALL
SIGNAL
BALL
SIGNAL
BALL
SIGNAL
BALL
A0
A1/LB5[1]
A2/LB6[1]
A3/LB7[1]
A4/LB8[1]
A5/LB9[1]
V5
T8
W5
R9
Y4
P9
RCLK8
RCLK9
RCLK10
RCLK11
RCLK12
RCLKI
N16
H11
T20
G18
R18
A3
TCC
TCLK1
TCLK2
TCLK3
TCLK4
TCLK5
C6
L16
R22
K18
M17
J18
TVSS4
TVSS4
TVSS4
TVSS5
TVSS5
TVSS5
P6
U3
V1
C9
E9
F10
A6/LB10[1]
AA3
RD/DS
R11
TCLK6
T21
TVSS6
U10
A7/LB11[1]
T9
U8
TCLK7
G21
TVSS6
V8
A8/LB12[1]
A9/ITRE
A10
AIST
ALE
CLADBYP
CLKA
CLKB
CLKC
CLKD
AB2
R10
W6
E7
T10
G7
M21
M22
M19
M20
RDY/ACK
REFCLK
RESREF
RLOS1
RLOS2
RLOS3
RLOS4
RLOS5
RLOS6
RLOS7
RLOS8
L22
L2
K19
P22
F22
V22
H19
M14
H16
W21
TCLK8
TCLK9
TCLK10
TCLK11
TCLK12
TCLKI
TDM1
TDM2
TDM3
TDM4
P17
H15
U20
E20
T17
C5
K21
P21
K15
P19
TVSS6
TVSS7
TVSS7
TVSS7
TVSS8
TVSS8
TVSS8
TVSS9
TVSS9
TVSS9
V9
C12
D11
F12
T12
V12
Y12
D14
E15
F14
CS
CVDD
CVDD
CVSS
D0/LB1[0]/SDO
D1/LB2[0]/SDI
D2/LB3[0]/SCLK
D3/LB4[0]
Y5
RLOS9
D20
TDM5
J20
TVSS10
U14
L18
L19
L20
T5
T6
R5
R6
RLOS10
RLOS11
RLOS12
RMON1
RMON2
RMON3
RMON4
P14
H9
R13
L6
R4
F2
AA1
TDM6
TDM7
TDM8
TDM9
TDM10
TDM11
TDM12
N17
H14
Y21
B22
U19
H10
T16
TVSS10
TVSS10
TVSS11
TVSS11
TVSS11
TVSS12
TVSS12
V15
Y16
C18
C19
F16
U16
V18
D4/LB5[0]
T7
RMON5
D8
E4
TVSS12
Y20
D5/LB6[0]
D6/LB7[0]/CPHA
D7/LB8[0]/CPOL
D8/LB9[0]
D9/LB10[0]
D10/LB11[0]
D11/LB12[0]
D12/LB1[1]
D13/LB1[2]
D14/LB1[3]
D15/LB1[4]
GPIOA1/LM1[1]
GPIOA2/LM2[1]
R7
V4
P7
U5
W4
Y3
N8
AA2
P8
AB1
R8
J5
M7
RMON6
RMON7
RMON8
RMON9
RMON10
RMON11
RMON12
RNEG1
RNEG2
RNEG3
RNEG4
RNEG5
RNEG6
V10
A10
V13
B14
W16
A18
W19
K17
N21
E22
L14
J17
Y22
TEST
TLBO1
TLBO2
TLBO3
TLBO4
TLBO5
TLBO6
TLBO7
TLBO8
TLBO9
TLBO10
TLBO11
TLBO12
TNEG1
L7
M9
K8
N5
D10
Y7
E13
AB10
D16
AA14
F17
T14
J22
TXN1
TXN1
TXN2
TXN2
TXN3
TXN3
TXN4
TXN4
TXN5
TXN5
TXN6
TXN6
TXN7
J1
J2
P1
P2
D1
D2
W1
W2
A7
B7
AA8
AB8
A12
106 of 130
DS32506/DS32508/DS32512
SIGNAL
BALL
SIGNAL
BALL
SIGNAL
BALL
SIGNAL
BALL
GPIOA3/LM3[1]
GPIOA4/LM4[1]
GPIOA5/LM5[1]
GPIOA6/LM6[1]
GPIOA7/LM7[1]
GPIOA8/LM8[1]
GPIOA9/LM9[1]
GPIOA10/LM10[1]
GPIOA11/LM11[1]
GPIOA12/LM12[1]
GPIOB1/LM1[0]
GPIOB2/LM2[0]
GPIOB3/LM3[0]
GPIOB4/LM4[0]
GPIOB5/LM5[0]
GPIOB6/LM6[0]
GPIOB7/LM7[0]
GPIOB8/LM8[0]
GPIOB9/LM9[0]
J7
N6
F8
U11
F11
U13
F13
Y14
F15
Y18
G2
M4
G5
T1
E8
Y10
B10
AB14
A14
RNEG7
RNEG8
RNEG9
RNEG10
RNEG11
RNEG12
RPD
RPOS1
RPOS2
RPOS3
RPOS4
RPOS5
RPOS6
RPOS7
RPOS8
RPOS9
RPOS10
RPOS11
RPOS12
H18
N15
H12
W20
G17
R17
B3
J21
L17
J15
U22
H20
P20
H17
R20
F18
T19
G16
R16
TNEG2
TNEG3
TNEG4
TNEG5
TNEG6
TNEG7
TNEG8
TNEG9
TNEG10
TNEG11
TNEG12
TOE1
TOE2
TOE3
TOE4
TOE5
TOE6
TOE7
TOE8
M18
K20
W22
J19
V21
E21
AA22
C21
R15
F19
T18
K22
T22
G22
M16
C22
R19
F21
P16
TXN7
TXN8
TXN8
TXN9
TXN9
TXN10
TXN10
TXN11
TXN11
TXN12
TXN12
TXP1
TXP1
TXP2
TXP2
TXP3
TXP3
TXP4
TXP4
B12
AA12
AB12
A16
B16
AA16
AB16
A20
B20
AA20
AB20
H1
H2
N1
N2
C1
C2
U1
U2
GPIOB10/LM10[0]
R12
TOE9
D21
TXP5
A8
B18
U15
RST
RVDD1
RVDD2
C3
GPIOB11/LM11[0]
GPIOB12/LM12[0]
L4
P3
TOE10
TOE11
V19
F20
TXP5
TXP6
B8
AA7
HIZ
HW
IFSEL0
IFSEL1
IFSEL2
J8
RVDD3
G4
TOE12
U17
TXP6
AB7
B1
U9
Y6
W7
RVDD4
RVDD5
RVDD6
RVDD7
V3
C8
Y9
C11
TPD
TPOS1
TPOS2
TPOS3
D6
L15
N19
H21
TXP7
TXP7
TXP8
TXP8
A13
B13
AA11
AB11
AB3
RVDD8
Y13
TPOS4
M15
TXP9
A17
G8
C4
F7
E5
D4
D3
F6
H7
RVDD9
RVDD10
RVDD11
RVDD12
RVSS1
RVSS2
RVSS3
RVSS4
E14
V16
D17
U18
L1
P5
F5
W3
TPOS5
TPOS6
TPOS7
TPOS8
TPOS9
TPOS10
TPOS11
TPOS12
J16
U21
G20
P15
H13
V20
E19
R14
TXP9
TXP10
TXP10
TXP11
TXP11
TXP12
TXP12
VDD18
B17
AA15
AB15
A21
B21
AA19
AB19
C10
INT
JAD0
JAD1
JAS0
JAS1
JTCLK
JTDI
JTDO
JTMS
JTRST
JVDD1
JVDD2
JVDD3
JVDD4
JVDD5
JVDD6
JVDD7
E3
RVSS5
C7
TVDD1
J3
VDD18
C17
H3
M1
A1
T4
E10
AA6
D13
RVSS6
RVSS7
RVSS8
RVSS9
RVSS10
RVSS11
RVSS12
W10
E11
W13
C14
Y17
E17
AB22
TVDD1
TVDD1
TVDD2
TVDD2
TVDD2
TVDD3
TVDD3
K4
K5
M3
M6
N3
A2
F4
VDD18
VDD18
VDD18
VDD18
VDD18
VDD18
VDD33
G1
H22
N20
T2
AA10
AA18
J10
107 of 130
DS32506/DS32508/DS32512
SIGNAL
BALL
SIGNAL
BALL
SIGNAL
BALL
SIGNAL
BALL
JVDD8
JVDD9
JVDD10
JVDD11
JVDD12
JVSS1
JVSS2
JVSS3
JVSS4
JVSS5
JVSS6
JVSS7
JVSS8
JVSS9
JVSS10
JVSS11
JVSS12
LBS
MT0
MT1
MT2
MT3
MT4
MT5
MT6
MT7
MT8
MT9
MT10
RBIN
RCLK1
RCLK2
RCLK3
RCLK4
RCLK5
RCLK6
W11
E16
W14
E18
V17
H4
M2
B2
T3
A9
AB6
C13
V11
C16
V14
D19
W17
H8
L21
D5
G6
AA4
AB4
A4
B4
AA5
AB5
A5
B5
E6
K16
N22
D22
N18
J14
R21
RXN1
RXN2
RXN3
RXN4
RXN5
RXN6
RXN7
RXN8
RXN9
RXN10
RXN11
RXN12
RXP1
RXP2
RXP3
RXP4
RXP5
RXP6
RXP7
RXP8
RXP9
RXP10
RXP11
RXP12
TAIS1
TAIS2
TAIS3
TAIS4
TAIS5
TAIS6
TAIS7
TAIS8
TAIS9
TAIS10
TAIS11
TAIS12
K1
R2
E1
Y2
B6
AB9
A11
AB13
A15
AA17
A19
AA21
K2
R1
E2
Y1
A6
AA9
B11
AA13
B15
AB17
B19
AB21
F1
L3
H6
R3
G9
W8
G11
T11
G13
P12
G15
AB18
TVDD3
TVDD4
TVDD4
TVDD4
TVDD5
TVDD5
TVDD5
TVDD6
TVDD6
TVDD6
TVDD7
TVDD7
TVDD7
TVDD8
TVDD8
TVDD8
TVDD9
TVDD9
TVDD9
TVDD10
TVDD10
TVDD10
TVDD11
TVDD11
TVDD11
TVDD12
TVDD12
TVDD12
TVSS1
TVSS1
TVSS1
TVSS2
TVSS2
TVSS2
TVSS3
TVSS3
K6
N7
U4
V2
B9
D9
F9
P11
V7
Y8
D12
E12
G10
U12
W12
Y11
C15
D15
G12
T13
W15
Y15
C20
D18
G14
T15
W18
Y19
J4
K3
M8
M5
N4
P4
F3
G3
VDD33
VDD33
VDD33
VDD33
VDD33
VDD33
VDD33
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
J13
K9
K14
N9
N14
P10
P13
A22
J6
J9
J11
J12
K7
K10
K11
K12
K13
L5
L8
L9
L10
L11
L12
L13
M10
M11
M12
M13
N10
N11
N12
N13
P18
U6
U7
W9
RCLK7
G19
TBIN
D7
TVSS3
H5
WR/R/W
V6
Note: There are two TXP leads and two TXN leads for each LIU port. For best performance, the two TXP leads must be wired together and the
two TXN leads must be wired together on each port.
