TI UCC28C41-Q1

UCC28C41-Q1, UCC28C43-Q1, UCC28C45-Q1
www.ti.com
SLUSA12 – DECEMBER 2009
BiCMOS LOW-POWER CURRENT-MODE PWM CONTROLLERS
Check for Samples: UCC28C41-Q1 UCC28C43-Q1 UCC28C45-Q1
FEATURES
•
•
•
•
1
Qualified for Automotive Applications
Enhanced Replacements for UC2842A Family
With Pin-to-Pin Compatibility
1-MHz Operation
50-μA Standby Current, 100-μA Maximum
Low Operating Current of 2.3 mA at 52 kHz
Fast 35-ns Cycle-by-Cycle Overcurrent
Limiting
±1-A Peak Output Current
•
•
•
•
•
•
•
Rail-to-Rail Output Swings With 25-ns Rise
and 20-ns Fall Times
±1% Initial Trimmed 2.5-V Error Amplifier
Reference
Trimmed Oscillator Discharge Current
New Undervoltage Lockout Versions
APPLICATIONS
•
•
•
Switch Mode Power Supplies
DC-to-DC Converters
Board Mount Power Modules
DESCRIPTION
The UCC28C4x family are high performance current-mode PWM controllers. They are enhanced BiCMOS
versions with pin-for-pin compatibility to the industry standard UC284xA family and UC284x family of PWM
controllers. In addition, a lower startup voltage versions of 7 V is offered as UCC28C41.
Providing necessary features to control fixed frequency, peak current mode power supplies, this family offers
several performance advantages. These devices offer high frequency operation up to 1 MHz with low start up
and operating currents, thus minimizing start up loss and low operating power consumption for improved
efficiency. The devices also feature a fast current sense to output delay time of 35 ns, and a ±1-A peak output
current capability with improved rise and fall times for driving large external MOSFETs directly.
The UCC28C4x family is offered in the 8-pin SOIC (D) package.
ORDERING INFORMATION (1)
TA
–40°C to 125°C
(1)
(2)
(3)
MAXIMUM
DUTY CYCLE
UVLO ON/OFF
100%
8.4 V / 7.6 V
50%
8.4 V / 7.6 V
7.0 V / 6.6 V
PACKAGE (2)
SOIC – D
Reel of 2500
ORDERABLE
PART NUMBER
TOP-SIDE
MARKING
UCC28C43QDRQ1 (3)
PREVIEW
UCC28C45QDRQ1 (3)
PREVIEW
UCC28C41QDRQ1
28C41Q
For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI
web site at www.ti.com.
Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
Product Preview
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
UNLESS OTHERWISE NOTED this document contains
PRODUCTION DATA information current as of publication date.
Products conform to specifications per the terms of Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2009, Texas Instruments Incorporated
UCC28C41-Q1, UCC28C43-Q1, UCC28C45-Q1
SLUSA12 – DECEMBER 2009
www.ti.com
FUNCTIONAL BLOCK DIAGRAM
Note: Toggle flip-flop used only in UCC28C41, UCC28C44, and UCC28C45.
ABSOLUTE MAXIMUM RATINGS (1)
(2)
over operating free-air temperature range (unless otherwise noted)
MIN
MAX
UNIT
VDD
Supply voltage
20
V
ICC
Maximum supply current
30
mA
IOUT(pk)
Output current, peak
±1
A
5
μJ
Output energy, capacitive load
Voltage rating
COMP, CS, FB
–0.3
OUT
–0.3
20
RT/CT
–0.3
6.3
VREF
6.3
V
7
Error amplifier output sink current
10
mA
TJ
Operating junction temperature range
–40
150
°C
Tstg
Storage temperature range
–65
150
°C
(1)
(2)
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltages are with respect to ground. Currents are positive into and negative out of the specified terminals.
