IRF IRF6646PBF

PD - 97224A
IRF6646PbF
IRF6646TRPbF
DirectFET™ Power MOSFET ‚
Typical values (unless otherwise specified)
RoHs Compliant 
l Lead-Free (Qualified up to 260°C Reflow)
l Application Specific MOSFETs
l Ideal for High Performance Isolated Converter
Primary Switch Socket
l Optimized for Synchronous Rectification
l Low Conduction Losses
l High Cdv/dt Immunity
l Low Profile (<0.7mm)
l Dual Sided Cooling Compatible 
l Compatible with existing Surface Mount Techniques 
l
VDSS
RDS(on)
VGS
7.6mΩ@ 10V
80V max ±20V max
Qg
Qgd
Qgs2
Qrr
Qoss
Vgs(th)
12nC
2.0nC
48nC
18nC
3.8V
tot
36nC
DirectFET™ ISOMETRIC
MN
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
SQ
SX
ST
MQ
MX
MN
MT
Description
The IRF6646PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve
the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET package is compatible
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering
techniques. Application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual
sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6646PbF is optimized for primary side bridge topologies in isolated DC-DC applications, for 48V(±10%) or 36V to 60V ETSI input
voltage range systems, and is also ideal for secondary side synchronous rectification in regulated isolated DC-DC topologies. The reduced
total losses in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for
system reliability improvements, and makes this device ideal for high performance isolated DC-DC converters.
Absolute Maximum Ratings
Parameter
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
VGS
ID @ TA = 25°C
ID @ TA = 70°C
ID @ TC = 25°C
IDM
EAS
IAR
g
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
g
h
Typical RDS(on) (Ω)
0.05
ID = 7.2A
0.04
0.03
0.02
T J = 125°C
0.01
T J = 25°C
0
4
6
8
10
12
14
16
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
Notes:
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
e
e
f
VGS, Gate-to-Source Voltage (V)
VDS
Max.
Units
80
±20
12
9.6
68
96
230
7.2
V
A
mJ
A
12.0
ID= 7.2A
10.0
VDS= 40V
VDS= 16V
8.0
6.0
4.0
2.0
0.0
0
Fig 2.
10
20
30
40
QG Total Gate Charge (nC)
Typical Total Gate Charge vs. Gate-to-Source
Voltage
„ TC measured with thermocouple mounted to top (Drain) of part.
… Repetitive rating; pulse width limited by max. junction temperature.
† Starting TJ = 25°C, L = 8.8mH, RG = 25Ω, IAS = 7.2A.
1
08/24/06
IRF6646PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
VGS = 0V, ID = 250µA
V
V/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 12A i
BVDSS
Drain-to-Source Breakdown Voltage
80
–––
–––
∆ΒVDSS/∆TJ
RDS(on)
Breakdown Voltage Temp. Coefficient
–––
0.10
–––
Static Drain-to-Source On-Resistance
–––
7.6
9.5
VGS(th)
Gate Threshold Voltage
3.0
–––
4.9
V
∆VGS(th)/∆TJ
IDSS
Gate Threshold Voltage Coefficient
–––
-11
–––
mV/°C
µA
IGSS
gfs
Qg
Drain-to-Source Leakage Current
Conditions
Typ. Max. Units
–––
–––
20
–––
–––
250
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
Forward Transconductance
17
–––
–––
VDS = VGS, ID = 150µA
VDS = 80V, VGS = 0V
VDS = 64V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
S
VDS = 10V, ID = 7.2A
Total Gate Charge
–––
36
50
Qgs1
Pre-Vth Gate-to-Source Charge
–––
7.6
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
2.0
–––
Qgd
Gate-to-Drain Charge
–––
12
Qgodr
–––
14
–––
Qsw
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
14
–––
Qoss
Output Charge
–––
18
–––
nC
RG
Gate Resistance
–––
1.0
–––
Ω
td(on)
tr
Turn-On Delay Time
Rise Time
–––
–––
17
20
–––
–––
td(off)
Turn-Off Delay Time
–––
31
–––
tf
Fall Time
–––
12
–––
Ciss
Input Capacitance
–––
2060
–––
Coss
Output Capacitance
–––
480
–––
Crss
Reverse Transfer Capacitance
–––
120
–––
Coss
Output Capacitance
–––
2180
–––
ƒ = 1.0MHz
VGS = 0V, VDS = 1.0V, f=1.0MHz
Coss
Output Capacitance
–––
310
–––
VGS = 0V, VDS = 64V, f=1.0MHz
Min.
Typ. Max. Units
–––
–––
VDS = 40V
nC
VGS = 10V
ID = 7.2A
See Fig. 15
VDS = 16V, VGS = 0V
VDD = 40V, VGS = 10Vi
ID = 7.2A
ns
RG=6.2Ω
See Fig. 16 & 17
VGS = 0V
pF
VDS = 25V
Diode Characteristics
Parameter
IS
Continuous Source Current
(Body Diode)
ISM
Pulsed Source Current
A
–––
–––
Conditions
MOSFET symbol
2.5j
showing the
96
integral reverse
VSD
Diode Forward Voltage
–––
–––
1.3
V
p-n junction diode.
TJ = 25°C, IS = 7.2A, VGS = 0V i
trr
Reverse Recovery Time
–––
36
54
ns
TJ = 25°C, IF = 7.2A, VDD = 40V
Qrr
Reverse Recovery Charge
–––
48
72
nC
di/dt = 100A/µs iSee Fig. 18
(Body Diode)g
Notes:
… Repetitive rating; pulse width limited by max. junction temperature.
‡ Pulse width ≤ 400µs; duty cycle ≤ 2%.
ˆ Thermally limited and used Rθja to calculate.
2
www.irf.com
IRF6646PbF
Absolute Maximum Ratings
e
e
f
Max.
Units
2.8
1.8
89
270
-40 to + 150
W
Parameter
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
TP
TJ
TSTG
°C
Thermal Resistance
Parameter
em
km
lm
fm
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Linear Deratinig Factor
e
Typ.
Max.
Units
–––
12.5
20
–––
1.0
45
–––
–––
1.4
–––
°C/W
0.022
100
Thermal Response ( Z thJA )
D = 0.50
10
0.20
0.10
0.05
1
0.02
0.01
τJ
0.1
0.01
SINGLE PULSE
( THERMAL RESPONSE )
R1
R1
τJ
τ1
R2
R2
R3
R3
τA
τ2
τ1
τ3
τ2
τ3
Ci= τi/Ri
Ci= τi/Ri
1E-005
0.0001
0.001
0.01
τ4
τ4
τi (sec)
0.678449 0.00086
τ
17.29903 0.57756
17.56647
8.94
9.470128
106
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
0.001
1E-006
Ri (°C/W)
R4
R4
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 
Notes:
‰ Used double sided cooling , mounting pad.
Š Mounted on minimum footprint full size board with metalized
‹ Rθ is measured at TJ of approximately 90°C.
back and with small clip heatsink.
ƒ Surface mounted on 1 in. square Cu
(still air).
www.irf.com
‰ Mounted to a PCB with
small clip heatsink (still air)
Š Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
3
IRF6646PbF
100
100
BOTTOM
10
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
6.0V
10
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 150°C
Tj = 25°C
1
0.1
1
BOTTOM
6.0V
VGS
15V
10V
8.0V
7.0V
6.0V
1
10
0.1
100
1
10
100
V DS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 4. Typical Output Characteristics
Fig 5. Typical Output Characteristics
2.0
ID = 12A
VGS = 10V
VDS = 10V
≤60µs PULSE WIDTH
Typical RDS(on) (Normalized)
ID, Drain-to-Source Current (Α)
1000
100
T J = 150°C
T J = 25°C
10
T J = -40°C
1
1.5
1.0
0.5
0.1
-60 -40 -20 0
3
4
V
5
6
7
8
, Gate-to-Source Voltage (V)
Fig 6. Typical GS
Transfer Characteristics
10000
Fig 7. Normalized On-Resistance vs. Temperature
45
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
35
Typical RDS(on) ( Ω)
C, Capacitance(pF)
T J = 25°C
40
C oss = C ds + C gd
Ciss
1000
20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
Coss
Vgs = 7.0V
Vgs = 8.0V
Vgs = 10V
Vgs = 15V
30
25
20
15
10
Crss
5
0
100
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
4
10
30
50
70
90
110
ID, Drain Current (A)
Fig 9. Typical On-Resistance vs. Drain Current
www.irf.com
IRF6646PbF
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
100
10
T J = 150°C
T J = 25°C
T J = -40°C
1
100µsec
10
1msec
10msec
1
T A = 25°C
0.1
T J = 150°C
VGS = 0V
Single Pulse
0.01
0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
0.01
1.6
0.10
Fig 10. Typical Source-Drain Diode Forward Voltage
10.00
100.00
Fig11. Maximum Safe Operating Area
14
Typical VGS(th) Gate threshold Voltage (V)
6.0
12
ID, Drain Current (A)
1.00
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
10
8
6
4
2
ID
ID
ID
ID
5.0
= 150µA
= 250µA
= 1.0mA
= 1.0A
4.0
3.0
2.0
0
25
50
75
100
125
-75
150
-50
-25
0
25
50
75
100
125
150
T J , Temperature ( °C )
T A , Ambient Temperature (°C)
Fig 13. Typical Threshold Voltage vs.
