CYPRESS CY22E016L

PRELIMINARY
CY22E016L
16-Kbit (2K x 8) nvSRAM
Features
Functional Description
• 25 ns, 35 ns and 45 ns Access Times
The Cypress CY22E016L is a fast static RAM with a nonvolatile element incorporated in each static memory cell. The
SRAM can be read and written an infinite number of times,
while independent, nonvolatile data resides in Nonvolatile
Elements. Data transfers from the SRAM to the Nonvolatile
Elements (the STORE operation) can take place automatically
on power down. A 68-µF or larger capacitor tied from VCAP to
ground guarantees the STORE operation, regardless of
power-down slew rate or loss of power from “hot swapping”.
Transfers from the Nonvolatile Elements to the SRAM (the
RECALL operation) take place automatically on restoration of
power. A hardware STORE may be initiated with the HSB pin.
• “Hands-off” Automatic STORE on Power Down with
external 68µF capacitor
• STORE to QuantumTrap® Nonvolatile Elements is
initiated by Hardware or Autostore®on Power-down
• RECALL to SRAM Initiated on Power-up
• Infinite READ, WRITE and RECALL Cycles
• 10 mA Typical ICC at 200 ns Cycle Time
• 1,000,000 STORE Cycles to QuantumTrap
• 100-Year Data Retention to QuantumTrap
• Single 5V Operation +10%
• Commercial, Industrial Temperature
• SOIC Package
• RoHS Compliance
Logic Block Diagram
VCC
Quantum Trap
32 X 512
A5
A8
A9
STATIC RAM
ARRAY
32 X 512
DQ 0
DQ 2
DQ 3
DQ 4
DQ 5
DQ 6
RECALL
STORE/
RECALL
CONTROL
HSB
COLUMN I/O
INPUT BUFFERS
DQ 1
POWER
CONTROL
STORE
ROW DECODER
A6
A7
VCAP
COLUMN DEC
A 0 A 1 A 2 A 3 A 4 A 10
DQ 7
OE
CE
WE
Cypress Semiconductor Corporation
Document #: 001-06727 Rev. *C
•
198 Champion Court
•
San Jose, CA 95134-1709
•
408-943-2600
Revised November 28, 2006
[+] Feedback
PRELIMINARY
CY22E016L
Pin Configurations
V CAP
1
28
V CC
NC
2
27
WE
A7
3
26
HSB
A6
4
25
A8
A5
5
24
A9
A4
6
23
NC
A3
7
22
OE
A2
Top View
8
(Not To Scale)
21
A 10
A1
9
20
CE
A0
10
19
DQ7
DQ0
11
18
DQ6
DQ1
12
17
DQ5
DQ2
13
16
DQ4
V SS
14
15
DQ3
28-SOIC
Pin Definitions
Pin Name
I/O Type
A0–A10
Input
Description
Address Inputs used to select one of the 2,048 bytes of the nvSRAM.
DQ0-DQ7 Input/Output Bidirectional Data I/O lines. Used as input or output lines depending on operation.
WE
Input
Write Enable Input, active LOW. When selected LOW, enables data on the I/O pins to be written to
the address location latched by the falling edge of CE.
CE
Input
Chip Enable Input, active LOW. When LOW, selects the chip. When HIGH, deselects the chip.
OE
Input
Output Enable, active LOW. The active LOW OE input enables the data output buffers during read
cycles. Deasserting OE HIGH causes the I/O pins to tri-state.
VSS
Ground
VCC
Ground for the device. Should be connected to ground of the system.
Power Supply Power Supply inputs to the device.
HSB
Input/Output Hardware Store Busy. When low this output indicates a Hardware Store is in progress. When pulled
low external to the chip it will initiate a nonvolatile STORE operation. A weak internal pull-up resistor
keeps this pin high if not connected. (Connection Optional)
VCAP
Power Supply Autostore® Capacitor. Supplies power to nvSRAM during power loss to store data from SRAM to
nonvolatile elements.