108 of 130
DS32506/DS32508/DS32512
Figure 12-1. DS32512 Pin Assignment, Hardware and Microprocessor Interfaces
Left Half
1
2
3
4
5
6
7
8
9
10
11
A
JVDD3
TVDD3
RCLKI
MT5
MT9
RXP5
TXN5
TXP5
JVSS5
RMON7
RXN7
B
HW
JVSS3
RPD
MT6
MT10
RXN5
TXN5
TXP5
TVDD5
GPIOB7
RXP7
C
TXP3
TXP3
RST
JAD1
TCLKI
TCC
RVSS5
RVDD5
TVSS5
VDD18
RVDD7
D
TXN3
TXN3
JTDI
JTCLK
MT1
TPD
TBIN
RMON5
TVDD5
TLBO5
TVSS7
E
RXN3
RXP3
JTRST
TEST
JAS1
RBIN
AIST
GPIOB5
TVSS5
JVDD5
RVSS7
F
TAIS1
RMON3
TVSS3
TVDD3
RVSS3
JTDO
JAS0
GPIOA5
TVDD5
TVSS5
GPIOA7
G
VDD18
GPIOB1
TVSS3
RVDD3
GPIOB3
MT2
CLADBYP
JAD0
TAIS5
TVDD7
TAIS7
H
TXP1
TXP1
JVDD1
JVSS1
TVSS3
TAIS3
JTMS
LBS
RLOS11
TDM11
RCLK9
J
TXN1
TXN1
TVDD1
TVSS1
GPIOA1
VSS
GPIOA3
HIZ
VSS
VDD33
VSS
K
RXN1
RXP1
TVSS1
TVDD1
TVDD1
TVDD3
VSS
TLBO3
VDD33
VSS
VSS
L
RVSS1
RESREF
TAIS2
RVDD1
VSS
RMON1
TLBO1
VSS
VSS
VSS
VSS
M
JVDD2
JVSS2
TVDD2
GPIOB2
TVSS2
TVDD2
GPIOA2
TVSS1
TLBO2
VSS
VSS
N
TXP2
TXP2
TVDD2
TVSS2
TLBO4
GPIOA4
TVDD4
D11
VDD33
VSS
VSS
P
TXN2
TXN2
RVDD2
TVSS2
RVSS2
TVSS4
D7/CPOL
D13
A5
VDD33
TVDD6
R
RXP2
RXN2
TAIS4
RMON2
D2/SCLK
D3
D5
D15
A3
A9
RD/DS
T
GPIOB4
VDD18
JVSS4
JVDD4
D0/SDO
D1/SDI
D4
A1
A7
ALE
TAIS8
U
TXP4
TXP4
TVSS4
TVDD4
D8
VSS
VSS
RDY/ACK
IFSEL0
TVSS6
GPIOA6
V
TVSS4
TVDD4
RVDD4
D6/CPHA
A0
WR/R/W
TVDD6
TVSS6
TVSS6
RMON6
JVSS8
W
TXN4
TXN4
RVSS4
D9
A2
A10
IFSEL2
TAIS6
VSS
RVSS6
JVDD8
Y
RXP4
RXN4
D10
A4
CS
IFSEL1
TLBO6
TVDD6
RVDD6
GPIOB6
TVDD8
AA
RMON4
D12
A6
MT3
MT7
JVDD6
TXP6
TXN6
RXP6
VDD18
TXP8
AB
D14
A8
INT
MT4
MT8
JVSS6
TXP6
TXN6
RXN6
TLBO8
TXP8
1
2
3
4
5
6
7
8
9
10
11
High-Speed Analog
Low-Speed Analog
High-Speed Digital
Low-Speed Digital
N.C. and Manufacturing Test
VDD 1.8V
VDDIO 3.3V
Analog VSS
Analog VDD 1.8V
VSS
109 of 130
DS32506/DS32508/DS32512
Right Half
12
13
14
15
16
17
18
19
20
21
22
TXN7
TXP7
GPIOB9
RXN9
TXN9
TXP9
RMON11
RXN11
TXN11
TXP11
VSS
A
TXN7
TXP7
RMON9
RXP9
TXN9
TXP9
GPIOB11
RXP11
TXN11
TXP11
TDM9
B
TVSS7
JVSS7
RVSS9
TVDD9
JVSS9
VDD18
TVSS11
TVSS11
TVDD11
TNEG9
TOE5
C
TVDD7
JVDD7
TVSS9
TVDD9
TLBO9
RVDD11
TVDD11
JVSS11
RLOS9
TOE9
RCLK3
D
TVDD7
TLBO7
RVDD9
TVSS9
JVDD9
RVSS11
JVDD11
TPOS11
TCLK11
TNEG7
RNEG3
E
TVSS7
GPIOA9
TVSS9
GPIOA11
TVSS11
TLBO11
RPOS9
TNEG11
TOE11
TOE7
RLOS3
F
TVDD9
TAIS9
TVDD11
TAIS11
RPOS11
RNEG11
RCLK11
RCLK7
TPOS7
TCLK7
TOE3
G
RNEG9
TPOS9
TDM7
TCLK9
RLOS7
RPOS7
RNEG7
RLOS5
RPOS5
TPOS3
VDD18
H
VSS
VDD33
RCLK5
RPOS3
TPOS5
RNEG5
TCLK5
TNEG5
TDM5
RPOS1
TNEG1
J
VSS
VSS
VDD33
TDM3
RCLK1
RNEG1
TCLK3
RLOS1
TNEG3
TDM1
TOE1
K
VSS
VSS
RNEG4
TPOS1
TCLK1
RPOS2
CVDD
CVDD
CVSS
MT0
REFCLK
L
VSS
VSS
RLOS6
TPOS4
TOE4
TCLK4
TNEG2
CLKC
CLKD
CLKA
CLKB
M
VSS
VSS
VDD33
RNEG8
RCLK8
TDM6
RCLK4
TPOS2
VDD18
RNEG2
RCLK2
N
TAIS10
VDD33
RLOS10
TPOS8
TOE8
TCLK8
VSS
TDM4
RPOS6
TDM2
RLOS2
P
GPIOB10
RLOS12
TPOS12
TNEG10
RPOS12
RNEG12
RCLK12
TOE6
RPOS8
RCLK6
TCLK2
R
TVSS8
TVDD10
TLBO12
TVDD12
TDM12
TCLK12
TNEG12
RPOS10
RCLK10
TCLK6
TOE2
T
TVDD8
GPIOA8
TVSS10
GPIOB12
TVSS12
TOE12
RVDD12
TDM10
TCLK10
TPOS6
RPOS4
U
TVSS8
RMON8
JVSS10
TVSS10
RVDD10
JVDD12
TVSS12
TOE10
TPOS10
TNEG6
RLOS4
V
TVDD8
RVSS8
JVDD10
TVDD10
RMON10
JVSS12
TVDD12
RMON12
RNEG10
RLOS8
TNEG4
W
TVSS8
RVDD8
GPIOA10
TVDD10
TVSS10
RVSS10
GPIOA12
TVDD12
TVSS12
TDM8
RNEG6
Y
TXN8
RXP8
TLBO10
TXP10
TXN10
RXN10
VDD18
TXP12
TXN12
RXN12
TNEG8
AA
TXN8
RXN8
GPIOB8
TXP10
TXN10
RXP10
TAIS12
TXP12
TXN12
RXP12
RVSS12
AB
12
13
14
15
16
17
18
19
20
21
22
High-Speed Analog
Low-Speed Analog
High-Speed Digital
Low-Speed Digital
N.C. and Manufacturing Test
VDD 1.8V
VDDIO 3.3V
Analog VSS
Analog VDD 1.8V
VSS
110 of 130
DS32506/DS32508/DS32512
Figure 12-2. DS32512 Pin Assignment, Hardware Interface Only
Left Half
1
2
3
4
5
6
7
8
9
10
11
A
JVDD3
TVDD3
RCLKI
MT5
MT9
RXP5
TXN5
TXP5
JVSS5
RMON7
RXN7
B
HW
JVSS3
RPD
MT6
MT10
RXN5
TXN5
TXP5
TVDD5
LM7[0]
RXP7
C
TXP3
TXP3
RST
JAD1
TCLKI
TCC
RVSS5
RVDD5
TVSS5
VDD18
RVDD7
D
TXN3
TXN3
JTDI
JTCLK
MT1
TPD
TBIN
RMON5
TVDD5
TLBO5
TVSS7
E
RXN3
RXP3
JTRST
TEST
JAS1
RBIN
AIST
LM5[0]
TVSS5
JVDD5
RVSS7
F
TAIS1
RMON3
TVSS3
TVDD3
RVSS3
JTDO
JAS0
LM5[1]
TVDD5
TVSS5
LM7[1]
G
VDD18
LM1[0]
TVSS3
RVDD3
LM3[0]
MT2
CLADBYP
JAD0
TAIS5
TVDD7
TAIS7
H
TXP1
TXP1
JVDD1
JVSS1
TVSS3
TAIS3
JTMS
LBS
RLOS11
TDM11
RCLK9
J
TXN1
TXN1
TVDD1
TVSS1
LM1[1]
VSS
LM3[1]
HIZ
VSS
VDD33
VSS
K
RXN1
RXP1
TVSS1
TVDD1
TVDD1
TVDD3
VSS
TLBO3
VDD33
VSS
VSS
L
RVSS1
RESREF
TAIS2
RVDD1
VSS
RMON1
TLBO1
VSS
VSS
VSS
VSS
M
JVDD2
JVSS2
TVDD2
LM2[0]
TVSS2
TVDD2
LM2[1]
TVSS1
TLBO2
VSS
VSS
N
TXP2
TXP2
TVDD2
TVSS2
TLBO4
LM4[1]
TVDD4
LB12[0]
VDD33
VSS
VSS
P
TXN2
TXN2
RVDD2
TVSS2
RVSS2
TVSS4
LB8[0]
LB2[1]
LB9[1]
VDD33
TVDD6
R
RXP2
RXN2
TAIS4
RMON2
LB3[0]
LB4[0]
LB6[0]
LB4[1]
LB7[1]
ITRE
N.C.
