IRF IRFS3307_06

PD - 96901C
IRFB3307
IRFS3307
IRFSL3307
Applications
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
HEXFET® Power MOSFET
D
VDSS
RDS(on) typ.
max.
ID
G
Benefits
l Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
l Fully Characterized Capacitance and Avalanche
SOA
l Enhanced body diode dV/dt and dI/dt Capability
S
GDS
GDS
D2Pak
TO-220AB
IRFB3307
75V
5.0m:
6.3m:
130A
GDS
TO-262
IRFSL3307
IRFS3307
Absolute Maximum Ratings
Symbol
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
Parameter
d
Pulsed Drain Current
Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
Mounting torque, 6-32 or M3 screw
f
dv/dt
TJ
TSTG
Avalanche Characteristics
EAS (Thermally limited)
IAR
EAR
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
c
Max.
Units
130
91
510
250
1.6
± 20
11
-55 to + 175
A
c
c
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
W
W/°C
V
V/ns
°C
300
x
x
10lb in (1.1N m)
e
270
See Fig. 14, 15, 16a, 16b
g
mJ
A
mJ
Thermal Resistance
Symbol
RθJC
RθCS
RθJA
RθJA
www.irf.com
Parameter
k
Junction-to-Case
Case-to-Sink, Flat Greased Surface , TO-220
Junction-to-Ambient, TO-220
k
Junction-to-Ambient (PCB Mount) , D2Pak
jk
Typ.
Max.
–––
0.50
–––
–––
0.61
–––
62
40
Units
°C/W
1
01/20/06
IRFB3307/IRFS3307/IRFSL3307
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
V(BR)DSS
∆V(BR)DSS/∆TJ
RDS(on)
VGS(th)
IDSS
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Gate Input Resistance
RG
Min. Typ. Max. Units
75
–––
–––
2.0
–––
–––
–––
–––
–––
––– –––
0.069 –––
5.0
6.3
–––
4.0
–––
20
––– 250
––– 200
––– -200
1.5
–––
Conditions
V VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 75A
V VDS = VGS, ID = 150µA
µA VDS = 75V, VGS = 0V
VDS = 75V, VGS = 0V, TJ = 125°C
nA VGS = 20V
VGS = -20V
Ω f = 1MHz, open drain
d
g
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
gfs
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss eff. (ER)
Coss eff. (TR)
Parameter
Min. Typ. Max. Units
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
98
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Effective Output Capacitance (Energy Related) –––
–––
Effective Output Capacitance (Time Related)
h
–––
120
35
46
26
120
51
63
5150
460
250
570
700
–––
180
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
S
nC
Conditions
VDS = 50V, ID = 75A
ID = 75A
VDS = 60V
VGS = 10V
VDD = 48V
ID = 75A
RG = 3.9Ω
VGS = 10V
VGS = 0V
VDS = 50V
ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 60V
VGS = 0V, VDS = 0V to 60V
g
ns
g
pF
i, See Fig.11
h, See Fig. 5
Diode Characteristics
Symbol
IS
Parameter
Min. Typ. Max. Units
Continuous Source Current
VSD
trr
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
ton
Reverse Recovery Current
Forward Turn-On Time
ISM
d
––– 130
–––
–––
c
510
Conditions
A
MOSFET symbol
A
showing the
integral reverse
D
G
S
p-n junction diode.
––– –––
1.3
V TJ = 25°C, IS = 75A, VGS = 0V
VR = 64V,
–––
38
57
ns TJ = 25°C
T
=
125°C
IF = 75A
–––
46
69
J
di/dt = 100A/µs
–––
65
98
nC TJ = 25°C
TJ = 125°C
–––
86
130
–––
2.8
–––
A TJ = 25°C
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
 Calculated continuous current based on maximum allowable junction
temperature. Package limitation current is 75A.
‚ Repetitive rating; pulse width limited by max. junction
temperature.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.096mH
RG = 25Ω, IAS = 75A, VGS =10V. Part not recommended for use
above this value.
„ ISD ≤ 75A, di/dt ≤ 530A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
… Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
–––
g
g
† Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS.