NC
No Connect No Connects. This pin is not connected to the die
Document #: 001-06727 Rev. *C
Page 2 of 14
[+] Feedback
PRELIMINARY
CY22E016L
28
10k Ohm
1
27
0.1U F
Bypass
26
68 UF
6v, +20%
The CY22E016L nvSRAM is made up of two functional
components paired in the same physical cell. These are a
SRAM memory cell and a nonvolatile QuantumTrap cell. The
SRAM memory cell operates as a standard fast static RAM.
Data in the SRAM can be transferred to the nonvolatile cell
(the STORE operation), or from the nonvolatile cell to SRAM
(the RECALL operation). This unique architecture allows all
cells to be stored and recalled in parallel. During the STORE
and RECALL operations SRAM READ and WRITE operations
are inhibited. The CY22E016L supports infinite reads and
writes just like a typical SRAM. In addition, it provides infinite
RECALL operations from the nonvolatile cells and up to
1 million STORE operations.
10k Ohm
Device Operation
SRAM Read
The CY22E016L performs a READ cycle whenever CE and
OE are low while WE and HSB are high. The address specified
on pins A0–10 determines which of the 2,048 data bytes will be
accessed. When the READ is initiated by an address
transition, the outputs will be valid after a delay of tAA (READ
cycle #1). If the READ is initiated by CE or OE, the outputs will
be valid at tACE or at tDOE, whichever is later (READ cycle #2).
The data outputs will repeatedly respond to address changes
within the tAA access time without the need for transitions on
any control input pins, and will remain valid until another
address change or until CE or OE is brought high, or WE or
HSB is brought low.
14
28
27
10k Ohm
1
10k Ohm
Figure 1. AutoStore® Mode
SRAM Write
26
0.1U F
Bypass
A WRITE cycle is performed whenever CE and WE are low
and HSB is high. The address inputs must be stable prior to
entering the WRITE cycle and must remain stable until either
CE or WE goes high at the end of the cycle. The data on the
common I/O pins I/O0–7 will be written into the memory if it is
valid tSD before the end of a WE controlled WRITE or before
the end of an CE controlled WRITE. It is recommended that
OE be kept high during the entire WRITE cycle to avoid data
bus contention on common I/O lines. If OE is left low, internal
circuitry will turn off the output buffers tHZWE after WE goes
low.
15
AutoStore Operation
During normal AutoStore operation, the CY22E016L will draw
current from VCC to charge a capacitor connected to the VCAP
pin. This stored charge will be used by the chip to perform a
single STORE operation. After power up, when the voltage on
the VCAP pin drops below VSWITCH, the part will automatically
disconnect the VCAP pin from VCC and initiate a STORE
operation.
Figure 1 shows the proper connection of the storage capacitor
(VCAP) for automatic store operation. A charge storage
capacitor having a capacity of between 68 µF and 220 µF
(±20%) rated at 6V should be provided.In system power mode
both VCC and VCAP are connected to the +5V power supply
without the 68-µF capacitor. In this mode the AutoStore
function of the CY22E016L will operate on the stored system
charge as power goes down. The user must, however,
guarantee that VCC does not drop below 3.6V during the
Document #: 001-06727 Rev. *C
14
15
Figure 2. System Power Mode
If an automatic STORE on power loss is not required, then VCC
can be tied to ground and +5V applied to VCAP. This is the
AutoStore Inhibit mode, in which the AutoStore function is
disabled. If the CY22E016L is operated in this configuration,
references to VCC should be changed to VCAP throughout this
data sheet. In this mode, STORE operations may be triggered
with the HSB pin. It is not permissible to change between these
three options “on the fly”.