T
LM4[0]
VDD18
JVSS4
JVDD4
LB1[0]
LB2[0]
LB5[0]
LB5[1]
LB11[1]
N.C.
TAIS8
U
TXP4
TXP4
TVSS4
TVDD4
LB9[0]
VSS
VSS
N.C.
IFSEL0
TVSS6
LM6[1]
V
TVSS4
TVDD4
RVDD4
LB7[0]
N.C.
N.C.
TVDD6
TVSS6
TVSS6
RMON6
JVSS8
W
TXN4
TXN4
RVSS4
LB10[0]
LB6[1]
N.C.
IFSEL2
TAIS6
VSS
RVSS6
JVDD8
Y
RXP4
RXN4
LB11[0]
LB8[1]
N.C.
IFSEL1
TLBO6
TVDD6
RVDD6
LM6[0]
TVDD8
AA
RMON4
LB1[1]
LB10[1]
MT3
MT7
JVDD6
TXP6
TXN6
RXP6
VDD18
TXP8
AB
LB3[1]
LB12[1]
N.C.
MT4
MT8
JVSS6
TXP6
TXN6
RXN6
TLBO8
TXP8
1
2
3
4
5
6
7
8
9
10
11
High-Speed Analog
Low-Speed Analog
High-Speed Digital
Low-Speed Digital
N.C. and Manufacturing Test
VDD 1.8V
VDDIO 3.3V
Analog VSS
Analog VDD 1.8V
VSS
111 of 130
DS32506/DS32508/DS32512
Right Half
12
13
14
15
16
17
18
19
20
21
22
TXN7
TXP7
LM9[0]
RXN9
TXN9
TXP9
RMON11
RXN11
TXN11
TXP11
VSS
A
TXN7
TXP7
RMON9
RXP9
TXN9
TXP9
LM11[0]
RXP11
TXN11
TXP11
TDM9
B
TVSS7
JVSS7
RVSS9
TVDD9
JVSS9
VDD18
TVSS11
TVSS11
TVDD11
TNEG9
TOE5
C
TVDD7
JVDD7
TVSS9
TVDD9
TLBO9
RVDD11
TVDD11
JVSS11
RLOS9
TOE9
RCLK3
D
TVDD7
TLBO7
RVDD9
TVSS9
JVDD9
RVSS11
JVDD11
TPOS11
TCLK11
TNEG7
RNEG3
E
TVSS7
LM9[1]
TVSS9
LM11[1]
TVSS11
TLBO11
RPOS9
TNEG11
TOE11
TOE7
RLOS3
F
TVDD9
TAIS9
TVDD11
TAIS11
RPOS11
RNEG11
RCLK11
RCLK7
TPOS7
TCLK7
TOE3
G
RNEG9
TPOS9
TDM7
TCLK9
RLOS7
RPOS7
RNEG7
RLOS5
RPOS5
TPOS3
VDD18
H
VSS
VDD33
RCLK5
RPOS3
TPOS5
RNEG5
TCLK5
TNEG5
TDM5
RPOS1
TNEG1
J
VSS
VSS
VDD33
TDM3
RCLK1
RNEG1
TCLK3
RLOS1
TNEG3
TDM1
TOE1
K
VSS
VSS
RNEG4
TPOS1
TCLK1
RPOS2
CVDD
CVDD
CVSS
MT0
REFCLK
L
VSS
VSS
RLOS6
TPOS4
TOE4
TCLK4
TNEG2
CLKC
CLKD
CLKA
CLKB
M
VSS
VSS
VDD33
RNEG8
RCLK8
TDM6
RCLK4
TPOS2
VDD18
RNEG2
RCLK2
N
TAIS10
VDD33
RLOS10
TPOS8
TOE8
TCLK8
VSS
TDM4
RPOS6
TDM2
RLOS2
P
LM10[0]
RLOS12
TPOS12
TNEG10
RPOS12
RNEG12
RCLK12
TOE6
RPOS8
RCLK6
TCLK2
R
TVSS8
TVDD10
TLBO12
TVDD12
TDM12
TCLK12
TNEG12
RPOS10
RCLK10
TCLK6
TOE2
T
TVDD8
LM8[1]
TVSS10
LM12[0]
TVSS12
TOE12
RVDD12
TDM10
TCLK10
TPOS6
RPOS4
U
TVSS8
RMON8
JVSS10
TVSS10
RVDD10
JVDD12
TVSS12
TOE10
TPOS10
TNEG6
RLOS4
V
TVDD8
RVSS8
JVDD10
TVDD10
RMON10
JVSS12
TVDD12
RMON12
RNEG10
RLOS8
TNEG4
W
TVSS8
RVDD8
LM10[1]
TVDD10
TVSS10
RVSS10
LM12[1]
TVDD12
TVSS12
TDM8
RNEG6
Y
TXN8
RXP8
TLBO10
TXP10
TXN10
RXN10
VDD18
TXP12
TXN12
RXN12
TNEG8
AA
TXN8
RXN8
LM8[0]
TXP10
TXN10
RXP10
TAIS12
TXP12
TXN12
RXP12
RVSS12
AB
12
13
14
15
16
17
18
19
20
21
22
High-Speed Analog
Low-Speed Analog
High-Speed Digital
Low-Speed Digital
N.C. and Manufacturing Test
VDD 1.8V
VDDIO 3.3V
Analog VSS
Analog VDD 1.8V
VSS
112 of 130
DS32506/DS32508/DS32512
Figure 12-3. DS32512 Pin Assignment, Microprocessor Interface Only
Left Half
1
2
3
4
5
6
7
8
9
10
11
A
JVDD3
TVDD3
N.C.
MT5
MT9
RXP5
TXN5
TXP5
JVSS5
N.C.
RXN7
B
HW
JVSS3
N.C.
MT6
MT10
RXN5
TXN5
TXP5
TVDD5
GPIOB7
RXP7
C
TXP3
TXP3
RST
N.C.
N.C.
N.C.
RVSS5
RVDD5
TVSS5
VDD18
RVDD7
D
TXN3
TXN3
JTDI
JTCLK
MT1
N.C.
N.C.
N.C.
TVDD5
N.C.
TVSS7
E
RXN3
RXP3
JTRST
TEST
N.C.
N.C.
N.C.
GPIOB5
TVSS5
JVDD5
RVSS7
F
N.C.
N.C.
TVSS3
TVDD3
RVSS3
JTDO
N.C.
GPIOA5
TVDD5
TVSS5
GPIOA7
G
VDD18
GPIOB1
TVSS3
RVDD3
GPIOB3
MT2
CLADBYP
N.C.
N.C.
TVDD7
N.C.
H
TXP1
TXP1
JVDD1
JVSS1
TVSS3
N.C.
JTMS
N.C.
N.C.
N.C.
RCLK9
J
TXN1
TXN1
TVDD1
TVSS1
GPIOA1
VSS
GPIOA3
HIZ
VSS
VDD33
VSS
K
RXN1
RXP1
TVSS1
TVDD1
TVDD1
TVDD3
VSS
N.C.
VDD33
VSS
VSS
L
RVSS1
RESREF
N.C.
RVDD1
VSS
N.C.
N.C.
VSS
VSS
VSS
VSS
M
JVDD2
JVSS2
TVDD2
GPIOB2
TVSS2
TVDD2
GPIOA2
TVSS1
N.C.
VSS
VSS
N
TXP2
TXP2
TVDD2
TVSS2
N.C.
GPIOA4
TVDD4
D11
VDD33
VSS
VSS
P
TXN2
TXN2
RVDD2
TVSS2
RVSS2
TVSS4
D7/CPOL
D13
A5
VDD33
TVDD6
R
RXP2
RXN2
N.C.
N.C.
D2/SCLK
D3
D5
D15
A3
A9
RD/DS
T
GPIOB4
VDD18
JVSS4
JVDD4
D0/SDO
D1/SDI
D4
A1
A7
ALE
N.C.
U
TXP4
TXP4
TVSS4
TVDD4
D8
VSS
VSS
RDY/ACK
IFSEL0
TVSS6
GPIOA6
V
TVSS4
TVDD4
RVDD4
D6/CPHA
A0
WR/R/W
TVDD6
TVSS6
TVSS6
N.C.
JVSS8
W
TXN4
TXN4
RVSS4
D9
A2
A10
IFSEL2
N.C.
VSS
RVSS6
JVDD8
Y
RXP4
RXN4
D10
A4
CS
IFSEL1
N.C.