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application note #AN-994.
‰ Rθ is measured at TJ approximately 90°C.
www.irf.com
IRFB3307/IRFS3307/IRFSL3307
1000
1000
100
BOTTOM
10
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
100
1
4.5V
0.1
BOTTOM
4.5V
10
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 175°C
Tj = 25°C
1
0.01
0.1
1
10
100
0.1
1000
Fig 1. Typical Output Characteristics
10
100
1000
Fig 2. Typical Output Characteristics
1000
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (Α)
1
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
100
T J = 175°C
10
T J = 25°C
1
VDS = 25V
≤60µs PULSE WIDTH
0.1
ID = 75A
VGS = 10V
2.0
1.5
1.0
0.5
2
4
6
8
10
-60 -40 -20 0
Fig 4. Normalized On-Resistance vs. Temperature
Fig 3. Typical Transfer Characteristics
100000
12.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 75A
C oss = C ds + C gd
10000
Ciss
Coss
1000
20 40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance(pF)
VGS
15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
Crss
10.0
VDS= 60V
VDS= 38V
8.0
VDS= 15V
6.0
4.0
2.0
0.0
100
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com
0
20
40
60
80
100
120
140
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
3
IRFB3307/IRFS3307/IRFSL3307
10000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1000
T J = 175°C
100
T J = 25°C
10
100µsec
100
1msec
10
10msec
DC
1
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
0.1
1
1
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ID, Drain Current (A)
Limited By Package
100
80
60
40
20
0
50
75
100
125
150
175
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
140
25
100
95
90
85
80
75
70
-60 -40 -20 0
Fig 10. Drain-to-Source Breakdown Voltage
Fig 9. Maximum Drain Current vs. Case Temperature
1.4
EAS , Single Pulse Avalanche Energy (mJ)
1200
1.2
1.0
Energy (µJ)
20 40 60 80 100 120 140 160 180
T J , Temperature ( °C )
T C , Case Temperature (°C)
0.8
0.6
0.4
0.2
0.0
ID
8.6A
12A
BOTTOM 75A
TOP
1000
800
600
400
200
0
0
10
20
30
40
50
60
70
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical COSS Stored Energy
4
100
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode Forward Voltage
120
10
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
80
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
www.irf.com
IRFB3307/IRFS3307/IRFSL3307
1
Thermal Response ( Z thJC )
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
0.01
τJ
SINGLE PULSE
( THERMAL RESPONSE )
0.001
R1
R1
τJ
τ1
R2
R2
τC
τ2
τ1
Ri (°C/W) τi (sec)
0.2911 0.000484
0.3196 0.005529
τ
τ2
Ci= τi/Ri
Ci= i/Ri
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
100
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆ Tj = 150°C
and Tstart =25°C (Single Pulse)
Avalanche Current (A)
Duty Cycle = Single Pulse 0.01
0.05
10
0.10
1
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Τ j = 25°C and
Tstart = 150°C.