RECOMMENDED OPERATING CONDITIONS
MIN
MAX
UNIT
VDD
Input voltage
18
VOUT
Output voltage
18
V
Average output current
200
mA
Reference output current
–20
mA
IOUT
(1)
IOUT(ref) (1)
(1)
2
V
It is not recommended that the device operate under conditions beyond those specified in this table for extended periods of time.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): UCC28C41-Q1 UCC28C43-Q1 UCC28C45-Q1
UCC28C41-Q1, UCC28C43-Q1, UCC28C45-Q1
www.ti.com
SLUSA12 – DECEMBER 2009
ELECTRICAL CHARACTERISTICS
VDD = 15 V (1), RT = 10 kΩ, CT = 3.3 nF, CVDD = 0.1 μF and no load on the outputs, TA = TJ = –40°C to 105°C
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
5
5.1
V
0.2
20
mV
Reference
Output voltage, initial accuracy
TA = 25°C , IOUT = 1 mA
Line regulation
VDD = 12 V to 18 V
Load regulation
1 mA to 20 mA
Temperature stability
(2)
Total output variation
(2)
4.9
3
25
mV
0.2
0.4
mV/°C
5.18
V
4.82
Output noise voltage
10 Hz to 10 kHz, TA = 25°C
Long term stability
1000 hours, TA = 125°C (2)
μV
50
5
25
mV
–30
–45
–60
mA
TA = 25°C (3)
50.5
53
55
kHz
TA = Full Range (3)
50.5
57
KHz
Output short circuit current
Oscillator
Initial accuracy
Voltage stability
VDD = 12 V to 18 V
(2)
Temperature stability
TMIN to TMAX
Amplitude
RT/CT pin peak to peak
Discharge current
0.2
2.85
%
1
2.5
%
1.9
V
TA = 25°C, RT/CT = 2 V (4)
7.7
8.4
9
mA
RT/CT = 2 V (4)
7.2
8.4
9.5
mA
2.475
2.500
2.525
2.5
2.55
V
–0.1
–2
μA
Error Amplifier
Feedback input voltage, initial accuracy
VCOMP = 2.5 V, TA = 25°C
Feedback input voltage, total variation
VCOMP = 2.5 V
2.4
Input bias current
AVOL
Open-loop voltage gain
VOUT = 2 V to 4 V
65
90
dB
1.5
MHz
2
14
mA
–0.5
–1
mA
5
6.8
Unity gain bandwidth
PSRR
Power-supply rejection ratio
VDD = 12 V to 18 V
Output sink current
VFB = 2.7 V, VCOMP = 1.1 V
Output source current
VFB = 2.3 V, VCOMP = 5 V
VOH
High-level output voltage
VFB = 2.3 V, RLOAD = 15 k to GND
VOL
Low-level output voltage
VFB = 2.7 V, RLOAD = 15 k to VREF
V
60
dB
V
0.1
1.1
V
3
3.15
V/V
3.15
V/V
Current Sense
TA = 25°C
Gain
PSRR
(5) (6)
TA = Full Range
2.75
(5) (6)
Maximum input signal
VFB < 2.4 V
Power-supply rejection ratio
VDD = 12 V to 18 V (2)
2.825
0.9
(5)
1
1.1
70
Input bias current
CS to output delay
V
dB
–0.1
–2
μA
35
70
ns
COMP to CS offset
VCS = 0 V
1.15
V
VOUT low (RDS(on) pulldown)
ISINK = 200 mA
5.5
15
Ω
VOUT high (RDS(on) pullup)
ISOURCE = 200 mA
10
25
Ω
Rise tIme
TA = 25°C, CLOAD = 1 nF
25
50
ns
Output
(1)
(2)
(3)
(4)
(5)
(6)
Adjust VDD above the start threshold before setting at 15 V.
Specified by design; not production tested
Output frequencies of the UCC28C41 and UCC28C45 are one-half the oscillator frequency.
Oscillator discharge current is measured with RT = 10 kΩ to VREF.
Parameter measured at trip point of latch with VFB = 0 V.