TVDD6
RVDD6
GPIOB6
TVDD8
AA
N.C.
D12
A6
MT3
MT7
JVDD6
TXP6
TXN6
RXP6
VDD18
TXP8
AB
D14
A8
INT
MT4
MT8
JVSS6
TXP6
TXN6
RXN6
N.C.
TXP8
1
2
3
4
5
6
7
8
9
10
11
High-Speed Analog
Low-Speed Analog
High-Speed Digital
Low-Speed Digital
N.C. and Manufacturing Test
VDD 1.8V
VDDIO 3.3V
Analog VSS
Analog VDD 1.8V
VSS
113 of 130
DS32506/DS32508/DS32512
Right Half
12
13
14
15
16
17
18
19
20
21
22
TXN7
TXP7
GPIOB9
RXN9
TXN9
TXP9
N.C.
RXN11
TXN11
TXP11
VSS
A
TXN7
TXP7
N.C.
RXP9
TXN9
TXP9
GPIOB11
RXP11
TXN11
TXP11
N.C.
B
TVSS7
JVSS7
RVSS9
TVDD9
JVSS9
VDD18
TVSS11
TVSS11
TVDD11
TNEG9
N.C.
C
TVDD7
JVDD7
TVSS9
TVDD9
N.C.
RVDD11
TVDD11
JVSS11
N.C.
N.C.
RCLK3
D
TVDD7
N.C.
RVDD9
TVSS9
JVDD9
RVSS11
JVDD11
TPOS11
TCLK11
TNEG7
RNEG3
E
TVSS7
GPIOA9
TVSS9
GPIOA11
TVSS11
N.C.
RPOS9
TNEG11
N.C.
N.C.
N.C.
F
TVDD9
N.C.
TVDD11
N.C.
RPOS11
RNEG11
RCLK11
RCLK7
TPOS7
TCLK7
N.C.
G
RNEG9
TPOS9
N.C.
TCLK9
N.C.
RPOS7
RNEG7
N.C.
RPOS5
TPOS3
VDD18
H
VSS
VDD33
RCLK5
RPOS3
TPOS5
RNEG5
TCLK5
TNEG5
N.C.
RPOS1
TNEG1
J
VSS
VSS
VDD33
N.C.
RCLK1
RNEG1
TCLK3
N.C.
TNEG3
N.C.
N.C.
K
VSS
VSS
RNEG4
TPOS1
TCLK1
RPOS2
CVDD
CVDD
CVSS
MT0
REFCLK
L
VSS
VSS
N.C.
TPOS4
N.C.
TCLK4
TNEG2
CLKC
CLKD
CLKA
CLKB
M
VSS
VSS
VDD33
RNEG8
RCLK8
N.C.
RCLK4
TPOS2
VDD18
RNEG2
RCLK2
N
N.C.
VDD33
N.C.
TPOS8
N.C.
TCLK8
VSS
N.C.
RPOS6
N.C.
N.C.
P
GPIOB10
N.C.
TPOS12
TNEG10
RPOS12
RNEG12
RCLK12
N.C.
RPOS8
RCLK6
TCLK2
R
TVSS8
TVDD10
N.C.
TVDD12
N.C.
TCLK12
TNEG12
RPOS10
RCLK10
TCLK6
N.C.
T
TVDD8
GPIOA8
TVSS10
GPIOB12
TVSS12
N.C.
RVDD12
N.C.
TCLK10
TPOS6
RPOS4
U
TVSS8
N.C.
JVSS10
TVSS10
RVDD10
JVDD12
TVSS12
N.C.
TPOS10
TNEG6
N.C.
V
TVDD8
RVSS8
JVDD10
TVDD10
N.C.
JVSS12
TVDD12
N.C.
RNEG10
N.C.
TNEG4
W
TVSS8
RVDD8
GPIOA10
TVDD10
TVSS10
RVSS10
GPIOA12
TVDD12
TVSS12
N.C.
RNEG6
Y
TXN8
RXP8
N.C.
TXP10
TXN10
RXN10
VDD18
TXP12
TXN12
RXN12
TNEG8
AA
TXN8
RXN8
GPIOB8
TXP10
TXN10
RXP10
N.C.
TXP12
TXN12
RXP12
RVSS12
AB
12
13
14
15
16
17
18
19
20
21
22
High-Speed Analog
Low-Speed Analog
High-Speed Digital
Low-Speed Digital
N.C. and Manufacturing Test
VDD 1.8V
VDDIO 3.3V
Analog VSS
Analog VDD 1.8V
VSS
114 of 130
DS32506/DS32508/DS32512
Figure 12-4. DS32508 Pin Assignment, Hardware and Microprocessor Interfaces
Left Half
1
2
3
4
5
6
7
8
9
10
11
A
JVDD3
TVDD3
RCLKI
MT5
N.C.
RXP5
TXN5
TXP5
JVSS5
RMON7
RXN7
B
HW
JVSS3
RPD
MT6
N.C.
RXN5
TXN5
TXP5
TVDD5
GPIOB7
RXP7
C
TXP3
TXP3
RST
JAD1
TCLKI
TCC
RVSS5
RVDD5
TVSS5
VDD18
RVDD7
D
TXN3
TXN3
JTDI
JTCLK
MT1
TPD
TBIN
RMON5
TVDD5
TLBO5
TVSS7
E
RXN3
RXP3
JTRST
TEST
JAS1
RBIN
AIST
GPIOB5
TVSS5
JVDD5
RVSS7
F
TAIS1
RMON3
TVSS3
TVDD3
RVSS3
JTDO
JAS0
GPIOA5
TVDD5
TVSS5
GPIOA7
G
VDD18
GPIOB1
TVSS3
RVDD3
GPIOB3
MT2
CLADBYP
JAD0
TAIS5
TVDD7
TAIS7
H
TXP1
TXP1
JVDD1
JVSS1
TVSS3
TAIS3
JTMS
LBS
N.C.
N.C.
N.C.
J
TXN1
TXN1
TVDD1
TVSS1
GPIOA1
VSS
GPIOA3
HIZ
VSS
VDD33
VSS
K
RXN1
RXP1
TVSS1
TVDD1
TVDD1
TVDD3
VSS
TLBO3
VDD33
VSS
VSS
L
RVSS1
RESREF
TAIS2
RVDD1
VSS
RMON1
TLBO1
VSS
VSS
VSS
VSS
M
JVDD2
JVSS2
TVDD2
GPIOB2
TVSS2
TVDD2
GPIOA2
TVSS1
TLBO2
VSS
VSS
N
TXP2
TXP2
TVDD2
TVSS2
TLBO4
GPIOA4
TVDD4
D11
VDD33
VSS
VSS
P
TXN2
TXN2
RVDD2
TVSS2
RVSS2
TVSS4
D7/CPOL
D13
A5
VDD33
TVDD6
R
RXP2
RXN2
TAIS4
RMON2
D2/SCLK
D3
D5
D15
A3
A9
RD/DS
T
GPIOB4
VDD18
JVSS4
JVDD4
D0/SDO
D1/SDI
D4
A1
A7
ALE
TAIS8
U
TXP4
TXP4
TVSS4
TVDD4
D8
VSS
VSS
RDY/ACK
IFSEL0
TVSS6
GPIOA6
V
TVSS4
TVDD4
RVDD4
D6/CPHA
A0
WR/R/W
TVDD6
TVSS6
TVSS6
RMON6
JVSS8
W
TXN4
TXN4
RVSS4
D9
A2
A10
IFSEL2
TAIS6
VSS
RVSS6
JVDD8
Y
RXP4
RXN4
D10
A4
CS
IFSEL1
TLBO6
TVDD6
RVDD6
GPIOB6
TVDD8
AA
RMON4
D12
A6
MT3
MT7
JVDD6
TXP6
TXN6
RXP6
VDD18
TXP8
AB
D14
A8
INT
MT4
MT8
JVSS6
TXP6
TXN6
RXN6
TLBO8
TXP8
1
2
3
4
5
6
7
8
9
10
11
High-Speed Analog
Low-Speed Analog
High-Speed Digital
Low-Speed Digital
N.C. and Manufacturing Test
VDD 1.8V
VDDIO 3.3V
Analog VSS
Analog VDD 1.8V
VSS
115 of 130
DS32506/DS32508/DS32512
Right Half
12
13
14
15
16
17
18
19
20
21
22
TXN7
TXP7
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
VSS
A
TXN7
TXP7
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
B
TVSS7
JVSS7
VSS
VSS
VSS
VDD18
VSS
VSS
VSS
N.C.
TOE5
C
TVDD7
JVDD7
VSS
VSS
N.C.
VSS
VSS
VSS
N.C.
N.C.
RCLK3
D
TVDD7
TLBO7
VSS
VSS
VSS
VSS
VSS
N.C.
N.C.
TNEG7
RNEG3
E
TVSS7
N.C.
VSS
N.C.
VSS
N.C.
N.C.
N.C.
N.C.
TOE7
RLOS3
F
VSS
N.C.
VSS
N.C.
N.C.
N.C.
N.C.
RCLK7
TPOS7
TCLK7
TOE3
G
N.C.
N.C.
TDM7
N.C.
RLOS7
RPOS7
RNEG7
RLOS5
RPOS5
TPOS3
VDD18
H
VSS
VDD33
RCLK5
RPOS3
TPOS5
RNEG5
TCLK5
TNEG5
TDM5
RPOS1
TNEG1
J
VSS
VSS
VDD33
TDM3
RCLK1
RNEG1
TCLK3
RLOS1
TNEG3
TDM1
TOE1
K
VSS
VSS
RNEG4
TPOS1
TCLK1
RPOS2
CVDD
CVDD
CVSS
MT0
REFCLK
L
VSS
VSS
RLOS6
TPOS4
TOE4
TCLK4
TNEG2
CLKC
CLKD
CLKA
CLKB
M
VSS
VSS
VDD33
RNEG8
RCLK8
TDM6
RCLK4
TPOS2
VDD18
RNEG2
RCLK2
N
N.C.
