MAXIM MAX174_11

19-2765; Rev 3; 8/11
EVALUATION KIT AVAILABLE
MAX174/MX574A/MX674A
Industry-Standard, Complete 12-Bit ADCs
General Description
Features
The MAX174/MX574A/MX674A are complete 12-bit
analog-to-digital converters (ADCs) that combine high
speed, low-power consumption, and on-chip clock and
voltage reference. The maximum conversion times are
8µs (MAX174), 15µs (MX674A), and 25µs (MX574A).
Maxim’s BiCMOS construction reduces power dissipation 3 times (150mW) over comparable devices. The
internal buried zener reference provides low-drift and
low-noise performance. External component requirements are limited to only decoupling capacitors and fixed
resistors. The versatile analog input structure allows for
0 to +10V or 0 to +20V unipolar or ±5V or ±10V bipolar
input ranges with pin strapping.
SComplete ADC with Reference and Clock
S12-Bit Resolution and Linearity
SNo Missing Codes Over Temperature
S150mW Power Dissipation
S8µs (MAX174), 15µs (MX674A), and 25µs (MX574A)
Max Conversion Times
SPrecision Low TC Reference: 10ppm/NC
SMonolithic BiCMOS Construction
S150ns Maximum Data Access Time
Applications
The MAX174/MX574A/MX674A use standard microprocessor interface architectures and can be interfaced to
8-, 12-, and 16-bit wide buses. Three-state data outputs
are controlled by CS, CE, and R/C logic inputs.
Digital Signal Processing
High-Accuracy Process Control
High-Speed Data Acquisition
Ordering Information appears at end of data sheet.
Electro-Mechanical Systems
Functional Diagram
VL
DGND
1
VCC
15
BIPOFF
VEE
7
11
10VIN 20VIN
12
13
R
REFIN
10
14
5kI
2R
9.950kI
5kI
12-BIT
DAC
AGND
REFOUT
9
8
12
SAR
+10V
REF
MAX174
MX574A
MX674A
4
4
4
LOW
NIBBLE
16
D0
MIDDLE
NIBBLE
19
D3
HIGH
NIBBLE
20
D4
23
D7
24
D8
2
CLOCK
AND
CONTROL
LOGIC
27
D11
28 6
3
4
12/8
CS
A0
5
STS CE R/C
For related parts and recommended products to use with this part, refer to www.maxim-ic.com/MAX174.related.
����������������������������������������������������������������� Maxim Integrated Products 1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
MAX174/MX574A/MX674A
Industry-Standard, Complete 12-Bit ADCs
ABSOLUTE MAXIMUM RATINGS
VCC to DGND...............................................................0 to 16.5V
VEE to DGND................................................................0 to 16.5V
VL to DGND.......................................................................0 to 7V
DGND to AGND.................................................................... Q1V
Control Inputs to DGND
(CE, CS, A0, 12/8, R/C)......................... -0.3V to (VCC + 0.3V)
Digital Output Voltage to DGND
(DB11–DB0, STS)...................................... -0.3V to (VL + 0.3V)
Analog Inputs to AGND (REFIN, BIPOFF, 10VIN)............ Q16.5V
20VIN to AGND.................................................................... Q24V
REFOUT.................................... Indefinite short to VCC or AGND
Power Dissipation (any package) to +75NC..................1000mW
Derates above +75NC ...............................................10mW/NC
Operating Temperature Ranges
MAX174_C, MX_74AJ/K/L....................................... 0 to +70NC
MAX174_E, MX_74AJE/KE/LE......................... -40NC to +85NC
MAX174_M, MX_74AS/T/U............................. -55NC to +125NC
Storage Temperature Range............................. -55NC to +160NC
Lead Temperature (soldering, 10s).................................+300NC
Soldering Temperature (reflow)
PDIP, Wide SO..............................................................+260NC
PLCC.............................................................................+245NC
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS—MAX174
(VL = +5V, VEE = +15V or +12V, VEE = -15V or -12V, TA = +25NC, unless otherwise noted.)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
ACCURACY
Resolution
12
RES
TA = +25°C
Integral Nonlinearity
MAX174A/B
MAX174C
MAX174AC/BC
INL
TA = TMIN to TMAX MAX174AE/BE/AM/BM
MAX174C
Differential Nonlinearity
Unipolar Offset Error (Note 1)
Bipolar Offset Error (Notes 2, 3)
DNL
Bits
±1/2
±1
±1/2
±1
12 bits, no missing codes over temperature
±1
MAX174A/B
±1
MAX174C
±2
MAX174A
±3
MAX174B/C
±4
Full-Scale Calibration Error (Note 3)
LSB
±3/4
±0.25
LSB
LSB
LSB
%
TEMPERATURE COEFFICIENTS (Using Internal Reference) (Notes 2, 3, 4)
Unipolar Offset Change
Bipolar Offset Change
MAX174A/B
±1
MAX174C
±2
MAX174AC/BC
±1
MAX174CC
±2
MAX174AE/AM
±1
MAX174BE/BM
±2
MAX174CE/CM
±4
LSB
LSB
����������������������������������������������������������������� Maxim Integrated Products 2
MAX174/MX574A/MX674A
Industry-Standard, Complete 12-Bit ADCs
ELECTRICAL CHARACTERISTICS—MAX174 (continued)
(VL = +5V, VEE = +15V or +12V, VEE = -15V or -12V, TA = +25NC, unless otherwise noted.)