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
300
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long as neither Tjmax nor
Iav (max) is exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 75A
250
200
150
100
50
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
5
IRFB3307/IRFS3307/IRFSL3307
20
VGS(th) Gate threshold Voltage (V)
5.0
4.5
15
IRRM (A)
4.0
3.5
3.0
ID = 150µA
ID = 250µA
2.5
10
ID = 1.0mA
ID = 1.0A
IF = 30A
V = 64V
R
T = 25°C _____
J
TJ = 125°C ----------
5
2.0
1.5
0
-75 -50 -25
0
25
50
75 100 125 150 175 200
100 200 300 400 500 600 700 800 900 1000
T J , Temperature ( °C )
dif/dt (A/µs)
Fig 16. Threshold Voltage vs. Temperature
Fig. 17 - Typical Recovery Current vs. dif/dt
400
20
350
300
15
Qrr (nC)
IRRM (A)
250
10
200
150
IF = 45A
VR = 64V
5
I = 30A
F
V = 64V
R
TJ = 25°C _____
100
T = 25°C _____
J
T = 125°C ---------J
50
TJ = 125°C ----------
0
0
100 200 300 400 500 600 700 800 900 1000
100 200 300 400 500 600 700 800 900 1000
dif/dt (A/µs)
dif/dt (A/µs)
Fig. 19 - Typical Stored Charge vs. dif/dt
Fig. 18 - Typical Recovery Current vs. dif/dt
400
350
300
Qrr (nC)
250
200
150
IF = 45A
VR = 64V
100
T = 25°C _____
J
T = 125°C ---------J
50
0
100 200 300 400 500 600 700 800 900 1000
dif/dt (A/µs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRFB3307/IRFS3307/IRFSL3307
D.U.T
Driver Gate Drive
ƒ
-
‚
„
-
-
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
+
V
- DD
IAS
VGS
20V
tp
A
0.01Ω
I AS
Fig 21a. Unclamped Inductive Test Circuit
Fig 21b. Unclamped Inductive Waveforms
LD
VDS
VDS
90%
+
VDD -
10%
D.U.T
VGS
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
td(on)
Fig 22a. Switching Time Test Circuit
tr
td(off)
tf
Fig 22b. Switching Time Waveforms
Id
Vds
Vgs
L
VCC
DUT
0
Vgs(th)
1K
Qgs1 Qgs2
Fig 23a. Gate Charge Test Circuit
www.irf.com
Qgd
Qgodr
Fig 23b. Gate Charge Waveform
7
IRFB3307/IRFS3307/IRFSL3307
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
EXAMPLE: T HIS IS AN IRF1010
LOT CODE 1789
AS S EMBLED ON WW 19, 2000
IN T HE AS S EMBLY LINE "C"
Note: "P" in ass embly line position
indicates "Lead - Free"
INT ERNAT IONAL
RECT IFIER
LOGO
AS S EMBLY
LOT CODE
PART NUMBER
DAT E CODE
YEAR 0 = 2000
WEEK 19
LINE C
TO-220AB packages are not recommended for Surface Mount Application.
8
www.irf.com
IRFB3307/IRFS3307/IRFSL3307
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
EXAMPLE: T HIS IS AN IRL3103L
LOT CODE 1789
AS S EMBLED ON WW 19, 1997
IN T HE AS S EMBLY LINE "C"
INT ERNATIONAL
RECTIFIER
LOGO
AS S EMBLY
LOT CODE
PART NUMBER
DAT E CODE
YEAR 7 = 1997
WEEK 19
LINE C
OR
INT ERNATIONAL
RECTIFIER
LOGO
AS S EMBLY
LOT CODE
www.irf.com
PART NUMBER
DAT E CODE
P = DES IGNAT ES LEAD-FREE
PRODUCT (OPTIONAL)
YEAR 7 = 1997
WEEK 19
A = AS S EMBLY S IT E CODE
9
IRFB3307/IRFS3307/IRFSL3307
D2Pak (TO-263AB) Package Outline
Dimensions are shown in millimeters (inches)
D2Pak (TO-263AB) Part Marking Information
T HIS IS AN IRF530S WITH
LOT CODE 8024
ASS EMBLED ON WW 02, 2000
IN T HE ASS EMBLY LINE "L"
INT ERNAT IONAL
RECT IFIER
LOGO
ASS EMBLY
LOT CODE
PART NUMBER
F530S
DAT E CODE
YEAR 0 = 2000
WEEK 02
LINE L
OR
INT ERNAT IONAL
RECT IFIER
LOGO
AS S EMBLY
LOT CODE
10
PART NUMBER
F 530S
DAT E CODE
P = DES IGNAT ES LEAD - FREE
PRODUCT (OPT IONAL)
YEAR 0 = 2000
WEEK 02
A = AS S EMBLY SITE CODE
www.irf.com
IRFB3307/IRFS3307/IRFSL3307
D2Pak (TO-263AB) Tape & Reel Information
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
10.90 (.429)
10.70 (.421)
1.75 (.069)
1.25 (.049)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
60.00 (2.362)
MIN.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 01/06
www.irf.com
11
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/