DV
COM , 0 V v V
ACS +
CS v 900 mV
DVCS
Gain is defined as
Copyright © 2009, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): UCC28C41-Q1 UCC28C43-Q1 UCC28C45-Q1
3
UCC28C41-Q1, UCC28C43-Q1, UCC28C45-Q1
SLUSA12 – DECEMBER 2009
www.ti.com
ELECTRICAL CHARACTERISTICS (continued)
VDD = 15 V (1), RT = 10 kΩ, CT = 3.3 nF, CVDD = 0.1 μF and no load on the outputs, TA = TJ = –40°C to 105°C
PARAMETER
Fall time
TEST CONDITIONS
MIN
TA = 25°C, CLOAD = 1 nF
TYP
MAX
20
40
UNIT
ns
Undervoltage Lockout (UVLO)
Start threshold
Minimum operating voltage
UCC28C43, UCC28C45
7.8
8.4
9
UCC28C41
6.5
7
7.5
UCC28C43, UCC28C45
7
7.6
8.2
UCC28C41
6.1
6.6
7.1
UCC28C43
94
96
UCC28C45, UCC28C41
47
48
V
V
PWM
Maximum duty cycle
Minimum duty cycle
%
0%
Current Supply
ISTART-UP Start-up current
VDD = UVLO start threshold (–0.5 V)
50
100
μA
IDD
VFB = VCS = 0 V
2.3
3
mA
4
Operating supply current
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): UCC28C41-Q1 UCC28C43-Q1 UCC28C45-Q1
UCC28C41-Q1, UCC28C43-Q1, UCC28C45-Q1
www.ti.com
SLUSA12 – DECEMBER 2009
D PACKAGE
(TOP VIEW)
COMP
1
8
VREF
FB
2
7
VDD
CS
3
6
OUT
RT/CT
4
5
GND
Pin Assignments
COMP: This pin provides the output of the error amplifier for compensation. In addition, the COMP pin is
frequently used as a control port by utilizing a secondary-side error amplifier to send an error signal across the
secondary-primary isolation boundary through an opto-isolator.
CS: The current-sense pin is the noninverting input to the PWM comparator. This is compared to a signal
proportional to the error amplifier output voltage. A voltage ramp can be applied to this pin to run the device with
a voltage mode control configuration.
FB: This pin is the inverting input to the error amplifier. The noninverting input to the error amplifier is internally
trimmed to 2.5 V ± 1%.
GND: Ground return pin for the output driver stage and the logic-level controller section.
OUT: The output of the on-chip drive stage. OUT is intended to directly drive a MOSFET. The OUT pin in the
UCC28C43 is the same frequency as the oscillator, and can operate near 100% duty cycle. In the UCC28C41
UCC28C45, the frequency of OUT is one-half that of the oscillator due to an internal T flipflop. This limits the
maximum duty cycle to <50%.
RT/CT: Timing resistor and timing capacitor. The timing capacitor should be connected to the device ground
using minimal trace length.
VDD: Power supply pin for the device. This pin should be bypassed with a 0.1 μF capacitor with minimal trace
lengths. Additional capacitance may be needed to provide hold up power to the device during startup.
VREF: 5-V reference. For stability, the reference should be bypassed with a 0.1 μF capacitor to ground using the
minimal trace length possible.
Copyright © 2009, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): UCC28C41-Q1 UCC28C43-Q1 UCC28C45-Q1
5
UCC28C41-Q1, UCC28C43-Q1, UCC28C45-Q1
SLUSA12 – DECEMBER 2009
www.ti.com
APPLICATION INFORMATION
This device is a pin-for-pin replacement of the bipolar UC2842 family of controllers—the industry standard PWM
controller for single-ended converters. Familiarity with this controller family is assumed.
The UCC28C4x series is an enhanced replacement with pin-to-pin compatibility to the bipolar UC284x and
UC284xA families. The new series offers improved performance when compared to older bipolar devices and
other competitive BiCMOS devices with similar functionality. Note that these improvements discussed below
generally consist of tighter specification limits that are a subset of the older product ratings, maintaining drop-in
capability. In new designs these improvements can be utilized to reduce the component count or enhance circuit
performance when compared to the previously available devices.