Page 3 of 14
[+] Feedback
28
27
10k Ohm
1
10k Ohm
0.1U F
Bypass
PRELIMINARY
26
CY22E016L
be scaled by the number of devices connected to it. When any
one of the CY22E016L detects a power loss and asserts HSB,
the common HSB pin will cause all parts to request a STORE
cycle (a STORE will take place in those CY22E016L that have
been written since the last nonvolatile cycle).
During any STORE operation, regardless of how it was
initiated, the CY22E016L will continue to drive the HSB pin
low, releasing it only when the STORE is complete. Upon
completion of the STORE operation the CY22E016L will
remain disabled until the HSB pin returns high.
If HSB is not used, it should be left unconnected.
Hardware RECALL (Power-up)
During power-up, or after any low-power condition (VCC <
VSWITCH), an internal RECALL request will be latched. When
VCC once again exceeds the sense voltage of VSWITCH, a
RECALL cycle will automatically be initiated and will take
tHRECALL to complete.
Data Protection
14
15
Figure 3. AutoStore Inhibit Mode
In order to prevent unneeded STORE operations, automatic
STOREs as well as those initiated by externally driving HSB
low will be ignored unless at least one WRITE operation has
taken place since the most recent STORE or RECALL cycle.
An optional pull-up resistor is shown connected to HSB. This
can be used to signal the system that the AutoStore cycle is in
progress.
Hardware STORE (HSB) Operation
The CY22E016L provides the HSB pin for controlling and
acknowledging the STORE operations. The HSB pin can be
used to request a hardware STORE cycle. When the HSB pin
is driven low, the CY22E016L will conditionally initiate a
STORE operation after tDELAY. An actual STORE cycle will
only begin if a WRITE to the SRAM took place since the last
STORE or RECALL cycle. The HSB pin also acts as an open
drain driver that is internally driven low to indicate a busy
condition while the STORE (initiated by any means) is in
progress.
SRAM READ and WRITE operations that are in progress
when HSB is driven low by any means are given time to
complete before the STORE operation is initiated. After HSB
goes low, the CY22E016L will continue SRAM operations for
tDELAY. During tDELAY, multiple SRAM READ operations may
take place. If a WRITE is in progress when HSB is pulled low
it will be allowed a time, tDELAY, to complete. However, any
SRAM WRITE cycles requested after HSB goes low will be
inhibited until HSB returns high.
The HSB pin can be used to synchronize multiple CY22E016L
while using a single larger capacitor. To operate in this mode
the HSB pin should be connected together to the HSB pins
from the other CY22E016L. An external pull-up resistor to +5V
is required since HSB acts as an open-drain pull-down. The
VCAP pins from the other CY22E016L parts can be tied
together and share a single capacitor. The capacitor size must
Document #: 001-06727 Rev. *C
The CY22E016L protects data from corruption during
low-voltage conditions by inhibiting all externally initiated
STORE and WRITE operations. The low voltage condition is
detected when VCC < VSWITCH. If the CY22E016L is in a
WRITE mode (both CE and WE low) at power-up, after a
RECALL, or after a STORE, the WRITE will be inhibited until
a negative transition on CE or WE is detected. This protects
against inadvertent writes during power-up or brown-out
conditions.
Noise Considerations
The CY22E016L is a high-speed memory and so must have a
high-frequency bypass capacitor of approximately 0.1 µF
connected between VCC and VSS, using leads and traces that
are as short as possible. As with all high-speed CMOS ICs,
careful routing of power, ground, and signals will reduce circuit
noise.