VDD33
N.C.
TPOS8
TOE8
TCLK8
VSS
TDM4
RPOS6
TDM2
RLOS2
P
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
TOE6
RPOS8
RCLK6
TCLK2
R
TVSS8
VSS
N.C.
VSS
N.C.
N.C.
N.C.
N.C.
N.C.
TCLK6
TOE2
T
TVDD8
GPIOA8
VSS
N.C.
VSS
N.C.
VSS
N.C.
N.C.
TPOS6
RPOS4
U
TVSS8
RMON8
VSS
VSS
VSS
VSS
VSS
N.C.
N.C.
TNEG6
RLOS4
V
TVDD8
RVSS8
VSS
VSS
N.C.
VSS
VSS
N.C.
N.C.
RLOS8
TNEG4
W
TVSS8
RVDD8
N.C.
VSS
VSS
VSS
N.C.
VSS
VSS
TDM8
RNEG6
Y
TXN8
RXP8
N.C.
N.C.
N.C.
N.C.
VDD18
N.C.
N.C.
N.C.
TNEG8
AA
TXN8
RXN8
GPIOB8
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
VSS
AB
12
13
14
15
16
17
18
19
20
21
22
High-Speed Analog
Low-Speed Analog
High-Speed Digital
Low-Speed Digital
N.C. and Manufacturing Test
VDD 1.8V
VDDIO 3.3V
Analog VSS
Analog VDD 1.8V
VSS
116 of 130
DS32506/DS32508/DS32512
Figure 12-5. DS32508 Pin Assignment, Hardware Interface Only
Left Half
1
2
3
4
5
6
7
8
9
10
11
A
JVDD3
TVDD3
RCLKI
MT5
N.C.
RXP5
TXN5
TXP5
JVSS5
RMON7
RXN7
B
HW
JVSS3
RPD
MT6
N.C.
RXN5
TXN5
TXP5
TVDD5
LM7[0]
RXP7
C
TXP3
TXP3
RST
JAD1
TCLKI
TCC
RVSS5
RVDD5
TVSS5
VDD18
RVDD7
D
TXN3
TXN3
JTDI
JTCLK
MT1
TPD
TBIN
RMON5
TVDD5
TLBO5
TVSS7
E
RXN3
RXP3
JTRST
TEST
JAS1
RBIN
AIST
LM5[0]
TVSS5
JVDD5
RVSS7
F
TAIS1
RMON3
TVSS3
TVDD3
RVSS3
JTDO
JAS0
LM5[1]
TVDD5
TVSS5
LM7[1]
G
VDD18
LM1[0]
TVSS3
RVDD3
LM3[0]
MT2
CLADBYP
JAD0
TAIS5
TVDD7
TAIS7
H
TXP1
TXP1
JVDD1
JVSS1
TVSS3
TAIS3
JTMS
LBS
N.C.
N.C.
N.C.
J
TXN1
TXN1
TVDD1
TVSS1
LM1[1]
VSS
LM3[1]
HIZ
VSS
VDD33
VSS
K
RXN1
RXP1
TVSS1
TVDD1
TVDD1
TVDD3
VSS
TLBO3
VDD33
VSS
VSS
L
RVSS1
RESREF
TAIS2
RVDD1
VSS
RMON1
TLBO1
VSS
VSS
VSS
VSS
M
JVDD2
JVSS2
TVDD2
LM2[0]
TVSS2
TVDD2
LM2[1]
TVSS1
TLBO2
VSS
VSS
N
TXP2
TXP2
TVDD2
TVSS2
TLBO4
LM4[1]
TVDD4
N.C.
VDD33
VSS
VSS
P
TXN2
TXN2
RVDD2
TVSS2
RVSS2
TVSS4
LB8[0]
LB2[1]
N.C.
VDD33
TVDD6
R
RXP2
RXN2
TAIS4
RMON2
LB3[0]
LB4[0]
LB6[0]
LB4[1]
LB7[1]
ITRE
N.C.
T
LM4[0]
VDD18
JVSS4
JVDD4
LB1[0]
LB2[0]
LB5[0]
LB5[1]
N.C.
N.C.
TAIS8
U
TXP4
TXP4
TVSS4
TVDD4
N.C.
VSS
VSS
N.C.
IFSEL0
TVSS6
LM6[1]
V
TVSS4
TVDD4
RVDD4
LB7[0]
N.C.
N.C.
TVDD6
TVSS6
TVSS6
RMON6
JVSS8
W
TXN4
TXN4
RVSS4
N.C.
LB6[1]
N.C.
IFSEL2
TAIS6
VSS
RVSS6
JVDD8
Y
RXP4
RXN4
N.C.
LB8[1]
N.C.
IFSEL1
TLBO6
TVDD6
RVDD6
LM6[0]
TVDD8
AA
RMON4
LB1[1]
N.C.
MT3
MT7
JVDD6
TXP6
TXN6
RXP6
VDD18
TXP8
AB
LB3[1]
N.C.
N.C.
MT4
MT8
JVSS6
TXP6
TXN6
RXN6
TLBO8
TXP8
1
2
3
4
5
6
7
8
9
10
11
High-Speed Analog
Low-Speed Analog
High-Speed Digital
Low-Speed Digital
N.C. and Manufacturing Test
VDD 1.8V
VDDIO 3.3V
Analog VSS
Analog VDD 1.8V
VSS
117 of 130
DS32506/DS32508/DS32512
Right Half
12
13
14
15
16
17
18
19
20
21
22
TXN7
TXP7
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
VSS
A
TXN7
TXP7
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
B
TVSS7
JVSS7
VSS
VSS
VSS
VDD18
VSS
VSS
VSS
N.C.
TOE5
C
TVDD7
JVDD7
VSS
VSS
N.C.
VSS
VSS
VSS
N.C.
N.C.
RCLK3
D
TVDD7
TLBO7
VSS
VSS
VSS
VSS
VSS
N.C.
N.C.
TNEG7
RNEG3
E
TVSS7
N.C.
VSS
N.C.
VSS
N.C.
N.C.
N.C.
N.C.
TOE7
RLOS3
F
VSS
N.C.
VSS
N.C.
N.C.
N.C.
N.C.
RCLK7
TPOS7
TCLK7
TOE3
G
N.C.
N.C.
TDM7
N.C.
RLOS7
RPOS7
RNEG7
RLOS5
RPOS5
TPOS3
VDD18
H
VSS
VDD33
RCLK5
RPOS3
TPOS5
RNEG5
TCLK5
TNEG5
TDM5
RPOS1
TNEG1
J
VSS
VSS
VDD33
TDM3
RCLK1
RNEG1
TCLK3
RLOS1
TNEG3
TDM1
TOE1
K
VSS
VSS
RNEG4
TPOS1
TCLK1
RPOS2
CVDD
CVDD
CVSS
MT0
REFCLK
L
VSS
VSS
RLOS6
TPOS4
TOE4
TCLK4
TNEG2
CLKC
CLKD
CLKA
CLKB
M
VSS
VSS
VDD33
RNEG8
RCLK8
TDM6
RCLK4
TPOS2
VDD18
RNEG2
RCLK2
N
N.C.
VDD33
N.C.
TPOS8
TOE8
TCLK8
VSS
TDM4
RPOS6
TDM2
RLOS2
P
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
TOE6
RPOS8
RCLK6
TCLK2
R
TVSS8
VSS
N.C.
VSS
N.C.
N.C.
N.C.
N.C.
N.C.
TCLK6
TOE2
T
TVDD8
LM8[1]
VSS
N.C.
VSS
N.C.
VSS
N.C.
N.C.
TPOS6
RPOS4
U
TVSS8
RMON8
VSS
VSS
VSS
VSS
VSS
N.C.
N.C.
TNEG6
RLOS4
V
TVDD8
RVSS8
VSS
VSS
N.C.
VSS
VSS
N.C.
N.C.
RLOS8
TNEG4
W
TVSS8
RVDD8
N.C.
VSS
VSS
VSS
N.C.
VSS
VSS
TDM8
RNEG6
Y
TXN8
RXP8
N.C.
N.C.
N.C.
N.C.
VDD18
N.C.
N.C.
N.C.
TNEG8
AA
TXN8
RXN8
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
VSS
AB
12
13
14
15
16
17
18
19
20
21
22
High-Speed Analog
Low-Speed Analog
High-Speed Digital
Low-Speed Digital
N.C. and Manufacturing Test
VDD 1.8V
VDDIO 3.3V
Analog VSS
Analog VDD 1.8V
VSS
118 of 130
DS32506/DS32508/DS32512
Figure 12-6. DS32508 Pin Assignment, Microprocessor Interface Only
Left Half
1
2
3
4
5
6
7
8
9
10
11
A
JVDD3
TVDD3
N.C.
MT5
N.C.
RXP5
TXN5
TXP5
JVSS5
N.C.
RXN7
B
HW
JVSS3
N.C.
MT6
N.C.
RXN5
TXN5
TXP5
TVDD5
GPIOB7
RXP7
C
TXP3
TXP3
RST
N.C.
N.C.
N.C.
RVSS5
RVDD5
TVSS5
VDD18
RVDD7
D
TXN3
TXN3
JTDI
JTCLK
MT1
N.C.
N.C.
N.C.
TVDD5
N.C.
TVSS7
E
RXN3
RXP3
JTRST
TEST
N.C.
N.C.
N.C.
GPIOB5
TVSS5
JVDD5
RVSS7
F
N.C.
N.C.
TVSS3
TVDD3
RVSS3
JTDO
N.C.
GPIOA5
TVDD5
TVSS5
GPIOA7
G
VDD18
GPIOB1
TVSS3
RVDD3
GPIOB3
MT2
CLADBYP
N.C.
N.C.
TVDD7
N.C.
H
TXP1
TXP1
JVDD1
JVSS1
TVSS3
N.C.
JTMS
N.C.
N.C.
N.C.