Advantages
This device increases the total circuit efficiency whether operating off-line or in dc input circuits. In off-line
applications the low start-up current of this device reduces steady state power dissipation in the startup resistor,
and the low operating current maximizes efficiency while running. The low running current also provides an
efficiency boost in battery-operated supplies.
Low-Voltage Operation
Two members of the UCC28C4x family are intended for applications that require a lower start-up voltage than
the original family members. The UCC28C41 has a turn-on voltage of 7 V typical and exhibit hysteresis of 0.4 V
for a turn-off voltage of 6.6 V. This reduced start-up voltage enables use in systems with lower voltages, such as
12 V battery systems that are nearly discharged.
High-Speed Operation
The BiCMOS design allows operation at high frequencies that were not feasible in the predecessor bipolar
devices. First, the output stage has been redesigned to drive the external power switch in approximately one-half
the time of the earlier devices. Second, the internal oscillator is more robust, with less variation as frequency
increases. In addition, the current sense to output delay has been reduced by a factor of three, to 45 ns typical.
These features combine to provide a device capable of reliable high-frequency operation.
The UCC28C4x family oscillator is true to the curves of the original bipolar devices at lower frequencies, yet
extends the frequency programmability range to at least 1 MHz. This allows the device to offer pin-to-pin
capability where required, yet capable of extending the operational range to the higher frequencies typical of
latest applications. When the original UC2842 was released in 1984, most switching supplies operated between
20 kHz and 100 kHz. Today, the UCC28C4x can be used in designs cover a span roughly ten times higher than
those numbers.
Start/Run Current Improvements
The start-up current is only 60 μA typical, a significant reduction from the bipolar device's ratings of 300 μA
(UC284xA). For operation over the full temperature range, the UCC28C4x devices offer a maximum startup
current of 100 μA, an improvement over competitive BiCMOS devices. This allows the power-supply designer to
further optimize the selection of the start-up resistor value to provide a more efficient design. In applications
where low component cost overrides maximum efficiency the low run current of 2.3 mA typical may allow the
control device to run directly through the single resistor to (+) rail, rather than needing a bootstrap winding on the
power transformer, along with a rectifier. The start/run resistor for this case must also pass enough current to
allow driving the primary switching MOSFET, which may be a few milliamps in small devices.
±1% Initial Reference Voltage
The BiCMOS internal reference of 2.5 V has an enhanced design and utilizes production trim to allow initial
accuracy of ±1% at room temperature and ±2% over the full temperature range. This can be used to eliminate an
external reference in applications that do not require the extreme accuracy afforded by the additional device. This
is very useful for nonisolated dc-to-dc applications where the control device is referenced to the same common
as the output. It is also applicable in offline designs that regulate on the primary side of the isolation boundary by
looking at a primary bias winding, or perhaps from a winding on the output inductor of a buck-derived circuit.
6
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): UCC28C41-Q1 UCC28C43-Q1 UCC28C45-Q1
UCC28C41-Q1, UCC28C43-Q1, UCC28C45-Q1
www.ti.com
SLUSA12 – DECEMBER 2009
Reduced Discharge Current Variation
The original UC2842 oscillator did not have trimmed discharged current, and the parameter was not specified on
the data sheet. Since many customers attempted to use the discharge current to set a crude dead-time limit, the
UC2842A family was released with a trimmed discharge current specified at 25°C. The UCC28C4x series now
offers even tighter control of this parameter, with approximately ±3% accuracy at 25°C, and less than 10%
variation over temperature using the UCC28C4x devices. This level of accuracy can enable a meaningful limit to
be programmed, a feature not currently seen in competitive BiCMOS devices. The improved oscillator and
reference also contribute to decreased variation in the peak-to-peak variation in the oscillator waveform, which is
often used as the basis for slope compensation for the complete power system.
Soft-Start
Figure 1 provides a typical soft-start circuit for use with the UCC28C42. The values of R and C should be
selected to bring the COMP pin up at a controlled rate, limiting the peak current supplied by the power stage.