Low Average Active Power
CMOS technology provides the CY22E016L the benefit of
drawing significantly less current when it is cycled at times
longer than 50 ns. Figure 4 shows the relationship between
ICC and READ/WRITE cycle time. Worst-case current
consumption is shown for both CMOS and TTL input levels
(commercial temperature range, VCC = 5.5V, 100% duty cycle
on chip enable). Only standby current is drawn when the chip
is disabled. The overall average current drawn by the
CY22E016L depends on the following items:
1. The duty cycle of chip enable.
2. The overall cycle rate for accesses.
3. The ratio of READs to WRITEs.
4. CMOS vs. TTL Input Levels.
5. The operating temperature.
6. The VCC level.
7. I/O loading.
Page 4 of 14
[+] Feedback
PRELIMINARY
Preventing STOREs
The STORE function can be disabled on the fly by holding HSB
high with a driver capable of sourcing 30 mA at a VOH of at
least 2.2V, as it will have to overpower the internal pull-down
device that drives HSB low for 20 ns at the onset of a STORE.
CY22E016L
When the CY22E016L is connected for AutoStore operation
(system VCC connected to VCC and a 68 µF capacitor on VCAP)
and VCC crosses VSWITCH on the way down, the CY22E016L
will attempt to pull HSB low; if HSB doesn’t actually get below
VIL, the part will stop trying to pull HSB low and abort the
STORE attempt.
Table 1. Hardware Mode Selection
CE
WE
HSB
A10–A0
Mode
I/O
Power
H
X
H
X
Not Selected
Output High-Z
Standby
L
H
H
X
Read SRAM
Output Data
Active
L
L
H
X
Write SRAM
Input Data
Active
X
X
L
X
Non-Volatile
STORE
Output High-Z
ICC2
Figure 4. Current vs. Cycle Time (READ)
Document #: 001-06727 Rev. *C
Figure 5. Current vs. Cycle Time (WRITE)
Page 5 of 14
[+] Feedback
PRELIMINARY
Maximum Ratings
CY22E016L
Package Power Dissipation
Capability (TA = 25°C) ................................................... 1.0W
(Above which the useful life may be impaired. For user guidelines, not tested.)
Surface Mount Lead Soldering
Temperature (3 Seconds) .......................................... +260°C
Storage Temperature ................................. –65°C to +150°C
Output Short Circuit Current [1] .................................... 15 mA
Ambient Temperature with
Power Applied............................................. –55°C to +125°C
Static Discharge Voltage.......................................... > 2001V
(per MIL-STD-883, Method 3015)
Supply Voltage on VCC Relative to GND.......... –0.5V to 7.0V
Latch-up Current.................................................... > 200 mA
Voltage Applied to Outputs
in High-Z State .......................................–0.5V to VCC + 0.5V
Operating Range
Input Voltage ............................................ –0.5V to Vcc+0.5V
Transient Voltage (<20 ns) on
Any Pin to Ground Potential...................–0.5V to VCC + 2.0V
Range
Commercial
Industrial
Ambient Temperature
VCC
0°C to +70°C
4.5V to 5.5V
-40°C to +85°C
DC Electrical Characteristics Over the Operating Range (VCC = 4.5V to 5.5V) [2]
Parameter
ICC1
Description
Test Conditions
Average VCC Current
Min.
tRC = 25 ns
Commercial
tRC = 35 ns
tRC = 45 ns
Dependent on output loading and cycle rate.
Industrial
Values obtained without output loads. IOUT = 0mA.
Max.
Unit
85
75
65
mA
mA
mA
75
mA
ICC2
Average VCC Current
during STORE
All Inputs Don’t Care, VCC = Max.
Average current for duration tSTORE
3
mA
ICC3
Average VCC Current at WE > (VCC – 0.2). All other inputs cycling.
tAVAV = 200 ns, 5V, 25°C Dependent on output loading and cycle rate. Values obtained
without output loads.
typical
10
mA
ICC4
Average VCAP Current All Inputs Don’t Care, VCC = Max.
during AutoStore Cycle Average current for duration tSTORE
2
mA
ISB
VCC Standby Current
2.5
mA
CE > (VCC – 0.2). All others VIN < 0.2V or > (VCC – 0.2V).
Standby current level after nonvolatile cycle is complete.
Inputs are static. f = 0MHz.
IILK
Input Leakage Current VCC = Max., VSS < VIN < VCC
-1
+1
µA
IOLK
Off-State Output
Leakage Current
-5
+5
µA
VIH
Input HIGH Voltage
2.2
VCC + 0.5
V
VIL
Input LOW Voltage
VSS – 0.5
0.8
V
VOH
Output HIGH Voltage
IOUT = –4 mA except HSB
VOL
Output LOW Voltage
IOUT = 8 mA except HSB
0.4
V
VBL
Logic “0” on HSB
IOUT = 3 mA
0.4
V
VCC = Max., VSS < VIN < VCC,
CE or OE > VIH
2.4
V
Capacitance [3]
Parameter
Description
CIN
Input Capacitance
COUT
Output Capacitance
Test Conditions
TA = 25°C, f = 1 MHz,
VCC = 0 to 3.0 V
Max.
Unit
8
pF
7
pF
Notes:
1. Outputs shorted for no more than one second. No more than one output shorted at a time.
2. Typical conditions for the Active Current shown on the front page of the data sheet are average values at 25°C (room temperature), and VCC = 5V. Not 100% tested.
3. These parameters are guaranteed but not tested.
Document #: 001-06727 Rev. *C
Page 6 of 14
[+] Feedback
PRELIMINARY
CY22E016L
Thermal Resistance [3]
Parameter
ΘJA
ΘJC
28-SOIC
Unit
Thermal Resistance
Test conditions follow standard test methods and proce(Junction to Ambient) dures for measuring thermal impedance, per EIA / JESD51.
Description
Test Conditions
TBD
°C/W
Thermal Resistance
(Junction to Case)
TBD
°C/W
AC Test Loads
R1 480Ω
5.0V
OUTPUT
30 pF
R2
255Ω
AC Test Conditions
Input Pulse Levels.................................................. 0 V to 3 V
Input Rise and Fall Times (10% - 90%)........................ <5 ns
Input and Output Timing Reference Levels....................1.5 V
Document #: 001-06727 Rev. *C
Page 7 of 14
[+] Feedback
PRELIMINARY
CY22E016L
AC Switching Characteristics
Parameter
25ns part
Cypress
Alt.
Parameter Parameter
Description
Min.
Max.
35ns part
Min.
45ns part
Max.
Min.
Max.
Unit
45
ns
SRAM Read Cycle
tACS
Chip Enable Access Time
tRC
[4]
tRC
Read Cycle Time
tAA
[5]
tAA
Address Access Time
tDOE
tOE
Output Enable to Data Valid
tOHA [5]
tOH
Output Hold After Address Change
5
5
5
ns
tLZCE [6]
tLZ
Chip Enable to Output Active
5
5
5
ns
tHZCE
[6]
tHZ
Chip Disable to Output Inactive
tLZOE
[6]
tOLZ
Output Enable to Output Active
tHZOE [6]
tOHZ
Output Disable to Output Inactive
tPU [3]
tPA
Chip Enable to Power Active
[ 3]
tPS
Chip Disable to Power Standby
tACE
tPD
25
25
35
35
25
35
10
ns
20
13
0
ns
15
ns
15
ns
0
10
0
ns
45
15
10
0
45
13
0
ns
0
25
35
ns
45
ns
SRAM Write Cycle
tWC
tWC
Write Cycle Time
25
35
45
ns
tPWE
tWP
Write Pulse Width
20
25
30
ns
tSCE
tCW
Chip Enable To End of Write
20
25
30
ns
tSD
tDW
Data Set-Up to End of Write
10
12
15
ns
tHD
tDH
Data Hold After End of Write
0
0
0
ns
tAW
tAW
Address Set-Up to End of Write
20
25
30
ns
tSA
tAS
Address Set-Up to Start of Write
0
0
0
ns
tHA
tWR
Address Hold After End of Write
0
tHZWE [6,7]
tWZ
Write Enable to Output Disable
tOW
Output Active after End of Write
tLZWE
[6]
0
0
10
5
13
ns
14
5
ns
5
ns
AutoStore/Power-Up RECALL
CY22E016L
Parameter
tHRECALL [8]
tSTORE
[9]
Description
Min.