Junction Temperature
Fig 12. Maximum Drain Current vs. Ambient Temperature
EAS , Single Pulse Avalanche Energy (mJ)
1000
ID
3.3A
4.0A
BOTTOM 7.2A
900
TOP
800
700
600
500
400
300
200
100
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy vs. Drain Current
www.irf.com
5
IRF6646PbF
Current Regulator
Same Type as D.U.T.
Id
Vds
50KΩ
Vgs
.2µF
12V
.3µF
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Qgs1 Qgs2
Qgd
Qgodr
Current Sampling Resistors
Fig 15a. Gate Charge Test Circuit
Fig 15b. Gate Charge Waveform
V(BR)DSS
15V
D.U.T
RG
VGS
20V
DRIVER
L
VDS
tp
+
V
- DD
IAS
A
I AS
0.01Ω
tp
Fig 16b. Unclamped Inductive Waveforms
Fig 16a. Unclamped Inductive Test Circuit
VDS
RD
VDS
90%
VGS
D.U.T.
RG
+
- VDD
10V
Pulse Width ≤ 1 µs
10%
VGS
td(on)
tr
td(off)
tf
Duty Factor ≤ 0.1 %
Fig 17a. Switching Time Test Circuit
6
Fig 17b. Switching Time Waveforms
www.irf.com
IRF6646PbF
D.U.T
Driver Gate Drive
+
ƒ
+
‚
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
-
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
DirectFET™ Substrate and PCB Layout, MN Outline
(Medium Size Can, N-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
G = GATE
D = DRAIN
S = SOURCE
D
S
D
G
D
www.irf.com
S
D
7
IRF6646PbF
DirectFET™ Outline Dimension, MN Outline
(Medium Size Can, N-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
&+/'05+105
/'64+%
+/2'4+#.
%1&'
/+0
/#:
/+0
/#:
#
$
%
&
'
(
)
*
,
-
.
/
4
2
DirectFET™ Part Marking
8
www.irf.com
IRF6646PbF
DirectFET™ Tape & Reel Dimension (Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6646TRPBF). For 1000 parts on 7"
reel, order IRF6646TR1PBF
REEL DIMENSIONS
STANDARD OPTION (QTY 4800)
TR1 OPTION (QTY 1000)
IMPERIAL
IMPERIAL
METRIC
METRIC
MIN
MAX
CODE
MIN
MAX
MIN
MIN
MAX
MAX
12.992
6.9
N.C
A
N.C
177.77 N.C
330.0
N.C
0.795
B
0.75
N.C
N.C
19.06
20.2
N.C
N.C
0.504
C
0.53
0.50
13.5
12.8
0.520
13.2
12.8
0.059
D
0.059
N.C
1.5
1.5
N.C
N.C
N.C
3.937
E
2.31
58.72
N.C
100.0
N.C
N.C
N.C
F
N.C
N.C
N.C
0.53
N.C
0.724
18.4
13.50
0.488
G
0.47
11.9
N.C
12.4
0.567
14.4
12.01
H
0.469
0.47
11.9
N.C
11.9
0.606
15.4
12.01
LOADED TAPE FEED DIRECTION
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
METRIC
IMPERIAL
MIN
MIN
MAX
MAX
0.311
0.319
7.90
8.10
0.154
0.161
3.90
4.10
0.469
11.90
0.484
12.30
0.215
5.45
0.219
5.55
0.201
0.209
5.10
5.30
0.256
6.50
0.264
6.70
0.059
1.50
N.C
N.C
0.059
1.50
0.063
1.60
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.08/06
www.irf.com
9
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/