After the soft-start interval is complete, the capacitor continues to charge to VREF, effectively removing the PNP
transistor from circuit considerations.
The optional diode in parallel with the resistor forces a soft-start each time the PWM goes through UVLO and the
reference (VREF) goes low. Without the diode, the capacitor otherwise remains charged during a brief loss of
supply or brownout, and no soft-start is enabled upon reapplication of VIN.
VREF
8
COMP
1
UCC28C42
GND
5
UDG-01072
Figure 1.
Oscillator Synchronization
The UCC28C4x oscillator has the same synchronization characteristics as the original bipolar devices. Thus, the
information in the application report U-100A, UC2842/3/4/5 Provides Low-Cost Current-Mode Control (SLUA143)
still applies. The application report describes how a small resistor from the timing capacitor to ground can offer
an insertion point for synchronization to an external clock (see Figure 2 and Figure 3). Figure 2 shows how the
UCC28C42 can be synchronized to an external clock source. This allows precise control of frequency and dead
time with a digital pulse train.
Copyright © 2009, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): UCC28C41-Q1 UCC28C43-Q1 UCC28C45-Q1
7
UCC28C41-Q1, UCC28C43-Q1, UCC28C45-Q1
SLUSA12 – DECEMBER 2009
www.ti.com
8
VREF
4
RT / CT
RT
SYNCHRONIZATION
CIRCUIT INPUT
CT
UCC28C42
PWM
24
UDG-01069
Figure 2. Oscillator Synchronization Circuit
CLOCK
INPUT
PWM
OUT
UPPER THRESHOLD
LOW
HIGH
LOW
LOWER THRESHOLD
ON .
OFF .
ON .
VCT (ANALOG)
OUTPUT A
UPPER THRESHOLD
VCT
VSYNC (DIGITAL)
LOWER THRESHOLD
COMBINED
UDG−01070
Figure 3. Synchronization to an External Clock
Precautions
The absolute maximum supply voltage is 20 V, including any transients that may be present. If this voltage is
exceeded, device damage is likely. This is in contrast to the predecessor bipolar devices that could survive up to
30 V. Thus, the supply pin should be decoupled as close to the ground pin as possible. Also, since no clamp is
included in the device, the supply pin should be protected from external sources that could exceed the 20 V
level.
Careful layout of the printed board has always been a necessity for high-frequency power supplies. As the device
switching speeds and operating frequencies increase, the layout of the converter becomes increasingly
important.
This 8-pin device has only a single ground for the logic and power connections. This forces the gate drive current
pulses to flow through the same ground that the control circuit uses for reference. Thus, the interconnect
inductance should be minimized as much as possible. One implication is to place the device (gate driver) circuitry
close to the MOSFET it is driving. Note that this can conflict with the need for the error amplifier and the
feedback path to be away from the noise generating components.
8
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): UCC28C41-Q1 UCC28C43-Q1 UCC28C45-Q1
UCC28C41-Q1, UCC28C43-Q1, UCC28C45-Q1
www.ti.com
SLUSA12 – DECEMBER 2009
Circuit Applications
Figure 4 shows a typical off-line application.
D50
F1
12 V
OUT
T1
R10
C52
C3
C12
+
AC INPUT
100 Vac - 240 Vac
EMI FILTER
REQUIRED
C55
R56
BR1
D2
R11
C1A
L50
D51
C18
5V
OUT
R12
RT1
C53
C54
D6
R55
C5
SEC
COMMON
R6
R50
UCC28C44
IC2
1
COMP
REF
R16
8
Q1
2
FB
VCC
IC2
7
3
CS
OUT
6
4
RT/CT
GND 5
C50
C13
R50
R53
R52
C51
K
IC3
A
R
R54
UDG-01071
Figure 4. Typical Off-Line Application
Figure 5 shows the forward converter with synchronous rectification. This application provides 48 V to 3.3 V at
10 A with over 85% efficiency, and uses the UCC28C42 as the secondary-side controller and UCC3961 as the
primary-side startup control device.