Power-Up RECALL Duration
STORE Cycle Duration
tDELAY
Time allowed to complete SRAM Cycle
VSWITCH
Low Voltage Trigger Level
VRESET
Low Voltage Reset Level
Max.
Unit
550
µs
10
ms
µs
1
4.0
4.5
V
3.6
V
Notes:
4. WE must be HIGH during SRAM Read Cycles.
5. Device is continuously selected with CE and OE both Low.
6. Measured ±200 mV from steady state output voltage.
7. If WE is Low when CE goes Low, the outputs remain in the high-impedance state.
8. tHRECALL starts from the time VCC rises above VSWITCH.
9. If an SRAM Write has not taken place since the last non-volatile cycle, no STORE will take place.
Document #: 001-06727 Rev. *C
Page 8 of 14
[+] Feedback
PRELIMINARY
CY22E016L
Hardware STORE Cycle
CY22E016L
Parameter
tSTORE [6]
tDELAY
Description
Min
Max
Unit
10
ms
STORE Cycle Duration
[10]
Time allowed to complete SRAM Cycle
tRESTORE [11]
Hardware STORE High to Inhibit Off
tHLHX
Hardware STORE Pulse Width
tHLBL
Hardware STORE Low to STORE Busy
µs
1
700
15
ns
ns
300
ns
Switching Waveforms
tRC
ADDRESS
t AA
t OH
DQ (DATA OUT)
DATA VALID
Figure 6. SRAM Read Cycle #1: Address Controlled [4, 5, 12]
tRC
ADDRESS
tLZCE
CE
tACE
tPD
tHZCE
OE
tLZOE
DQ (DATA OUT)
t PU
ICC
tHZOE
tDOE
DATA VALID
ACTIVE
STANDBY
Figure 7. SRAM Read Cycle #2: CE Controlled [4,12]
Notes:
10. Read and Write cycles in progress before HSB are given this amount of time to complete.
11. tRESTOREis only applicable after tSTORE is complete.
12. HSB must remain HIGH during READ and WRITE cycles.
Document #: 001-06727 Rev. *C
Page 9 of 14
[+] Feedback
PRELIMINARY
CY22E016L
Switching Waveforms (continued)
tWC
ADDRESS
tHA
tSCE
CE
tAW
tSA
tPWE
WE
tSD
tHD
DATA VALID
DATA IN
tHZWE
DATA OUT
tLZWE
HIGH IMPEDANCE
PREVIOUS DATA
Figure 8. SRAM Write Cycle #1: WE Controlled [12,13]
tWC
ADDRESS
CE
tHA
tSCE
tSA
tAW
tPWE
WE
tSD
DATA IN
tHD
DATA VALID
HIGH IMPEDANCE
DATA OUT
Figure 9. SRAM Write Cycle #2: CE Controlled
Note:
13. CE or WE must be > VIH during address transitions.
Document #: 001-06727 Rev. *C
Page 10 of 14
[+] Feedback
PRELIMINARY
CY22E016L
Switching Waveforms (continued)
VCC
VSWITCH
VRESET
AutoStore
POWER-UP RECALL
tRESTORE
tVSBL
tSTORE
HSB
tDELAY
DQ (DATA OUT)
POWER UP
RECALL
BROWN OUT
NO STROKE
BROWN OUT
AutoStore TM
BROWN OUT
AutoStore TM
NO RECALL
(VCC DID NOT GO
BELOW VRESET)
NO RECALL
(VCC DID NOT GO
BELOW VRESET)
RECALL WHEN
VCC RETURNS
ABOVE VSWITCH
(NO SRAM WRITES)
Figure 10. AutoStore/Power-Up RECALL
Document #: 001-06727 Rev. *C
Page 11 of 14
[+] Feedback
PRELIMINARY
CY22E016L
Switching Waveforms (continued)
a
a
tHLHX
HSB (IN)
tSTORE
HSB (OUT)
a
a
tHLBL
HIGH IMPEDANCE
HIGH IMPEDANCE
a
a
t DELAY
DATA VALID
DQ (DATA OUT)
DATA VALID
Figure 11. Hardware STORE Cycle
PART NUMBERING NOMENCLATURE
CY 22 E 016 L- SZ 25 X C T
Option:
T - Tape & Reel
Blank - Std.