PARAMETER
SYMBOL
Full-Scale Calibration Change
CONDITIONS
MIN
TYP
MAX
MAX174AC
±2 (10)
MAX174BC
±5 (27)
MAX174CC
±9 (50)
MAX174AE
±7 (19)
MAX174BE
±10 (38)
MAX174CE
±20 (75)
MAX174AM
±5 (12)
MAX174BM
±10 (25)
MAX174CM
±20 (50)
UNITS
LSB
(ppm/°C
INTERNAL REFERENCE
MAX174A
9.98
10.00
10.02
MAX174B/C
9.97
10.00
10.03
Output Voltage
No load
Output Current (Note 5)
Available for external loads, in addition to
REFIN and BIPOFF load
V
2
mA
MAX
UNITS
ELECTRICAL CHARACTERISTICS—MX574A, MX674A
(VL = + 5V, VEE = +15V or +12V, VEE = -15V or -12V, TA = +25NC, unless otherwise noted.)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
ACCURACY
Resolution
12
RES
TA = +25°C
MX574AK/L/T/U,
MX674AK/L/T/U
MX574AJ/S, MX674AJ/S
Integral Nonlinearity
INL
TA = TMIN to TMAX
Differential Nonlinearity
Unipolar Offset Error (Note 1)
Bipolar Offset Error (Notes 2, 3)
Full-Scale Calibration Error
(Note 3)
DNL
Bits
±1/2
±1
MX574AK/L/KE/LE
±1/2
MX674AK/L/KE/LE
±1/2
MX574AT/U, MX674AT/U
±3/4
MX574AJ/S, MX674AJ/S
±1
12 bits, no missing codes over temperature
±1
MX574AK/L/T/U, MX674AK/L/T/U
±1
MX574AJ/S, MX674AJ/S
±2
MX574AL/U, MX674AL/U
±3
MX574AJ/K/S/T, MX674AJ/K/S/T
±4
MX574AL/U
±0.125
MX574AJ/K/S/T, MX674A
±0.25
LSB
LSB
LSB
LSB
%
TEMPERATURE COEFFICIENTS (Using Internal Reference) (Notes 2, 3, 4)
Unipolar Offset Change
MX574AK/L/T/U, MX674AK/L/T/U
±1
MX574AJ/S, MX674AJ/S
±2
LSB
����������������������������������������������������������������� Maxim Integrated Products 3
MAX174/MX574A/MX674A
Industry-Standard, Complete 12-Bit ADCs
ELECTRICAL CHARACTERISTICS—MX574A, MX674A (continued)
(VL = + 5V, VEE = +15V or +12V, VEE = -15V or -12V, TA = +25NC, unless otherwise noted.)
PARAMETER
SYMBOL
Bipolar Offset Change
Full-Scale Calibration Change
CONDITIONS
MIN
TYP
MAX
MX574AK/L, MX674AK/L
±1
MX574AJ, MX674AJ
±2
MX574AU/LE, MX674AU/LE
±1
MX574AT/KE, MX674AT/KE
±2
MX574AS/JE, MX674AS/JE
±4
MX574AL, MX674AL
±2 (10)
MX574AK, MX674AK
±5 (27)
MX574AJ, MX674AJ
±9 (50)
MX574ALE, MX674ALE
±7 (19)
MX574AKE, MX674AKE
±10 (38)
MX574AJE, MX674AJE
±20 (75)
MX574AU, MX674AU
±5 (12)
MX574AT, MX674AT
±10 (25)
MX574AS, MX674AS
±20 (50)
UNITS
LSB
LSB
(ppm/°C
INTERNAL REFERENCE
MX574AL/U
9.99
10.00
10.01
MX574AJ/K/S/T, MX674AL/U
9.98
10.00
10.02
MX674AJ/K/S/T
9.97
10.00
10.03
Output Voltage
No load
Output Current (Note 5)
Available for external loads, in addition to
REFIN and BIPOFF load
V
2
mA
MAX
UNITS
ELECTRICAL CHARACTERISTICS—MAX174/MX574/MX674A
(VL = +5V, VCC = +15V or +12V, VEE = -15V or -12V, TA = +25NC, unless otherwise noted.)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
ANALOG INPUT
Bipolar Input Range
Unipolar Input Range
Input Impedance
Using 10V input
±5
Using 20V input
±10
Using 10V input
0
+10
Using 20V input
0
+20
10V input
3
5
7
20V input
6
10
14
MAX174A/B, MX_74AK/L/TU
±1/8
±1
MAX174C, MX_74AJ/S
±1/8
±2
V
V
kW
POWER-SUPPLY REJECTION (Max Change in Full-Scale Calibration)
VCC Only
15V ±1.5V or
12V ±0.6V
VEE Only
15V ±1.5V or 12V ±0.6V
±1/8
±1/2
LSB
VL Only
5V ±0.5V
±1/8
±1/2
LSB
0.8
V
LSB
LOGIC INPUTS
Input Low Voltage
VIL
Input High Voltage
VIH
CS, CE, R/C, A0, 12/8
CS, CE, R/C, A0, 12/8
2.0
V
����������������������������������������������������������������� Maxim Integrated Products 4
MAX174/MX574A/MX674A
Industry-Standard, Complete 12-Bit ADCs
ELECTRICAL CHARACTERISTICS—MAX174/MX574/MX674A (continued)
(VL = +5V, VCC = +15V or +12V, VEE = -15V or -12V, TA = +25NC, unless otherwise noted.)