Copyright © 2009, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): UCC28C41-Q1 UCC28C43-Q1 UCC28C45-Q1
9
10
Submit Documentation Feedback
46.4k
C5
0.1uF
7
6
5
4
3
2
AGnd
Ref
Rt
FB
SS
SD
OVS
R12
200
ucc3961
U1
R2
Product Folder Link(s): UCC28C41-Q1 UCC28C43-Q1 UCC28C45-Q1
2
1
C7
8
9
10
11
12
13
14
T2
4
3
R4
1.5k
300
R13
C8
1uF
Q2
470pF
C6
76.8k
R5
R6
4.7
C9
C10
2.7nF
0.1uF
R8
R10
1k
5.1k
D1
R14
50k
R15
20k 40%
0.33
R9
Q1
C22
4.7nF
D3
20k
R24
20k
402
R25
20k
R26
R28
R19
20
4.7
680pF
100
3300pF
C12
5.6nF
C16
21.5k
C23
R17
R16
BAR74
R23
D5
BAR74
Q3
C17
4700pF
1500pF
C11
4
3
2
1
4
3
2
1
Vcc
DT
Rt/Ct
CS
FB
U2
LODR
BTLO
HIDR
7.5k
R18
UCC28C4x
PGND
5
6
7
8
C19
470uF
4700pF
U4
TPS2832
BOOT
IN
COMP
R27
4.7
10
R21
Q4
GND
OUT
Vcc
REF
5
6
7
8
2uF
C26
470uF
C20
0.22uF
C13
C14
1uF
C24
0.1uF
D6
BZX84C15LT1
PWRGND
0.1uF
C21
3r3V
R22
100
C15
1uF
+
100pF
Vs
CS
PGnd
Out
Vdd
St
UVS
2.4k
R3
1.2k
C25
0.047uF
R20
10
+
R11
0.22uF
10nF
1
+
C4
C3
C1
470uF
R1
32.4k
10k
D2
T1
C18
+
VinN
VinP
R7
1nF
C2
L1
4.7uH
UCC28C41-Q1, UCC28C43-Q1, UCC28C45-Q1
SLUSA12 – DECEMBER 2009
www.ti.com
Figure 5. Forward Converter With Synchronous Rectification
Using the UCC28C42 as the Secondary-Side Controller
Copyright © 2009, Texas Instruments Incorporated
UCC28C41-Q1, UCC28C43-Q1, UCC28C45-Q1
www.ti.com
SLUSA12 – DECEMBER 2009
TYPICAL CHARACTERISTICS
OSCILLATOR FREQUENCY
vs
TIMING RESISTANCE AND CAPACITANCE
OSCILLATOR DISCHARGE CURRENT
vs
TEMPERATURE
9.5
10 M
IDISCH − Oscillator Discharge Current − mA
CT = 220 pF
CT = 470 pF
f − Frequency − Hz
1M
CT = 1 nF
100 k
10 k
CT = 4.7 nF
CT = 2.2 nF
1k
9.0
8.5
8.0
7.5
7.0
1k
10 k
100 k
−50
−25
0
Figure 6.
200
90
180
1.6
1.4
60
120
50
100
40
80
30
PHASE
MARGIN
10
0
1 k 10 k 100 k
f − Frequency − Hz
Figure 8.
Copyright © 2009, Texas Instruments Incorporated
1M
1.2
COMP to CS
70
140
Phase Margin − (°)
GAIN
Gain − (dB)
125
1.8
160
80
100
100
COMP to CS OFFSET VOLTAGE (with CS = 0)
vs
TEMPERATURE
100
10
75
Figure 7.
ERROR AMPLIFIER
FREQUENCY RESPONSE
1
50
TJ − Temperature − °C
RT − Timing Resistance − W
20
25
1.0
0.8
60
0.6
40
0.4
20
0.2
0
10 M
0.0
−50
−25
0
25
50
75
100
125
TJ − Temperature − °C
Figure 9.