Temperature:
C - Commercial (0 to 70°C)
I - Industrial (-40°C to 85°C)
Speed:
25 - 25 ns
35 - 35 ns
45 - 45 ns
Pb-Free
Package:
SZ - 28 SOIC
Data Bus:
L - x8
Density:
016 - 16 Kb
Voltage:
E - 5.0V
NVSRAM
22 - AutoStore + Hardware Store
Cypress
Document #: 001-06727 Rev. *C
Page 12 of 14
[+] Feedback
PRELIMINARY
CY22E016L
Ordering Information
Speed
(ns)
Ordering Code
Package
Name
25
CY22E016L-SZ25XCT
51-85026
35
CY22E016L-SZ35XCT
35
CY22E016L-SZ35XIT
45
CY22E016L-SZ45XCT
51-85026
Operating
Range
Package Type
28-pin SOIC
Commercial
51-85026
28-pin SOIC
Commercial
51-85026
28-pin SOIC
Industrial
28-pin SOIC
Commercial
All of the above mentioned parts are of “Lead-Free” type.
Package Diagrams
28-pin (300-Mil) Molded SOIC (51-85026)
NOTE :
PIN 1 ID
1. JEDEC STD REF MO-119
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH,BUT
14
DOES INCLUDE MOLD MISMATCH AND ARE MEASURED AT THE MOLD PARTING LINE.
1
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.010 in (0.254 mm) PER SIDE
3. DIMENSIONS IN INCHES
0.291[7.39]
MIN.
MAX.
4. PACKAGE WEIGHT 0.85gms
0.300[7.62]
0.394[10.01]
*
0.419[10.64]
15
28
PART #
S28.3 STANDARD PKG.
SZ28.3 LEAD FREE PKG.
0.026[0.66]
0.032[0.81]
SEATING PLANE
0.697[17.70]
0.713[18.11]
0.092[2.33]
0.105[2.67]
0.004[0.10]
0.050[1.27]
0.013[0.33]
0.004[0.10]
0.019[0.48]
0.0118[0.30]
*
0.015[0.38]
0.050[1.27]
0.0091[0.23]
0.0125[3.17]
*
TYP.
51-85026-*D
AutoStore and QuantumTrap are registered trademarks of Simtek Corporation.All products and company names mentioned in
this document are the trademarks of their respective holders.
Document #: 001-06727 Rev. *C
Page 13 of 14
© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
[+] Feedback
PRELIMINARY
CY22E016L
Document History Page
Document Title: CY22E016L 16-Kbit (2K x 8) nvSRAM
Document Number: 001-06727
REV.
ECN NO.
Issue
Date
Orig. of
Change
**
427789
See ECN
TUP
Description of Change
New Data Sheet
*A
437321
See ECN
TUP
Show Data Sheet on external Web
*B
472053
See ECN
TUP
Updated Part Numbering Nomenclatue and Ordering Information
*C
503290
See ECN
PCI
Converted from Advance to Preliminary
Changed the term “Unlimited” to “Infinite”
Removed Industrial Grade mention
Corrected VIL min. spec from (VCC - 0.5) to (VSS - 0.5)
Updated Part Nomenclature Table and Ordering InformationTable
Document #: 001-06727 Rev. *C
Page 14 of 14
[+] Feedback