N.C.
J
TXN1
TXN1
TVDD1
TVSS1
GPIOA1
VSS
GPIOA3
HIZ
VSS
VDD33
VSS
K
RXN1
RXP1
TVSS1
TVDD1
TVDD1
TVDD3
VSS
N.C.
VDD33
VSS
VSS
L
RVSS1
RESREF
N.C.
RVDD1
VSS
N.C.
N.C.
VSS
VSS
VSS
VSS
M
JVDD2
JVSS2
TVDD2
GPIOB2
TVSS2
TVDD2
GPIOA2
TVSS1
N.C.
VSS
VSS
N
TXP2
TXP2
TVDD2
TVSS2
N.C.
GPIOA4
TVDD4
D11
VDD33
VSS
VSS
P
TXN2
TXN2
RVDD2
TVSS2
RVSS2
TVSS4
D7/CPOL
D13
A5
VDD33
TVDD6
R
RXP2
RXN2
N.C.
N.C.
D2/SCLK
D3
D5
D15
A3
A9
RD/DS
T
GPIOB4
VDD18
JVSS4
JVDD4
D0/SDO
D1/SDI
D4
A1
A7
ALE
N.C.
U
TXP4
TXP4
TVSS4
TVDD4
D8
VSS
VSS
RDY/ACK
IFSEL0
TVSS6
GPIOA6
V
TVSS4
TVDD4
RVDD4
D6/CPHA
A0
WR/R/W
TVDD6
TVSS6
TVSS6
N.C.
JVSS8
W
TXN4
TXN4
RVSS4
D9
A2
A10
IFSEL2
N.C.
VSS
RVSS6
JVDD8
Y
RXP4
RXN4
D10
A4
CS
IFSEL1
N.C.
TVDD6
RVDD6
GPIOB6
TVDD8
AA
N.C.
D12
A6
MT3
MT7
JVDD6
TXP6
TXN6
RXP6
VDD18
TXP8
AB
D14
A8
INT
MT4
MT8
JVSS6
TXP6
TXN6
RXN6
N.C.
TXP8
1
2
3
4
5
6
7
8
9
10
11
High-Speed Analog
Low-Speed Analog
High-Speed Digital
Low-Speed Digital
N.C. and Manufacturing Test
VDD 1.8V
VDDIO 3.3V
Analog VSS
Analog VDD 1.8V
VSS
119 of 130
DS32506/DS32508/DS32512
Right Half
12
13
14
15
16
17
18
19
20
21
22
TXN7
TXP7
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
VSS
A
TXN7
TXP7
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
B
TVSS7
JVSS7
VSS
VSS
VSS
VDD18
VSS
VSS
VSS
N.C.
N.C.
C
TVDD7
JVDD7
VSS
VSS
N.C.
VSS
VSS
VSS
N.C.
N.C.
RCLK3
D
TVDD7
N.C.
VSS
VSS
VSS
VSS
VSS
N.C.
N.C.
TNEG7
RNEG3
E
TVSS7
N.C.
VSS
N.C.
VSS
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
F
VSS
N.C.
VSS
N.C.
N.C.
N.C.
N.C.
RCLK7
TPOS7
TCLK7
N.C.
G
N.C.
N.C.
N.C.
N.C.
N.C.
RPOS7
RNEG7
N.C.
RPOS5
TPOS3
VDD18
H
VSS
VDD33
RCLK5
RPOS3
TPOS5
RNEG5
TCLK5
TNEG5
N.C.
RPOS1
TNEG1
J
VSS
VSS
VDD33
N.C.
RCLK1
RNEG1
TCLK3
N.C.
TNEG3
N.C.
N.C.
K
VSS
VSS
RNEG4
TPOS1
TCLK1
RPOS2
CVDD
CVDD
CVSS
MT0
REFCLK
L
VSS
VSS
N.C.
TPOS4
N.C.
TCLK4
TNEG2
CLKC
CLKD
CLKA
CLKB
M
VSS
VSS
VDD33
RNEG8
RCLK8
N.C.
RCLK4
TPOS2
VDD18
RNEG2
RCLK2
N
N.C.
VDD33
N.C.
TPOS8
N.C.
TCLK8
VSS
N.C.
RPOS6
N.C.
N.C.
P
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
RPOS8
RCLK6
TCLK2
R
TVSS8
VSS
N.C.
VSS
N.C.
N.C.
N.C.
N.C.
N.C.
TCLK6
N.C.
T
TVDD8
GPIOA8
VSS
N.C.
VSS
N.C.
VSS
N.C.
N.C.
TPOS6
RPOS4
U
TVSS8
N.C.
VSS
VSS
VSS
VSS
VSS
N.C.
N.C.
TNEG6
N.C.
V
TVDD8
RVSS8
VSS
VSS
N.C.
VSS
VSS
N.C.
N.C.
N.C.
TNEG4
W
TVSS8
RVDD8
N.C.
VSS
VSS
VSS
N.C.
VSS
VSS
N.C.
RNEG6
Y
TXN8
RXP8
N.C.
N.C.
N.C.
N.C.
VDD18
N.C.
N.C.
N.C.
TNEG8
AA
TXN8
RXN8
GPIOB8
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
VSS
AB
12
13
14
15
16
17
18
19
20
21
22
High-Speed Analog
Low-Speed Analog
High-Speed Digital
Low-Speed Digital
N.C. and Manufacturing Test
VDD 1.8V
VDDIO 3.3V
Analog VSS
Analog VDD 1.8V
VSS
120 of 130
DS32506/DS32508/DS32512
Figure 12-7. DS32506 Pin Assignment, Hardware and Microprocessor Interfaces
Left Half
1
2
3
4
5
6
7
8
9
10
11
A
JVDD3
TVDD3
RCLKI
MT5
N.C.
RXP5
TXN5
TXP5
JVSS5
N.C.
N.C.
B
HW
JVSS3
RPD
MT6
N.C.
RXN5
TXN5
TXP5
TVDD5
N.C.
N.C.
C
TXP3
TXP3
RST
JAD1
TCLKI
TCC
RVSS5
RVDD5
TVSS5
VDD18
VSS
D
TXN3
TXN3
JTDI
JTCLK
MT1
TPD
TBIN
RMON5
TVDD5
TLBO5
VSS
E
RXN3
RXP3
JTRST
TEST
JAS1
RBIN
AIST
GPIOB5
TVSS5
JVDD5
VSS
F
TAIS1
RMON3
TVSS3
TVDD3
RVSS3
JTDO
JAS0
GPIOA5
TVDD5
TVSS5
N.C.
G
VDD18
GPIOB1
TVSS3
RVDD3
GPIOB3
MT2
CLADBYP
JAD0
TAIS5
VSS
N.C.
H
TXP1
TXP1
JVDD1
JVSS1
TVSS3
TAIS3
JTMS
LBS
N.C.
N.C.
N.C.
J
TXN1
TXN1
TVDD1
TVSS1
GPIOA1
VSS
GPIOA3
HIZ
VSS
VDD33
VSS
K
RXN1
RXP1
TVSS1
TVDD1
TVDD1
TVDD3
VSS
TLBO3
VDD33
VSS
VSS
L
RVSS1
RESREF
TAIS2
RVDD1
VSS
RMON1
TLBO1
VSS
VSS
VSS
VSS
M
JVDD2
JVSS2
TVDD2
GPIOB2
TVSS2
TVDD2
GPIOA2
TVSS1
TLBO2
VSS
VSS
N
TXP2
TXP2
TVDD2
TVSS2
TLBO4
GPIOA4
TVDD4
D11
VDD33
VSS
VSS
P
TXN2
TXN2
RVDD2
TVSS2
RVSS2
TVSS4
D7/CPOL
D13
A5
VDD33
TVDD6
R
RXP2
RXN2
TAIS4
RMON2
D2/SCLK
D3
D5
D15
A3
A9
RD/DS
T
GPIOB4
VDD18
JVSS4
JVDD4
D0/SDO
D1/SDI
D4
A1
A7
ALE
N.C.
U
TXP4
TXP4
TVSS4
TVDD4
D8
VSS
VSS
RDY/ACK
IFSEL0
TVSS6
GPIOA6
V
TVSS4
TVDD4
RVDD4
D6/CPHA
A0
WR/R/W
TVDD6
TVSS6
TVSS6
RMON6
VSS
W
TXN4
TXN4
RVSS4
D9
A2
N.C.
IFSEL2
TAIS6
VSS
RVSS6
VSS
Y
RXP4
RXN4
D10
A4
CS
IFSEL1
TLBO6
TVDD6
RVDD6
GPIOB6
VSS
AA
RMON4
D12
A6
MT3
N.C.
JVDD6
TXP6
TXN6
RXP6
VDD18
N.C.
AB
D14
A8
INT
MT4
N.C.
JVSS6
TXP6
TXN6
RXN6
N.C.
N.C.
1
2
3
4
5
6
7
8
9
10
11
High-Speed Analog
Low-Speed Analog
High-Speed Digital
Low-Speed Digital
N.C. and Manufacturing Test
VDD 1.8V
VDDIO 3.3V
Analog VSS
Analog VDD 1.8V
VSS
121 of 130
DS32506/DS32508/DS32512
Right Half
12
13
14
15
16
17
18
19
20
21
22
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
VSS
A
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
B
VSS
VSS
VSS
VSS
VSS
VDD18
VSS
VSS
VSS
N.C.
TOE5
C
VSS
VSS
VSS
VSS
N.C.
VSS
VSS
VSS
N.C.
N.C.
RCLK3
D
VSS
N.C.
VSS
VSS
VSS
VSS
VSS
N.C.
N.C.
N.C.
RNEG3
E
VSS
N.C.
VSS
N.C.
VSS
N.C.
N.C.
N.C.
N.C.
N.C.
RLOS3
F
VSS
N.C.
VSS
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
TOE3
G
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
RLOS5
RPOS5
TPOS3
VDD18
H
VSS
VDD33
RCLK5
RPOS3
TPOS5
RNEG5
TCLK5
TNEG5
TDM5
RPOS1
TNEG1
J
VSS
VSS
VDD33
TDM3
RCLK1
RNEG1
TCLK3
RLOS1
TNEG3
TDM1
TOE1
K
VSS
VSS
RNEG4
TPOS1
TCLK1
RPOS2
CVDD
CVDD
CVSS
MT0
REFCLK
L
VSS
VSS
RLOS6
TPOS4
TOE4
TCLK4
TNEG2
CLKC
CLKD
CLKA
CLKB
M
VSS
VSS
VDD33
N.C.
N.C.
TDM6
RCLK4
TPOS2
VDD18
RNEG2
RCLK2
N
N.C.
VDD33
N.C.
N.C.
N.C.
N.C.
VSS
TDM4
RPOS6
TDM2
RLOS2
P
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
TOE6
N.C.
RCLK6
TCLK2
R
VSS
VSS
N.C.
VSS
N.C.
N.C.
N.C.
N.C.
N.C.
TCLK6
TOE2
T
VSS
N.C.
VSS
N.C.
VSS
N.C.
VSS
N.C.
N.C.
TPOS6
RPOS4
U
VSS
N.C.
VSS
VSS
VSS
VSS
VSS
N.C.
N.C.
TNEG6
RLOS4
V
VSS
VSS
VSS
VSS
N.C.
VSS
VSS
N.C.
N.C.
N.C.
TNEG4
W
VSS
VSS
N.C.
VSS
VSS
VSS
N.C.
VSS
VSS
N.C.
RNEG6
Y
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
VDD18
N.C.
N.C.
N.C.
N.C.
AA
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
VSS
AB
12
13
14
15
16
17
18
19
20
21
22
High-Speed Analog
Low-Speed Analog
High-Speed Digital
Low-Speed Digital
N.C. and Manufacturing Test
VDD 1.8V
VDDIO 3.3V
Analog VSS
Analog VDD 1.8V
VSS
122 of 130
DS32506/DS32508/DS32512
Figure 12-8. DS32506 Pin Assignment, Hardware Interface Only
Left Half
1
2
3
4
5
6
7
8
9
10
11
A
JVDD3
TVDD3
RCLKI
MT5
N.C.
RXP5
TXN5
TXP5
JVSS5
N.C.
N.C.
B
HW
JVSS3
RPD
MT6
N.C.
RXN5
TXN5
TXP5
TVDD5
N.C.
N.C.
C
TXP3
TXP3
RST
JAD1
TCLKI
TCC
RVSS5
RVDD5
TVSS5
VDD18
VSS
D
TXN3
TXN3
JTDI
JTCLK
MT1
TPD
TBIN
RMON5
TVDD5
TLBO5
VSS
E
RXN3
RXP3
JTRST
TEST
JAS1
RBIN
AIST
LM5[0]
TVSS5
JVDD5
VSS
F
TAIS1
RMON3
TVSS3
TVDD3
RVSS3
JTDO
JAS0
LM5[1]
TVDD5
TVSS5
N.C.
G
VDD18
LM1[0]
TVSS3
RVDD3
LM3[0]
MT2
CLADBYP
JAD0
TAIS5
VSS
N.C.
H
TXP1
TXP1
JVDD1
JVSS1
TVSS3
TAIS3
JTMS
LBS
N.C.
N.C.
N.C.
J
TXN1
TXN1
TVDD1
TVSS1
LM1[1]
VSS
LM3[1]
HIZ
VSS
VDD33
VSS
K
RXN1
RXP1
TVSS1
TVDD1
TVDD1
TVDD3
VSS
TLBO3
VDD33
VSS
VSS
L
RVSS1
RESREF
TAIS2
RVDD1
VSS
RMON1
TLBO1
VSS
VSS
VSS
VSS
M
JVDD2
JVSS2
TVDD2
LM2[0]
TVSS2
TVDD2
LM2[1]
TVSS1
TLBO2
VSS
VSS
N
TXP2
TXP2
TVDD2
TVSS2
TLBO4
LM4[1]
TVDD4
N.C.
VDD33
VSS
VSS
P
TXN2
TXN2
RVDD2
TVSS2
RVSS2
TVSS4
N.C.
LB2[1]
N.C.
VDD33
TVDD6
R
RXP2
RXN2
TAIS4
RMON2
LB3[0]
LB4[0]
LB6[0]
LB4[1]
VSS
ITRE
N.C.
T
LM4[0]
VDD18
JVSS4
JVDD4
LB1[0]
LB2[0]
LB5[0]
LB5[1]
N.C.
N.C.
N.C.
U
TXP4
TXP4
TVSS4
TVDD4
N.C.
VSS
VSS
N.C.
IFSEL0
TVSS6
LM6[1]
V
TVSS4
TVDD4
RVDD4
VSS
N.C.
N.C.
TVDD6
TVSS6
TVSS6
RMON6
VSS
W
TXN4
TXN4
RVSS4
N.C.
LB6[1]
N.C.
IFSEL2
TAIS6
VSS
VSS
VSS
Y
RXP4
RXN4
N.C.
N.C.
N.C.
IFSEL1
TLBO6
TVDD6
RVDD6
LM6[0]
VSS
AA
RMON4
LB1[1]
N.C.
MT3
N.C.
JVDD6
TXP6
TXN6
RXP6
VDD18
N.C.
AB
LB3[1]
N.C.
N.C.
MT4
N.C.
JVSS6
TXP6
TXN6
RXN6
N.C.
N.C.
1
2
3
4
5
6
7
8
9
10
11
High-Speed Analog
Low-Speed Analog
High-Speed Digital
Low-Speed Digital
N.C. and Manufacturing Test
VDD 1.8V
VDDIO 3.3V
Analog VSS
Analog VDD 1.8V
VSS
123 of 130
DS32506/DS32508/DS32512
Right Half
12
13
14
15
16
17
18
19
20
21
22
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
VSS
A
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
B
VSS
VSS
VSS
VSS
VSS
VDD18
VSS
VSS
VSS
N.C.
TOE5
C
VSS
VSS
VSS
VSS
N.C.
VSS
VSS
VSS
N.C.
N.C.
RCLK3
D
VSS
N.C.
VSS
VSS
VSS
VSS
VSS
N.C.
N.C.
N.C.
RNEG3
E
VSS
N.C.
VSS
N.C.
VSS
N.C.
N.C.
N.C.
N.C.
N.C.
RLOS3
F
VSS
N.C.
VSS
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
TOE3
G
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
RLOS5
RPOS5
TPOS3
VDD18
H
VSS
VDD33
RCLK5
RPOS3
TPOS5
RNEG5
TCLK5
TNEG5
TDM5
RPOS1
TNEG1
J
VSS
VSS
VDD33
TDM3
RCLK1
RNEG1
TCLK3
RLOS1
TNEG3
TDM1
TOE1
K
VSS
VSS
RNEG4
TPOS1
TCLK1
RPOS2
CVDD
CVDD
CVSS
MT0
REFCLK
L
VSS
VSS
RLOS6
TPOS4
TOE4
TCLK4
TNEG2
CLKC
CLKD
CLKA
CLKB
M
VSS
VSS
VDD33
N.C.
N.C.
TDM6
RCLK4
TPOS2
VDD18
RNEG2
RCLK2
N
N.C.
VDD33
N.C.
N.C.
N.C.
N.C.
VSS
TDM4
RPOS6
TDM2
RLOS2
P
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
TOE6
N.C.
RCLK6
TCLK2
R
VSS
VSS
N.C.
VSS
N.C.
N.C.
N.C.
N.C.
N.C.
TCLK6
TOE2
T
VSS
N.C.
VSS
N.C.
VSS
N.C.
VSS
N.C.
N.C.
TPOS6
RPOS4
U
VSS
N.C.
VSS
VSS
VSS
VSS
VSS
N.C.
N.C.
TNEG6
RLOS4
V
VSS
VSS
VSS
VSS
N.C.
VSS
VSS
N.C.
N.C.
N.C.
TNEG4
W
VSS
VSS
N.C.
VSS
VSS
VSS
N.C.
VSS
VSS
N.C.
RNEG6
Y
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
VDD18
N.C.
N.C.
N.C.
N.C.
AA
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
VSS
AB
12
13
14
15
16
17
18
19
20
21
22
High-Speed Analog
Low-Speed Analog
High-Speed Digital
Low-Speed Digital
N.C. and Manufacturing Test
VDD 1.8V
VDDIO 3.3V
Analog VSS
Analog VDD 1.8V
VSS
124 of 130
DS32506/DS32508/DS32512
Figure 12-9. DS32506 Pin Assignment, Microprocessor Interface Only
Left Half
1
2
3
4
5
6
7
8
9
10
11
A
JVDD3
TVDD3
N.C.
MT5
N.C.
RXP5
TXN5
TXP5
JVSS5
N.C.
N.C.
B
HW
JVSS3
N.C.
MT6
N.C.
RXN5
TXN5
TXP5
TVDD5
N.C.
N.C.
C
TXP3
TXP3
RST
N.C.
N.C.
N.C.
RVSS5
RVDD5
TVSS5
VDD18
VSS
D
TXN3
TXN3
JTDI
JTCLK
MT1
N.C.
N.C.
N.C.
TVDD5
N.C.
VSS
E
RXN3
RXP3
JTRST
TEST
N.C.
N.C.
N.C.
GPIOB5
TVSS5
JVDD5
VSS
F
N.C.
N.C.
TVSS3
TVDD3
RVSS3
JTDO
N.C.
GPIOA5
TVDD5
TVSS5
N.C.
G
VDD18
GPIOB1
TVSS3
RVDD3
GPIOB3
MT2
CLADBYP
N.C.
N.C.
VSS
N.C.
H
TXP1
TXP1
JVDD1
JVSS1
TVSS3
N.C.
JTMS
N.C.
N.C.
N.C.
N.C.
J
TXN1
TXN1
TVDD1
TVSS1
GPIOA1
VSS
GPIOA3
HIZ
VSS
VDD33
VSS
K
RXN1
RXP1
TVSS1
TVDD1
TVDD1
TVDD3
VSS
N.C.
VDD33
VSS
VSS
L
RVSS1
RESREF
N.C.
RVDD1
VSS
N.C.
N.C.
VSS
VSS
VSS
VSS
M
JVDD2
JVSS2
TVDD2
GPIOB2
TVSS2
TVDD2
GPIOA2
TVSS1
N.C.
VSS
VSS
N
TXP2
TXP2
TVDD2
TVSS2
N.C.
GPIOA4
TVDD4
D11
VDD33
VSS
VSS
P
TXN2
TXN2
RVDD2
TVSS2
RVSS2
TVSS4
D7/CPOL
D13
A5
VDD33
TVDD6
R
RXP2
RXN2
N.C.
N.C.
D2/SCLK
D3
D5
D15
A3
A9
RD/DS
T
GPIOB4
VDD18
JVSS4
JVDD4
D0/SDO
D1/SDI
D4
A1
A7
ALE
N.C.
U
TXP4
TXP4
TVSS4
TVDD4
D8
VSS
VSS
RDY/ACK
IFSEL0
TVSS6
GPIOA6
V
TVSS4
TVDD4
RVDD4
D6/CPHA
A0
WR/R/W
TVDD6
TVSS6
TVSS6
N.C.
VSS
W
TXN4
TXN4
RVSS4
D9
A2
N.C.
IFSEL2
N.C.
VSS
RVSS6
VSS
Y
RXP4
RXN4
D10
A4
CS
IFSEL1
N.C.
TVDD6
RVDD6
GPIOB6
VSS
AA
N.C.
D12
A6
MT3
N.C.
JVDD6
TXP6
TXN6
RXP6
VDD18
N.C.
AB
D14
A8
INT
MT4
N.C.
JVSS6
TXP6
TXN6
RXN6
N.C.
N.C.
1
2
3
4
5
6
7
8
9
10
11
High-Speed Analog
Low-Speed Analog
High-Speed Digital
Low-Speed Digital
N.C. and Manufacturing Test
VDD 1.8V
VDDIO 3.3V
Analog VSS
Analog VDD 1.8V
VSS
125 of 130
DS32506/DS32508/DS32512
Right Half
12
13
14
15
16
17
18
19
20
21
22
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
VSS
A
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
B
VSS
VSS
VSS
VSS
VSS
VDD18
VSS
VSS
VSS
N.C.
N.C.
C
VSS
VSS
VSS
VSS
N.C.
VSS
VSS
VSS
N.C.
N.C.
RCLK3
D
VSS
N.C.
VSS
VSS
VSS
VSS
VSS
N.C.
N.C.
N.C.
RNEG3
E
VSS
N.C.
VSS
N.C.
VSS
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
F
VSS
N.C.
VSS
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
G
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
RPOS5
TPOS3
VDD18
H
VSS
VDD33
RCLK5
RPOS3
TPOS5
RNEG5
TCLK5
TNEG5
N.C.
RPOS1
TNEG1
J
VSS
VSS
VDD33
N.C.
RCLK1
RNEG1
TCLK3
N.C.
TNEG3
N.C.
N.C.
K
VSS
VSS
RNEG4
TPOS1
TCLK1
RPOS2
CVDD
CVDD
CVSS
MT0
REFCLK
L
VSS
VSS
N.C.
TPOS4
N.C.
TCLK4
TNEG2
CLKC
CLKD
CLKA
CLKB
M
VSS
VSS
VDD33
N.C.
N.C.
N.C.
RCLK4
TPOS2
VDD18
RNEG2
RCLK2
N
N.C.
VDD33
N.C.
N.C.
N.C.
N.C.
VSS
N.C.
RPOS6
N.C.
N.C.
P
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
RCLK6
TCLK2
R
VSS
VSS
N.C.
VSS
N.C.
N.C.
N.C.
N.C.
N.C.
TCLK6
N.C.
T
VSS
N.C.
VSS
N.C.
VSS
N.C.
VSS
N.C.
N.C.
TPOS6
RPOS4
U
VSS
N.C.
VSS
VSS
VSS
VSS
VSS
N.C.
N.C.
TNEG6
N.C.
V
VSS
VSS
VSS
VSS
N.C.
VSS
VSS
N.C.
N.C.
N.C.
TNEG4
W
VSS
VSS
N.C.
VSS
VSS
VSS
N.C.
VSS
VSS
N.C.
RNEG6
Y
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
VDD18
N.C.
N.C.
N.C.
N.C.
AA
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
VSS
AB
12
13
14
15
16
17
18
19
20
21
22
High-Speed Analog
Low-Speed Analog
High-Speed Digital
Low-Speed Digital
N.C. and Manufacturing Test
VDD 1.8V
VDDIO 3.3V
Analog VSS
Analog VDD 1.8V
VSS
126 of 130
DS32506/DS32508/DS32512
13.
PACKAGE INFORMATION
(The package drawing(s) in this data sheet may not reflect the most current specifications. The package number provided for
each package is a link to the latest package outline information.)
13.1
484-Lead BGA (23mm x 23mm) (56-G60038-001)
127 of 130
DS32506/DS32508/DS32512
14.
THERMAL INFORMATION
Table 14-1. Thermal Properties, Natural Convection
PARAMETER
Ambient Temperature (Note 1)
Junction Temperature
Theta-JA (θJA), Still Air (Note 1)
Theta-JC (θJC)
Psi-JB
Psi-JT
Note 1:
MIN
-40
-40
TYP
16.0
5.4
7.7
0.4
MAX
+85
+125
UNITS
°C
°C
°C/W
°C/W
°C/W
°C/W
The package is mounted on a four-layer JEDEC standard test board with no airflow and dissipating maximum power.
Table 14-2. Theta-JA (θJA) vs. Airflow
FORCED AIR
(METERS PER
SECOND)
0
1
2
THETA-JA (θJA)
16.0 °C/W
13.8 °C/W
12.8 °C/W
128 of 130
DS32506/DS32508/DS32512
15.
AIS
AMI
B3ZS
BER
BPV
CV
DS3
EXZ
HDB3
IO, I/O
LIU
LOL
LOS
LSB
MSB
PDH
PRBS
Rx, RX
SONET
SDH
STS
STS-1
Tx, TX
UI
UIP-P
UIRMS
16.
ACRONYMS AND ABBREVIATIONS
Alarm Indication Signal
Alternate Mark Inversion
Bipolar with Three-Zero Substitution
Bit-Error Rate, Bit-Error Ratio
Bipolar Violation
Code Violation
Digital Signal, Level 3
Excessive Zeros
High-Density Bipolar of Order 3
Input/Output
Line Interface Unit
Loss of Lock
Loss of Signal
Least Significant Bit
Most Significant Bit
Plesiochronous Digital Hierarchy
Pseudo-Random Bit Sequence
Receive
Synchronous Optical Network
Synchronous Digital Hierarchy
Synchronous Transmission Signal
Synchronous Transmission Signal at Level 1
Transmit
Unit Interval
Unit Interval Peak-to-Peak
Unit Intervals Root Mean Square
TRADEMARK ACKNOWLEDGEMENTS
ACCUNET is a registered trademark of AT&T.
SPI is a trademark of Motorola, Inc.
Telcordia is a registered trademark of Telcordia Technologies.
129 of 130
DS32506/DS32508/DS32512
17.
DATA SHEET REVISION HISTORY
REVISION
DATE
062906
DESCRIPTION
Initial data sheet release.
Added Internal Receive Enable (ITRE) pin to Table 7-1. Short Pin Descriptions.
Changed VDD18 tolerance from ±10% to ±5% (Table 7-1. Short Pin Descriptions).
Added Internal Receive Enable (ITRE) pin description to Table 7-5. Hardware
Interface Pin Description.
Changed VDD18 tolerance from ±10% to ±5% (Table 7-10. Power-Supply Pin
Descriptions).
In Section 8.2.8, removed “Note that internal termination is only available when a
microprocessor interface is enabled.”
Changed RXP to TXN in the third paragraph of Section 8.2.9: Driver Monitor and
Output Failure Detection.
091307
20
23
25
26
30
Removed Section 8.12: Initialization.
48
In Table 11-1, changed VDD18 from 1.62V (min) to 1.71V (min) and 1.98V (max) to
1.89V (max).
In Table 11-2, changed all IDD18, IDD33, IDDTTS18, and IDDTTS33 typ and max values.
92
93
In Table 12-1, added ITRE to ball R10.
93, 94, 96,
97, 98,
103, 105
106
In Figure 12-2, Figure 12-5, and Figure 12-8, changed ball R10 from N.C. to ITRE for
DS32512, DS32508, and DS32506 hardware-interface-only pin assignments.
111, 117,
123
In Table 11-2 to Table 11-10, changed VDD18 tolerance from ±10% to ±5%.
103008
15
In Section 8.3.1, removed “Note that internal termination is only available when a
microprocessor interface is enabled.”
In the Absolute Maximum Ratings section, changed the VDD18 supply range from
”-0.1V to +1.98V” to “-0.1V to +1.89V”.
040808
PAGES
CHANGED
—
14
In Figure 12-8 (left half), corrected typos where some pins for port 7 were listed (do
not exist on the DS32506). Changed pins A10, A11, B10, B11, F11, and G11 to N.C.
Changed pins C11, D11, E11, G10, R9, and V4 to VSS.
In Section 9.7, clarified register bit text descriptions for LINE.RSR:BPVC and
LINE.RSR:EXCZ.
123
83
130 of 130
Maxim/Dallas Semiconductor cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim/Dallas Semiconductor product.
No circuit patent licenses are implied. Maxim/Dallas Semiconductor reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2008 Maxim Integrated Products
The Maxim logo is a registered trademark of Maxim Integrated Products, Inc. The Dallas logo is a registered trademark of Dallas Semiconductor Corporation.