Submit Documentation Feedback
Product Folder Link(s): UCC28C41-Q1 UCC28C43-Q1 UCC28C45-Q1
11
UCC28C41-Q1, UCC28C43-Q1, UCC28C45-Q1
SLUSA12 – DECEMBER 2009
www.ti.com
TYPICAL CHARACTERISTICS (continued)
ERROR AMPLIFIER REFERENCE VOLTAGE
vs
TEMPERATURE
REFERENCE VOLTAGE
vs
TEMPERATURE
2.55
VEAREF − Error Amplifier Reference Voltage − V
5.05
VREF − Reference Voltage − V
5.04
5.03
5.02
5.01
5.00
4.99
4.98
4.97
4.96
4.95
−50
2.54
2.53
2.52
2.51
2.50
2.49
2.48
2.47
2.46
2.45
−25
0
25
50
75
100
125
−50
−25
TJ − Temperature − °C
0
Figure 10.
100
125
200
−37
IBIAS − Error Amplifier Input Bias Current − nA
ISC − Reference Short Circuit Current − mA
75
ERROR AMPLIFIER INPUT BIAS CURRENT
vs
TEMPERATURE
−35
−39
−41
−43
−45
−47
−49
−51
−53
150
100
50
0
−50
−100
−150
−200
−25
0
25
50
75
TJ − Temperature − °C
Figure 12.
12
50
Figure 11.
REFERENCE SHORT-CIRCUIT CURRENT
vs
TEMPERATURE
−55
−50
25
TJ − Temperature − °C
Submit Documentation Feedback
100
125
−50
−25
0
25
50
75
TJ − Temperature − °C
100
125
Figure 13.
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): UCC28C41-Q1 UCC28C43-Q1 UCC28C45-Q1
UCC28C41-Q1, UCC28C43-Q1, UCC28C45-Q1
www.ti.com
SLUSA12 – DECEMBER 2009
TYPICAL CHARACTERISTICS (continued)
UNDERVOLTAGE LOCKOUT
vs
TEMPERATURE (UCC28C45)
UNDERVOLTAGE LOCKOUT
vs
TEMPERATURE (UCC28C44)
16
9.0
15
13
VUVLO − UVLO Voltage − V
VUVLO − UVLO Voltage − V
14
UVLO
ON
12
UVLO
OFF
11
10
9
8.6
8.4
8.2
8.0
7.8
7.6
8
7.4
7
7.2
6
−50
UVLO
ON
8.8
−25
0
25
50
75
100
UVLO
OFF
7.0
−50
125
TJ − Temperature − °C
−25
0
Figure 14.
100
125
Figure 15.
UNDERVOLTAGE LOCKOUT
vs
TEMPERATURE (UCC28C41)
SUPPLY CURRENT
vs
OSCILLATOR FREQUENCY
25
7.3
7.2
IDD − Supply Current − mA
UVLO
ON
7.1
VUVLO − UVLO Voltage − V
25
50
75
TJ − Temperature − °C
7.0
6.9
6.8
6.7
1-nF LOAD
20
15
10
NO LOAD
6.6
5
6.5
UVLO
OFF
6.4
6.3
−50
0
0k
−25
0
25
50
75
100
125
200 k
400 k
600 k
f − Frequency − Hz
800 k
1M
TJ − Temperature − °C
Figure 16.
Copyright © 2009, Texas Instruments Incorporated
Figure 17.
Submit Documentation Feedback
Product Folder Link(s): UCC28C41-Q1 UCC28C43-Q1 UCC28C45-Q1
13
UCC28C41-Q1, UCC28C43-Q1, UCC28C45-Q1
SLUSA12 – DECEMBER 2009
www.ti.com
TYPICAL CHARACTERISTICS (continued)
SUPPLY CURRENT
vs
TEMPERATURE
40
3.0
OUTPUT RISE TIME AND FALL TIME
vs
TEMPERATURE
10% to 90%
VDD = 12 V
2.9
Output Rise and Fall TIme − ns
35
IDD − Supply Current − mA
2.8
2.7
2.6
2.5
2.4
NO LOAD
2.3
2.2
tr
(1 nF)
30
tf
(1 nF)
25
20
15
2.1
2.0
−50
−25
0
25
50
75
100
10
−50
125
−25
0
25
Figure 18.
