MICROSEMI ARF300_10

ARF300
125V, 300W, 45MHz
RF POWER MOSFET
N-CHANNEL ENHANCEMENT MODE
The ARF300 is a N-CHANNEL RF power transistor in a high efficiency flangeless package.
It is designed for high voltage operation in narrow band ISM and MRI power amplifiers at
frequencies up to 45MHz. The transistor is well matched to the ARF301 P-CHANNEL RF
power transistor making the pair well suited for bridge configurations
• Specified 125 Volt, 27 MHz Characteristics:
Output Power = 300 Watts.
• High Performance
• High Voltage Breakdown and Large SOA
Gain = 15dB (Class E)
for Superior Ruggedness
Efficiency = 80%
• Low Thermal Resistance.
• RoHS Compliant
• Capacitance matched with ARF301 P-Channel
Maximum Ratings
Symbol
All Ratings: TC =25°C unless otherwise specified
Parameter
Ratings
VDSS
Drain-Source Voltage
500
VDGO
Drain-Gate Voltage
500
ID
Unit
V
Continuous Drain Current @ TC = 25°C
24
A
VGS
Gate-Source Voltage
±30
V
PD
Total Power Dissipation @ TC = 25°C
1000
W
TJ, TSTG
TL
Operating and Storage Junction Temperature Range
-55 to 175
Lead Temperature: 0.063” from Case for 10 Sec.
°C
300
Static Electrical Characteristics
Symbol
Parameter
Min
BVDSS
Drain-Source Breakdown Voltage (VGS = 0V, ID = 250 μA)
500
VDS(ON)
On State Drain Voltage 1 (ID(ON) = 12A, VGS = 10V)
Typ
Max
3
4
Zero Gate Voltage Drain Current (VDS = VDSS, VGS = 0V)
25
Zero Gate Voltage Drain Current (VDS = 50VDSS, VGS = 0, TC = 125°C)
250
IGSS
Gate-Source Leakage Current (VDS = ±30V, VDS = 0V)
±100
gfs
Forward Transconductance (VDS = 15V, ID = 12A)
IDSS
VGS(TH)
Gate Threshold Voltage (VDS = VGS, ID = 10mA)
5
8
2.5
4
Min
Typ
Unit
V
μA
nA
mhos
5
Volts
Max
Unit
Symbol
RθJC
RθJHS
Parameter
Junction to Case
0.15
Junction to Sink (High Efficiency Thermal Joint Compound and Planar Heat Sink Surface.)
0.27
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Microsemi Website - http://www.microsemi.com
°C/W
050-4948 Rev B 9-2010
Thermal Characteristics
Dynamic Characteristics
Symbol
ARF300
Parameter
Test Conditions
Min
Typ
Max
CISS
Input Capacitance
VGS = 0V
1890
2100
Coss
Output Capacitance
VDS = 50V
350
390
Crss
Reverse Transfer Capacitance
f = 1MHz
75
90
Max
Unit
pF
Functional Characteristics
Symbol
GPS
Characteristic
Common Source Amplifier Power Gain
η
Drain Efficiency
Ψ
Test Conditions
Min
Typ
f = 27MHz
15
17
dB
Idq = 0mA VDD = 125V
80
85
%
POUT = 300W
Electrical Ruggedness VSWR 10:1
No Damage
1. Pulse Test: Pulse width < 380 μS, Duty Cycle < 2%.
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
Dynamic Characteristics
60
ID, DRAIN CURRENT (AMPERES)
1.0E−8
CAPACITANCE
Ciss
1.0E−9
Coss
1.0E−10
Crss
VDS> ID (ON) x RDS (ON)MAX.
250μSEC. PULSE TEST
@ <0.5 % DUTY CYCLE
50
TJ = -55°C
40
TJ = +25°C
30
20
10
TJ = +125°C
1.0E−11
0
50
100
150
200
250
0
300
VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS)
Figure 1, Typical Capacitance vs. Drain-to-Source Voltage
2
4
6
8
10
VGS, GATE-TO-SOURCE VOLTAGE (VOLTS)
Figure 2, Typical Transfer Characteristics
Rd
s
O
n
BVdss Line
ID Max
10
100µs 1ms
Lin
e
050-4948 Rev B 9-2010
OPERATION HERE
(ON)
LIMITED BY R
DS
PD
ID, DRAIN CURRENT (AMPERES)
100
1
TC =+25°C
TJ =+175°C
SINGLE PULSE
10ms
100ms
1
10
100
1000
VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS)
Figure 3, Typical Maximum Safe Operating Area
Unit
Dynamic Characteristics
8
ID, DRAIN CURRENT (AMPERES)
7
6
5
4
3
2
1
0
-50
0
50
100
15V
50
10V
8V
40
7.5V
30
6.5V
20
6V
10
0
150
5.5V
0
5
10
15
20
25
30
VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS)
Figure 5, Typical Output Characteristics
TC, CASE TEMPERATURE (°C)
Figure 4, Typical Threshold Voltage vs Temperature
0.16
0.14
D = 0.9
0.12
0.7
0.10
0.5
0.08
0.06
0.3
0.04
0.1
0.02
SINGLE PULSE
0.05
0
10-3
10-1
10-2
0.1
1
RECTANGULAR PULSE DURATION (SECONDS)
FIGURE 6a, MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs PULSE DURATION
10-4
TJ (˚C)
TC (˚C)
0.068
0.062
0.019
Dissipated Power
(Watts)
0.0150
0.135
ZEXT
2.133
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
Figure 6b, TRANSIENT THERMAL IMPEDANCE MODEL
Table 1 - Typical Class AB Large Signal Input - Output Impedance
Freq. (MHz)
Zin (Ω)
ZOL (Ω)
2.0
18 - j 10.5
21 - j 1.4
13.56
2.66 - j 4.6
17.5 - j 7.8
27.12
1.79 - j 1.6
11.7 - j 10.4
40.68
1.68 - j 0.14
7.7 - j 10
ZIN - Gate shunted with 25Ω
Idq = 0
ZOL - Conjugate of optimum load for 300 Watts output at Vdd=125V
050-4948 Rev B 9-2010
VGS(th), THRESHOLD VOLTAGE
ARF300
60
ARF300
T11 Package Outline
1.141
0.04
0.16
Use 4-40 (M3) screws for mounting.
Torque = 4-6 in-lb (0.45- 0.7 Nm).
0.009
0.963
0.135
0.890
0.237
S
D
S
R0.125
0.507
0.257
0.980
D 0.125
ATTENTION: This is a high power device.
Special considerations must be followed in
mounting to ensure proper operation of
these devices. Incorrect mounting can
cause internal temperatures to exceed the
maximum allowable operating junction
temperature.
Refer to Microsemi Application Note #1810
before starting system design.
http://www.microsemi.com/support/
micnotes/1810.pdf
R0.050
050-4948 Rev B 9-2010
S
0.100 x 4
G
S
0.140 x 6
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262
and foreign patents. US and Foreign patents pending. All Rights Reserved.