PARAMETER
SYMBOL
CONDITIONS
Input Current
IIN
CS, CE, R/C, A0, 12/8, VIN = 0 to VL
Input Capacitance
CIN
CS, CE, R/C, A0, 12/8
Output Low Voltage
VOL
DB11–DB0, STS
ISINK = 1.6mA
Output High Voltage
VOH
DB11–DB0, STS
ISOURCE = 500µA
Floating State Leakage Current
ILKG
DB11–DB0, STS
VOUT = 0 to VL
Floating State Output Capacitance
COUT
DB11–DB0
MIN
TYP
MAX
UNITS
±5
µA
7
pF
LOGIC OUTPUTS
0.4
4
V
V
±10
8
µA
pF
CONVERSION TIME
12-Bit Cycle
tCONV
8-Bit Cycle
tCONV
MX574A
15
20
25
MX674A
9
12
15
MAX174
6
7
8
MX574A
10
14
18
MX674A
6
8
11
MAX174
4
5
6
µs
µs
POWER REQUIREMENTS
VCC Operating Range
11.4
16.5
V
VL Operating Range
4.5
5.5
V
VEE Operating Range
-11.4
-16.5
V
VCC Supply Current (Note 5)
ICC
3
5
mA
VL Supply Current (Note 5)
IL
3
8
mA
VEE Supply Current (Note 5)
IEE
Power Dissipation (Note 5)
PD
Note
Note
Note
Note
Note
VCC = +15V and VEE = -15V
6
10
mA
150
265
mW
1: Adjustable to zero.
2: With 50ω fixed resistor from REFOUT to BIPOFF. Adjustable to zero.
3: With 50ω fixed resistor from REFOUT to REFIN. Adjustable to zero.
4: Maximum change in specification from TA = +25°C to TMIN or TA = +25°C to TMAX.
5: External load current should not change during a conversion. For Q12V supply operation, REFOUT need not be buffered
except when external load in addition to REFIN and BIPOFF inputs have to be driven.
����������������������������������������������������������������� Maxim Integrated Products 5
MAX174/MX574A/MX674A
Industry-Standard, Complete 12-Bit ADCs
TIMING CHARACTERISTICS—MAX174/MX574A/MX674A (Note 6)
(VL = +5V, VCC = +15V or +12V, VEE = -15V or -12V.)
PARAMETER
TA = -40°C TO +85°C
T = -55°C TO +125°C
TA = 0°C TO +70° C A
UNITS
TA = +25°C
SYMBOL CONDITIONS
MIN
TYP
MAX
100
200
MIN
TYP
MAX
MIN
TYP
MAX
CONVERT START TIMING—FULL CONTROL MODE
STS Delay from CE
tDSC
CE Pulse Width
tHEC
CL = 50pF
50
CS to CE Setup
tSSC
CS Low During CE High
tHSC
R/C to CE Setup
15
250
320
ns
50
50
ns
50
50
50
ns
50
50
50
ns
tSRC
50
50
50
ns
R/C Low During CE High
tHRC
50
50
50
ns
A0 to CE Setup
tSAC
0
0
0
ns
A0 Valid During CE High
tHAC
50
50
50
ns
READ TIMING—FULL CONTROL MODE
Access Time (From CE)
tDD
Data Valid After CE Low
tHD
Output Float Delay
tHL
CL = 100pF
60
25
120
40
150
20
75
200
15
100
ns
ns
120
ns
CS to CE Setup
tSSR
50
50
50
ns
R/C to CE Setup
tSRR
0
0
0
ns
A0 to CE Setup
tSAR
50
50
50
ns
CS Valid After CE Low
tHSR
0
0
0
ns
R/C High After CE Low
tHRR
0
0
0
ns
A0 Valid After CE Low
tHAR
0
0
0
ns
Low R/C Pulse Width
tHRL
50
50
50
ns
STS Delay from R/C
tDS
STAND-ALONE MODE
Data Valid After R/C Low
STS Delay After Data Valid
115
tHDR
tHS
High R/C Pulse Width
tHRH
Data Access Time
tDDR
15
200
250
20
320
25
40
MX574A
300
600
1000
300
1000
300
1000
MX674A
30
320
600
30
600
30
600
MAX174
30
140
300
30
300
30
400
150
CL = 100pF
15
150
60
120
ns
200
150
ns
ns
ns
200
ns
Note 6: Timing specifications guaranteed by design. All input control signals specified with tR = tF = 5ns (10% to 90% of +5V) and
timed from a voltage level of +1.6V. See loading circuits in Figures 1 and 2.
����������������������������������������������������������������� Maxim Integrated Products 6
MAX174/MX574A/MX674A
Industry-Standard, Complete 12-Bit ADCs
+5V
+5V
3kI
3kI
3kI
DN
DN
DN
DN
3kI
100pF
100pF
Figure 1. Load Circuit for Access Time Test
LOGIC 0 TO HIGH - Z
LOGIC 1 TO HIGH - Z
HIGH-Z TO LOGIC 1
HIGH-Z TO LOGIC 1
100pF
100pF
Figure 2. Load Circuit for Output Float Delay Test
Pin Configurations
TOP VIEW
28 STS
12/8 2
27 D11
A0
CS
12/8
+
VL 1
CS 3
26 D10
4
3
2
A0 4
25 D9
VL
STS
D11
D10
27
26
R/C
5
25 D9
23 D7
CE
6
24 D8
22 D6
VCC
7
REFOUT
8
AGND
9
24 D8
REFIN 10
19 D3
VEE 11
18 D2
BIPOFF 12
17 D1
10VIN 13
16 D0
20VIN 14
15 DGND
21 D5
REFIN 10
20 D4
VEE 11
19 D3
12
13
14
15
16
17
18
D2
20 D4
D1
AGND 9
22 D6
D0
21 D5
DGND
REFOUT 8
23 D7
MAX174
MX574A
MX674A
20VIN
VCC 7
28
10VIN
CE 6
MAX174
MX574A
MX674A
1
BIPOFF
R/C 5
TOP VIEW
PLCC
DIP/SO
Pin Description
PIN
NAME
1
3
VL
12/8
CS
4
A0
Byte Address/Short-Cycle Input. When starting a conversion, controls number of bits converted (low = 12
bits, high = 8 bits). When reading data, if 12/8 = low, enables low byte (A0 = high) or high byte (A0 = low).
5
R/C
Read/Convert Input. When high, the device will be in the data-read mode. When low, the device will
be in the conversion start mode.
2
FUNCTION
Logic Supply, +5V
Data Mode Select Input
Chip-Select Input. Must be low to select device.
����������������������������������������������������������������� Maxim Integrated Products 7
MAX174/MX574A/MX674A
Industry-Standard, Complete 12-Bit ADCs
Pin Description (continued)
PIN
NAME
6
CE
7
VCC
8
REFOUT
9
AGND
Analog Ground
10
REFIN
Reference Input
11
VEE
BIPOFF
12
13
FUNCTION
Chip-Enable Input. Must be high to select device.
+12V or +15V Supply
+10V Reference Output
-12V or -15V Supply
Bipolar Offset Input. Connect to REFOUT for bipolar input range.
10V Span Input
14
10VIN
20VIN
15
DGND
Digital Ground
16–27
D0–D11
28
STS
20V Span Input
Three-State Data Outputs
Status Output
Detailed Description
Converter Operation
The MAX174/MX574A/MX674A use a successive approximation technique to convert an unknown analog input to
a 12-bit digital output code. The control logic provides
easy interface to most microprocessors. Most applications require only a few external passive components to
perform the analog-to-digital (A/D) function.
The internal voltage output DAC is controlled by a successive approximation register (SAR) and has an output
impedance of 2.5kω. The analog input is connected to
the DAC output with a 5kω resistor for the 10V input and
10kω resistor for the 20V input. The comparator is essentially a zero-crossing detector, and its output is fed back
to the SAR input.
The SAR is set to half-scale as soon as a conversion starts.
The analog input is compared to 1/2 of the full-scale voltage. The bit is kept if the analog input is greater than halfscale or dropped if smaller. The next bit, bit 10, is then set
with the DAC output either at 1/4 scale, if the most significant bit (MSB) is dropped, or 3/4 scale if the MSB is kept.
The conversion continues in this manner until the least
significant bit (LSB) is tried. At the end of the conversion,
the SAR output is latched into the output buffers.
Digital Interface
CE, CS, and R/C control the operation of the MAX174/
MX574A/MX674A. While both CE and CS are asserted,
the state of R/C selects whether a conversion (R/C = 0) or
a data read (R/C = 1) is in progress. The register control
inputs, 12/8 and A0, select the data format and conversion length. A0 is usually tied to the LSB of the address
bus. To perform a full 12-bit conversion, set A0 low during
a convert start. For a shorter 8-bit conversion, A0 must be
high during a convert start.
Output Data Format
During a data read, A0 also selects whether the three­
state buffers contain the 8 MSBs (A0 = 0) or the 4 LSBs
(A0 = 1) of the digital result. The 4 LSBs are followed by
4 trailing 0s.
Output data is formatted according to the 12/8 pin. If
this input is low, the output will be a word broken into
two 8-bit bytes. This allows direct interlace to 8-bit buses
without the need for external three-state buffers. If 12/8 is
high, the output will be one 12-bit word. A0 can change
state while a data-read operation is in effect.
To begin a conversion, the microprocessor must write
to the ADC address. Then, since a conversion usually
takes longer than a single clock cycle, the microprocessor must wait for the ADC to complete the conversion.
Valid data will be made available only at the end of the
conversion, which is indicated by STS. STS can be ether
polled or used to generate an interrupt upon completion.
Or, the microprocessor can be kept idle by inserting the
appropriate number of No Operation (NOP) instructions
between the conversion-start and data-read commands.
����������������������������������������������������������������� Maxim Integrated Products 8
MAX174/MX574A/MX674A
Industry-Standard, Complete 12-Bit ADCs
BIPOFF
20VIN
10VIN
REFIN
5kI
2R* -50I
9.950kI
R*
DAC
5kI
2.5kI
1.6kI
REFIN
2
SAR
Figure 3. Analog Equivalent Circuit
CE
CS
X
R/C
X
12/8
X
A0
0
X
None
OPERATION
X
1
X
X
X
None
1
0
0
X
0
Initiate 12-bit conversion
1
0
0
X
1
Initiate 12-bit conversion
1
0
1
1
X
Enable 12-bit conversion
1
0
1
0
0
Enable 8 MSBs
1
0
1
0
1
Enable 4 LSBs + 4
trailing 0s
After the conversion is completed, data can be obtained
by the microprocessor. The ADCs have the required
logic for 8-, 12-, and 16-bit bus interfacing, which is
determined by the 12/8 input. If 12/8 is high, the ADCs
are configured for a 16-bit bus. Data lines D0–D11 may
be connected to the bus as either the 12 MSBs or the 12
LSBs. The other 4 bits must be masked out in software.
For 8-bit bus operation, 12/8 is set low. The format is left
justified, and the even address, A0 low, contains the 8
MSBs. The odd address, A0 high, contains the 4 LSBs,
which is followed by 4 trailing 0s. There is no need to
use a software mask when the ADCs are connected to
an 8-bit bus.
Table 2. MAX174/MX574A/MX674A Data
Format for 8-Bit Bus
D7
D6
D5
D4
D3
D2
D1
D0
High Byte
(A0 = 0)
MSB
D10
D9
D8
D7
D6
D5
D4
Low Byte
(A0 = 1)
D3
D2
D1
D0
0
0
0
0
MAX174
MX574A
MX674A
27 (MSB)
D7
26 (D10)
D6
25 (D9)
D5
24 (D8)
D4
23 (D7)
D3
22 (D6)
D2
21 (D5)
D1
20 (D4)
D0
19 (D3)
18 (D2)
17 (D1)
16 (LSB)
DATA BUS
Table 1. Truth Table
HARDWIRING FOR 8-BIT DATA BUSES
Note that the output cannot be forced to a right-justified format by rearranging the data lines on the 8-bit bus interface.
����������������������������������������������������������������� Maxim Integrated Products 9
MAX174/MX574A/MX674A
Industry-Standard, Complete 12-Bit ADCs
Timing and Control
Convert Start Timing—Full Control Mode
R/C must be low before asserting both CE and CS. If it
is high, a brief read operation occurs possibly resulting
in system bus contention. To initiate a conversion, use
either CE or CS. CE is recommended since it is shorter
by one propagation delay than CS and is the faster input
of the two. CE is used to begin the conversion in Figure 4.
The STS output is high during the conversion indicating
the ADC is busy. During this period, additional convert
start commands will be ignored, so that the conversion
cannot be prematurely terminated or restarted. However,
if the state of A0 is changed after the beginning of the
conversion, any additional start conversion transitions
will latch the new state of A0, possibly resulting in an
incorrect conversion length (8 bits vs. 12 bits) for that
conversion.
Read Timing—Full Control Mode
Figure 5 illustrates the read-cycle timing. While reading
data, access time is measured from when CE and R/C
are both high. Access time is extended 10ns if CS is used
to initiate a read.
tHEC
CE
CE
tHSC
tHSR
tSSR
tSSC
CS
CS
tHRC
tSRC
tSRR
tHRR
tSAR
tHAR
R/C
R/C
tHAC
tSAC
A0
A0
tDSC
tC
STS
STS
tDD
D0–D11
D0–D11
tHD,tHL
HIGH IMPEDANCE
HIGH IMPEDANCE
Figure 4. Convert Start Timing
Figure 5. Read Timing
���������������������������������������������������������������� Maxim Integrated Products 10
MAX174/MX574A/MX674A
Industry-Standard, Complete 12-Bit ADCs
Stand-Alone Operation
For systems which do not use or require full bus interfacing, the MAX174/MX574A/MX674A can be operated in
a stand-alone mode directly linked through dedicated
input ports.
When configured in the stand-alone mode, conversion is
controlled by R/C. In addition, CS and A0 are wired low;
CE and 12/8 are wired high. To enable the three-state
buffers, set R/C low. A conversion starts when R/C is set
high. This allows either a high- or a low-pulse control signal. Shown in Figure 6 is the operation with a low pulse. In
this mode, the outputs, in response to the falling edge of
R/C, are forced into the high-impedance state and return
to valid logic-levels after the conversion is complete. The
STS output goes high following the R/C falling edge and
returns low when the conversion is complete.
tHRL
R/C
tDS
STS
tHDR
Grounding
The recommended power-supply grounding practice is
shown in Figure 8. The ground reference point for the onchip reference is AGND. It should be connected directly
to the analog reference point of the system. The analog
and digital grounds should be connected together at the
package in order to gain all of the accuracy possible
from the MAX174/MX574A/MX674A in high digital noise
environments. In situations permitting, they can be connected to the most accessible ground-reference point.
The preference is analog power return.
HIGH IMPEDANCE
Figure 6. Low Pulse for R//C in Stand-Alone Mode
tHRH
R/C
tDS
STS
Analog Considerations
Physical Layout
For best system performance, PCBs should be used for
the MAX174/MX574A/MX674A. Wire­wrap boards are not
recommended. The layout of the board should ensure
that digital and analog signal lines are kept separated
from each other as much as possible. Care should be
taken not to run analog and digital lines parallel to each
other or digital lines underneath the MAX174/MX574A/
MX674A.
tHS
D0–11
A high-pulse conversion initiation is illustrated in Figure 7.
When R/C is high, the data lines are enabled. The next conversion starts with the falling edge of R/C. The data lines
return and remain in high impedance state until another
R/C high pulse.
Application Hints
tC
tHDR
tDDR
HIGH IMPEDANCE
D0–11
Figure 7. High Pulse for R//C in Stand-Alone Mode
ANALOG SUPPLY
-15V
VEE
GND
S/H AND
ANALOG
CIRCUITRY
GND
VCC
VEE
DIGITAL SUPPLY
+15V
+5V
AGND
VCC VL
DGND
MAX174
MX574A
MX674A
GND
+5V
DGND
DIGITAL
CIRCUITRY
Figure 8. Power-Supply Grounding Practice
���������������������������������������������������������������� Maxim Integrated Products 11
MAX174/MX574A/MX674A
Industry-Standard, Complete 12-Bit ADCs
Power-Supply Bypassing
The MAX174/MX574A/MX674A power supplies must be
filtered, well regulated, and free from high-frequency
noise, or unstable output codes will result. Unless great
care is taken in filtering any switching spikes present in
the output, switching power supplies is not suggested for
applications requiring 12-bit resolution. Take note that a
few millivolts of noise converts to several error counts in
a 12-bit ADC.
All power-supply pins should use supply decoupling capacitors connected with short lead length to the pins, as shown
in Figure 9. The VCC and VEE pins should be decoupled
directly to AGND. A 4.7µF tantalum type in parallel with a
0 1µF disc ceramic type is a suitable decoupling.
Internal Reference
When using the 20VIN as the analog input, load capacitance on the 10VIN pin must be minimized. Especially on
the faster MAX174, leave the 10VIN pin open to minimize
capacitance and to prevent linearity errors caused by
inadequate settling time.
The amplifier driving the analog input must have low
enough DC output impedance for low full-scale error.
Furthermore, low AC output impedance is also required
since the analog input current is modulated at the clock
rate during the conversion. The output impedance of an
amplifier is the open-loop output impedance divided by
the loop gain at the frequency of interest.
MX574A and MX674A—The approximate internal clock
rate is 600kHz and 1MHz, respectively, and amplifiers
like the MAX400 can be used to drive the input.
The MAX174/MX574A/MX674A have an internal buried
zener reference that provides a 10V, low-noise and low­
temperature drift output. An external reference voltage
can also be used for the ADC. When using ±15V supplies, the internal reference can source up to 2mA in
addition to the BIPOFF and REFIN inputs over the entire
operating temperature range. With ±12V supplies, the
reference can drive the BIPOFF and REFIN inputs over
temperature, but it CANNOT drive an additional load.
MAX174—The internal clock rate is 2MHz and faster
amplifiers like the OP-27, AD711, or OP-42 are required.
Driving the Analog Input
The input leads to AGND and 10VIN or 20VIN should be
as short as possible to minimize noise pick up. If long
leads are needed, use shielded cables.
The STS output may be used to provide the Hold signal
to the track-and-hold amplifier. However, since the A/D’s
DAC is switched at approximately the same time as the
conversion is initiated, the switching transients at the output of the T/H caused by the DAC switching may result in
code dependent errors. It is recommended that the Hold
signal to the T/H amplifier precede a conversion or be
coincident with the conversion start.
+5V
VL
C4
C1
DIGITAL
GROUND
DGND
RECOMMENDED
VCC
+12V/15V
C5
C2
C6
C3
ANALOG
GROUND
AGND
VEE
-12V/15V
C1, C2, C4 – 0.1µF CERAMIC
C4, C5, C6 – 4.7µF
MAX174
MX574A
MX674A
Track-and-Hold Interface
The analog input to the ADC must be stable to within
1/2 LSB during the entire conversion for specified 12-bit
accuracy. This limits the input signal bandwidth to a
couple of hertz for sinusoidal inputs even with the faster
MAX174. For higher bandwidth signals, a track-and-hold
amplifier should be used.
The first bit decision by the A/D is made approximately
1.5 clock cycles after the start of the conversion. This is
2.5µs, 1.5µs, and 0.8µs for the MX574A, MX674A, and
MAX174, respectively. The T/H hold settling time must
be less than this time. For the MX574A and MX674A, the
AD585 sample-and-hold is recommended (Figure 10).
For the MAX174, a faster T/H amplifier, like the HA5320
or HA5330, should be used (Figure 11).
Input Configurations
The MAX174/MX574A/MX674A input range can be set
using pin strapping. Table 3 shows the possible input
ranges and ideal transition voltages. End-point errors can
be adjusted in all ranges.
Figure 9. Power-Supply Bypassing
���������������������������������������������������������������� Maxim Integrated Products 12
MAX174/MX574A/MX674A
Industry-Standard, Complete 12-Bit ADCs
Table 3. Input Ranges and Ideal Digital Output Codes
ANALOG INPUT VOLTAGE (V)
Note
Note
Note
Note
DIGITAL OUTPUT
0 to +10V
0 to +20V
±5V
±10V
+10.0000
+20.0000
+5.0000
+10.0000
1111 1111 1111
+9.9963
+19.9927
+4.9963
+9.9927
1111 1111 1110*
+5.0012
+10.0024
+0.0012
+0.0024
1000 0000 0000*
+4.9988
+9.9976
-0.0012
-0.0024
0111 1111 1111*
+4.9963
+9.9927
-0.0037
-0.0073
0111 1111 1110*
+0.0012
+0.0024
-4.9988
-9.9976
0000 0000 0000*
0.0000
0.0000
-5.0000
-10.0000
0000 0000 0000
7: For
8: For
9: For
10: For
MSB
LSB
unipolar input ranges, output coding is straight binary.
bipolar input ranges, output coding is offset binary.
0 to + 10V or ±5V ranges, 1 LSB = 2.44mV.
0 to +20V or ±10V ranges, 1 LSB = 4.88mV.
*The digital outputs will be flickering between the Indicated code and the indicated code plus one.
+VS
+15V
4.7µF
0.1µF
HOLD
AD585* LREF
-VS
-15V
4.7µF
CONTROL
INPUTS
STS
0.1µF
D0 –11
HOLD
20VIN
VOUT
10VIN
-VIN
MX574A*
MX674A
VCC
4.7µF
0.1µF
4.7µF
0.1µF
4.7µF
BIPOFF
VEE
50I
+VIN
ANALOG
INPUT
+15V
0.1µF
REFOUT
-15V
50I
GND
VL
REFIN
AGND
DGND
+5V
*ADDITIONAL PINS OMITTED FOR CLARITY
Figure 10. MX574/MX674A to AD585 Sample-and-Hold Interface
���������������������������������������������������������������� Maxim Integrated Products 13
MAX174/MX574A/MX674A
Industry-Standard, Complete 12-Bit ADCs
+VS
+15V
4.7µF
S/H
CONTROL
INPUTS
STS
0.1µF
D0 –11
HA5320*
MAX174*
20VIN
-VS
-15V
4.7µF
0.1µF
VCC
10VIN
VOUT
-VIN
+VIN
0.1µF
4.7µF
VEE
REFOUT
GND
4.7µF
BIPOFF
50I
ANALOG
INPUT
+15V
0.1µF
-15V
50I
VL
REFIN
AGND
DGND
+5V
0.1µF
4.7µF
*ADDITIONAL PINS OMITTED FOR CLARITY
Figure 11. MAX174 to HA5320 Sample-and-Hold Interface
Unipolar Input Operation
The unipolar transfer function and input connections are
shown in Figures 12 and 13.
Because all internal resistors of the MAX174/MX574A/
MX674A are trimmed for absolute calibration, additional
trimming is not necessary for most applications. The
absolute accuracy for each grade is given in the specification tables.
If the offset trim is not needed, BIPOFF can be tied directly to AGND. The two resistors and trimmer for BIPOFF
can then be discarded. A 50ω ±1% metal film resistor
should be attached between REFOUT and REFIN.
For a 0 to +10V input range, the analog input is connected between AGND and 10VIN. For a 0 to +20V input
range, the analog input is connected between AGND
and 20VIN. These ADCs can easily handle an input signal
beyond the supplies. If full-scale trim is not needed, the
gain trimmer, R2, should be swapped with a 50ω resistor. Should a 10.24V input range be selected, a 200ω
trimmer should be inserted in series with 10VIN. For a fullscale input range of 20.48V, use a 500ω trimmer in series
with 20VIN. The nominal input impedance into 10VIN is
5kω and 10kω for 20VIN.
Offset and Full-Scale Adjustment
In applications where the offset and full-scale range
have to be adjusted, use the circuit shown in Figure 12.
The offset should be adjusted first. Apply 1/2 LSB at the
analog input and adjust R1 until the digital output code
flickers between 0000 0000 0000 and 0000 0000 0001.
To adjust the full-scale range, apply FS - 3/2 LSB at the
analog input and adjust R2 until the output code changes
between 1111 1111 1110 and 1111 1111 1111.
Bipolar Input Operation
The bipolar transfer function is shown in Figure 14, and
input connections are shown in Figure 15. One or both
of the trimmers can be exchanged with a 50ω ±1% fixed
resistor if the offset and gain specifications suffice.
Offset and Full-Scale Adjustment
To begin bipolar calibration, a signal 1/2 LSB above negative full-scale is applied. R1 is trimmed until the digital
output flickers between 0000 0000 0000 and 0000 0000
0001. Next, a signal 3/2 LSB below positive full scale
is applied. Then, R2 is trimmed until the output flickers
between 1111 1111 1110 and 1111 1111 1111.
���������������������������������������������������������������� Maxim Integrated Products 14
MAX174/MX574A/MX674A
Industry-Standard, Complete 12-Bit ADCs
OUTPUT CODE
FS = 4069 LSBs
1111 1111 1111
OUTPUT CODE
1111 1111 1110
FS = 4069 LSBs
1111 1111 1101
1000 0000 0001
1111 1111 1111
1000 0000 0000
1111 1111 1110
FULL-SCALE
TRANSITION
1111 1111 1101
0111 1111 1111
0111 1111 1110
0000 0000 0011
0000 0000 0011
0000 0000 0010
0000 0000 0010
0000 0000 0001
0000 0000 0000
0000 0000 0001
0
1
2
FS-1 FS
3
0000 0000 0000
-
FS +2
2
FS
2
-
-
FS +1
2
-2 -1
0
FS
1 FS 2
2
2
FS 1
2
ANALOG INPUT VOLTAGE IN LSBs
Figure 12. Ideal Unipolar Transfer Function
GAIN
REFOUT
R2
100I
+12V TO +15V
Figure 14. Ideal Bipolar Transfer Function
MAX174*
MX574A
MX674A
GAIN
REFIN
R2
100I
REFIN
REFOUT
100kI
OFFSET
R1
100kI
BIPOFF
BIPOFF
R1
100I
OFFSET
100I
-12V TO -15V
ANALOG
INPUTS
MAX174*
MX574A
MX674A
0 TO +10V
0 TO +20V
10VIN
20VIN
ANALOG
INPUTS
Q5V
10VIN
Q10V
20VIN
AGND
*ADDITIONAL PINS OMITTED FOR CLARITY
Figure 13. Unipolar Input Connections
AGND
*ADDITIONAL PINS OMITTED FOR CLARITY
Figure 15. Bipolar Input Connections
���������������������������������������������������������������� Maxim Integrated Products 15
MAX174/MX574A/MX674A
Industry-Standard, Complete 12-Bit ADCs
Ordering Information
PINPACKAGE
PART
LINEARITY
(LSB)
TEMPCO
(ppm/NC)
8μs Maximum Conversion Time
PINPACKAGE
PART
LINEARITY
(LSB)
TEMPCO
(ppm/NC)
TEMP RANGE: -55NC to +125NC
TEMP RANGE: 0NC to +70NC
MX674ASQ
28 CERDIP*
1
50
MAX174ACPI+
28 Plastic DIP
½
10
MX674ATQ
28 CERDIP*
¾
25
MAX174BCPI+
28 Plastic DIP
½
27
MX674AUQ
28 CERDIP*
¾
12
MAX174CCPI+
28 Plastic DIP
1
50
MX674ASD
28 Ceramic SB
1
50
MAX174ACWI+
28 Wide SO
½
10
MX674ATD
28 Ceramic SB
¾
25
MAX174BCWI+
28 Wide SO
½
27
MX674AUD
28 Ceramic SB
¾
12
MAX174CCWI+
28 Wide SO
1
50
Dice*
1/2
—
MAX174BC/D
TEMP RANGE: -40NC to +85NC
25μs Maximum Conversion Time
TEMP RANGE: 0NC to +70NC
MX574AJN+
28 Plastic DIP
1
50
MAX174AEPI+
28 Plastic DIP
½
19
MX574AKN+
28 Plastic DIP
½
27
MAX174BEPI+
28 Plastic DIP
½
38
MX574ALN+
28 Plastic DIP
½
10
MAX174CEPI+
28 Plastic DIP
1
75
MX574AJCWI+
28 Wide SO
1
50
MAX174AEWI+
28 Wide SO
½
19
MX574AKCWI+
28 Wide SO
½
27
MAX174BEWI+
28 Wide SO
½
38
MX574ALCWI+
28 Wide SO
½
10
MAX174CEWI+
28 Wide SO
1
75
MX574AJP+
28 PLCC
1
50
TEMP RANGE: -55NC to +125NC
MX574AKP+
28 PLCC
½
27
MAX174AMJI
28 CERDIP
¾
12
MX574ALP+
28 PLCC
½
10
MAX174BMJI
28 CERDIP
¾
25
MX574AK/D
Dice*
½
—
MAX174CMJ
28 CERDIP
1/21
50
TEMP RANGE: -40NC to +85NC
15μs Maximum Conversion Time
TEMP RANGE: 0NC to +70NC
MX574AJEPI+
28 Plastic DIP
1
75
MX574AKEPI+
28 Plastic DIP
½
38
MX674AJN+
28 Plastic DIP
1
50
MX574ALEPI+
28 Plastic DIP
½
19
MX674AKN+
28 Plastic DIP
½
27
MX574AJEWI+
28 Wide SO
1
75
MX674ALN+
28 Plastic DIP
½
10
MX574AKEWI+
28 Wide SO
½
38
MX674AJCWI+
28 Wide SO
1
50
MX574ALEWI+
28 Wide SO
½
19
MX674AKCWI+
28 Wide SO
½
27
TEMP RANGE: -55NC to +125NC
MX674ALCWI+
28 Wide SO
½
10
MX574ASQ
28 CERDIP*
1
50
Dice*
½
—
MX574ATQ
28 CERDIP*
¾
25
MX574AUQ
28 CERDIP*
¾
12
MX674AK/D
TEMP RANGE: -40NC to +85NC
MX674AJEPI+
28 Plastic DIP
1
75
MX574ASD
28 Ceramic SB
1
50
MX674AKEPI+
28 Plastic DIP
½
38
MX574ATD
28 Ceramic SB
¾
25
MX674ALEPI+
28 Plastic DIP
½
19
MX574AUD
28 Ceramic SB
¾
12
MX674AJEWI+
28 Wide SO
1
75
MX674AKEWI+
28 Wide SO
½
38
MX674ALEWI+
28 Wide SO
½
19
+Denotes a lead(Pb)-free/RoHS-compliant package.
*Maxim reserves the right to ship Ceramic SB in lieu of CERDIP packages.
**Consult factory for dice specifications.
���������������������������������������������������������������� Maxim Integrated Products 16
MAX174/MX574A/MX674A
Industry-Standard, Complete 12-Bit ADCs
Chip Information
PROCESS: BiCMOS
Package Information
For the latest package outline information and land patterns
(footprints), go to www.maxim-ic.com/packages. Note that a
“+”, “#”, or “-” in the package code indicates RoHS status only.
Package drawings may show a different suffix character, but
the drawing pertains to the package regardless of RoHS status.
PACKAGE
TYPE
PACKAGE
CODE
OUTLINE
NO.
LAND
PATTERN NO.
28 PDIP
P28+2
21-0044
—
28 PLCC
Q28+3
21-0049
90-0235
28 Wide SO
W28+2
21-0042
90-0109
���������������������������������������������������������������� Maxim Integrated Products 17
MAX174/MX574A/MX674A
Industry-Standard, Complete 12-Bit ADCs
Revision History
REVISION
NUMBER
REVISION
DATE
0
3/90
Initial release
1
8/11
Updated the Electrical Characteristics and Ordering Information. Added
Revision History.
DESCRIPTION
PAGES
CHANGED
—
2–4
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.
Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical
Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2011
Maxim Integrated Products 18
Maxim is a registered trademark of Maxim Integrated Products, Inc.