125
100
125
MAXIMUM DUTY CYCLE
vs
TEMPERATURE
100
100
UCC28C40
UCC28C42
UCC28C43
CT = 220 pF
98
Maximum Duty Cycle − %
90
Duty Cycle − %
100
Figure 19.
MAXIMUM DUTY CYCLE
vs
OSCILLATOR FREQUENCY
80
70
CT = 1 nF
96
94
92
60
0
500
1000
1500
f − Frequency − kHz
Figure 20.
14
75
TJ − Temperature − °C
TJ − Temperature − °C
50
50
Submit Documentation Feedback
2000
2500
90
−50
−25
0
25
50
75
TJ − Temperature − °C
Figure 21.
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): UCC28C41-Q1 UCC28C43-Q1 UCC28C45-Q1
UCC28C41-Q1, UCC28C43-Q1, UCC28C45-Q1
www.ti.com
SLUSA12 – DECEMBER 2009
TYPICAL CHARACTERISTICS (continued)
MAXIMUM DUTY CYCLE
vs
TEMPERATURE
1.10
UCC28C41
UCC28C44
UCC28C45
VCS_th − Current Sense Threshold − V
Output Rise and Fall TIme − ns
50
49
48
47
46
45
−50
CURRENT-SENSE THRESHOLD VOLTAGE
vs
TEMPERATURE
1.05
1.00
0.95
0.90
−25
0
25
50
75
100
−50
125
−25
0
25
50
75
100
125
TJ − Temperature − °C
TJ − Temperature − °C
Figure 22.
Figure 23.
CS TO OUT DELAY TIME
vs
TEMPERATURE
70
tD − CS to OUT Delay Time − ns
65
60
55
50
45
40
35
30
−50
−25
0
25
50
75
100
125
TJ − Temperature − °C
Figure 24.
Copyright © 2009, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): UCC28C41-Q1 UCC28C43-Q1 UCC28C45-Q1
15
PACKAGE OPTION ADDENDUM
www.ti.com
18-Dec-2009
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
UCC28C41QDRQ1
ACTIVE
SOIC
D
Pins Package Eco Plan (2)
Qty
8
2500 Green (RoHS &
no Sb/Br)
Lead/Ball Finish
CU NIPDAU
MSL Peak Temp (3)
Level-1-260C-UNLIM
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF UCC28C41-Q1 :
• Catalog: UCC28C41
NOTE: Qualified Version Definitions:
• Catalog - TI's standard catalog product
Addendum-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
20-Jul-2010
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
UCC28C41QDRQ1
Package Package Pins
Type Drawing
SOIC
D
8
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
2500
330.0
12.4
Pack Materials-Page 1
6.4
B0
(mm)
K0
(mm)
P1
(mm)
5.2
2.1
8.0
W
Pin1
(mm) Quadrant
12.0
Q1
PACKAGE MATERIALS INFORMATION
www.ti.com
20-Jul-2010
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
UCC28C41QDRQ1
SOIC
D
8
2500
340.5
338.1
20.6
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Audio
www.ti.com/audio
Communications and Telecom www.ti.com/communications
Amplifiers
amplifier.ti.com
Computers and Peripherals
www.ti.com/computers
Data Converters
dataconverter.ti.com
Consumer Electronics
www.ti.com/consumer-apps
DLP® Products
www.dlp.com
Energy and Lighting
www.ti.com/energy
DSP
dsp.ti.com
Industrial
www.ti.com/industrial
Clocks and Timers
www.ti.com/clocks
Medical
www.ti.com/medical
Interface
interface.ti.com
Security
www.ti.com/security
Logic
logic.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Power Mgmt
power.ti.com
Transportation and
Automotive
www.ti.com/automotive
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
Wireless
www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions
www.ti.com/lprf
TI E2E Community Home Page
e2e.ti.com
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated