Data Sheet

[AK7601A]
AK7601A
High Feature Digital Audio Processor with SRC
GENERAL DESCRIPTION
AK7601A is a high feature audio processor with audio CODEC (3ch ADC, 6ch DAC) and delay line
memory operates 5.0V single power supply. The analog inputs support quasi-differential/single-ended
with 4:1 stereo selector in front of 2-channeled 97dB ADC, and monaural ADC for guidance sound. The
digital inputs supports 3:1 input selector with asynchronous Sample Rate Converter (SRC) for digital
source such as DVD, Blu-ray, digital broadcasting, etc. The high performance 6-channeled DAC
integrates full-range digital volume control and achieves 102dB with single end outputs. The delay line
memory covers 36ms in total. Time alignment of 6m or less is possible since the delay line memory can
store for 18ms data for both left and right channels. The AK7601A can achieve high performance car
audio system easily by supporting two stereo 7-band EQ and time alignment functions.
FEATURES
1. 2ch 24bit ADC
- Quasi-Differential/Single-ended inputs with 4:1 Stereo Selector
- S/(N+D): 90dB
- DR, S/N: 97dB
- Digital HPF for cancelling DC offset
2. 1ch 24bit ADC for Monaural Audio Input
- Single-ended input
- S/(N+D): 90dB
- DR, S/N: 97dB
- Digital HPF for cancelling DC offset
3. 6ch 24bit DAC
- Single-ended output
- S/(N+D): 90dB
- DR, S/N: 102dB
4. Asynchronous Sample Rate Converter(SRC) for Digital Input
- 3:1 Input Selector
- Input Sampling Rate: 8kHz  96kHz
- Data Format: MSB justified, LSB justified, I2S compatible (slave mode only)
5. Digital Processing
- Two Stereo 7Band EQ (Second-order IIR-filter setting is also available)
- Digital De-emphasis Filter
- Adjustable Delay Memory Control
Maximum Delay Time:
Lch 18ms, Rch 18ms (for 1 stereo input / 3 stereo outputs)
Delay Resolution: 1/fs
- X’Over filter:
Front L, Front R: 2nd order IIR Filter x 3 stages
Rear L, Rear R, Subwoofer L, Subwoofer R: 2nd order IIR Filter x 2 stages
- Spectrum analyzer: Variable 4-Band
- Soft Mute
- Zero Detect Function
6. Smooth Volume
7. Master Clock
- Master Mode: 22.5792MHz
8. P Interface: I2C Bus (Ver 1.0, 400kHz mode)
MS1446-E-01
2015/05
-1-
[AK7601A]
9. Power Supply
- Analog: AVDD = 4.5  5.5V
- Digital: DVDD = 3.0  5.5V
10. Power Consumption: 80mA
11. Ta = - 40  85°C
12. Package: 48LQFP(0.5mm pitch)
■ Block Diagram
SDTO1/SDTO3
2ch
DAC
2ch
DAC
2ch
DAC
Delay
Control
14Band EQ
nd
(2 IIR x 14)
nd
2 IIR x 2
x2ch
AOUT2L
AOUT2R
AOUT3L
AOUT3R
D-Vol
Function
Switch
2ch ADC
nd
2 IIR x 2
x2ch
DZF
AOUT1L
AOUT1R
O
D-Vol
nd
2 IIR x 3
x2ch
D-Vol
AINL1
GNDIN1
AINR1
AINL2
GNDIN2
AINR2
AINL3
AINR3
AINL4
AINR4
D-Vol
Switch
1ch ADC
MONOIN
SDTO2/SDTI4
IBICK1
1 IBICK2
IBICK3
2ch SRC
OBICK
OLRCK
ILRCK1
1ILRCK2
ILRCK3
VSS1
PDN
2
SDTI1
1 SDTI2
SDTI3
AVDD
MCKO
MUTEN
4Band Spectrum
Analyser Filter
nd
st
(2 IIR x 1 IIR) x 4
VSS2 VCOM VREFH REF18 VSS3
DVDD
VSS4
IC
Interface
SDA
X’tal
Oscillator
XTI
SCL
XTO
CLKMODE
Figure 1. Block Diagram
MS1446-E-01
2015/05
-2-
[AK7601A]
■ Ordering Guide
-40  +85C
48pin LQFP(0.5mm pitch)
Evaluation board for AK7601A
AK7601AVQ
AKD7601A
XTO
XTI
ILRCK1
ILRCK2
ILRCK3
IBICK1
IBICK2
IBICK3
SDTI1
SDTI2
SDTI3
DVDD
36
35
34
33
32
31
30
29
28
27
26
25
■ Pin Layout
MUTEN
37
24
VSS2
VSS3
38
23
SDTO1/SDTO3
CLKMODE
39
22
SDTO2/SDTI4
REF18
40
21
OLRCK
VSS4
41
20
OBICK
MONOIN
42
19
MCKO
AINL1
43
18
SCL
17
SDA
AK7601AVQ
Top View
9
10
11
12
AOUT1R
AOUT2L
AOUT2R
AOUT3L
AOUT1L
13
8
48
VREFH
AINR2
7
AOUT3R
VSS1
14
6
47
AVDD
GNDIN2
5
DZF
VCOM
15
4
46
AINR4
AINL2
3
PDN
AINL4
16
2
45
AINR3
AINR1
1
44
AINL3
GNDIN1
Figure 2. Pin Layout
MS1446-E-01
2015/05
-3-
[AK7601A]
PIN FUNCTION
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Pin Name
AINL3
AINR3
AINL4
AINR4
VCOM
AVDD
VSS1
VREFH
AOUT1L
AOUT1R
AOUT2L
AOUT2R
AOUT3L
AOUT3R
DZF
I/O
I
I
I
I
O
O
O
O
O
O
O
O
16
PDN
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
SDA
SCL
MCKO
OBICK
OLRCK
VSS2
DVDD
SDTI3
SDTI2
SDTI1
IBICK3
IBICK2
IBICK1
ILRCK3
ILRCK2
ILRCK1
XTI
XTO
I/O
I
O
O
O
I/O
O
I
I
I
I
I
I
I
I
I
I
O
37
MUTEN
I
38
VSS3(DVSS)
-
39
CLKMODE
I
40
41
42
43
44
45
46
47
48
REF18
VSS4
MONOIN
AINL1
GNDIN1
AINR1
AINL2
GNDIN2
AINR2
O
I
I
I
I
I
I
I
SDTO2/SDTI4
SDTO1/SDTO3
I
Function
Lch Single-ended Input 3 Pin
Rch Single-ended Input 3 Pin
Lch Single-ended Input 4 Pin
Rch Single-ended Input 4 Pin
VCOM pin
Analog Power Supply Pin 4.5~5.5V
Ground Pin, 0V
Positive Voltage Reference Input Pin, AVDD
DAC1 Lch Output pin.
DAC1 Rch Output pin
DAC2 Lch Output pin
DAC2 Rch Output pin
DAC3 Lch Output pin
DAC3 Rch Output pin
Zero detect pin
Power-Down & Reset Pin
When “L”, the AK7601A is powered-down and the control registers are reset to default
state.
Control Data Input Pin : SDA (I2C Bus) (Note 2)
Control Data Clock Pin : SCL (I2C Bus)
Master Clock Output Pin
Output Audio Serial Data Clock Pin
Output Channel Clock Pin
Audio Serial Data Input 4 / Output 2 Pin (Note 3)
Audio Serial Data Output 1/3 Pin
Ground Pin, 0V
Digital Power Supply 1 Pin, 3.0 ~5.5V
Audio Serial Data Input 1 Pin
Audio Serial Data Input 2 Pin
Audio Serial Data Input 3 Pin
Input Audio Serial Data Clock Pin 3 Pin
Input Audio Serial Data Clock Pin 2 Pin
Input Audio Serial Data Clock Pin 1 Pin
Input Channel Clock 3 Pin
Input Channel Clock 2 Pin
Input Channel Clock 1 Pin
X’tal Input Pin
X’tal Output Pin
AK7601A Mute Pin
L: Mute
H: Normal Operation
Ground Pin 0V
CLK Mode Pin (X’tal/External CLK select pin)
L: X’tal Mode
H External CLK Input Mode
The PDN pin must set “H” → “L” → “H” before changing this pin “L” → “H”.
Internal regulator 1.8V Output pin
Ground Pin, 0V
Monaural ADC Input Pin
Lch Differential Input 1 Pin
Input Ground 1 Pin
Rch Differential Input 1 Pin
Lch Differential Input 2 Pin
Input Ground 2 Pin
Rch Differential Input 2 Pin
MS1446-E-01
2015/05
-4-
[AK7601A]
Note 1. All digital input pins must not be allowed to float.
Note 2. Input pin when powered-down.
Note 3. Output pin when powered-down
■Handling of Unused Pin
The unused I/O pins should be processed appropriately as below
Classification
Analog
Digital
Pin Name
AINL1, GNDIN1, AINR1, AINL2, GNDIN2, AINR2,
AINL3, AINR3, AINL4, AINR4, MONOIN
AOUT1L, AOUT1R, AOUT2L, AOUT2R, AOUT3L,
AOUT3R
IBICK1, IBICK2, IBICK3, ILRCK1, ILRCK2,
ILRCK3, SDTI1, SDTI2, SDTI3, SDTI4
OBICK, OLRCK, MCKO, SDTO1/SDTO3, SDTO2,
XTO
MS1446-E-01
Setting
Open
Open
Connect to VSS2
Open
2015/05
-5-
[AK7601A]
ABSOLUTE MAXMUM RATING
(VSS1=VSS2=VSS3=VSS4=0V; Note 4)
Parameter
Symbol
min
max
Unit
Power Supplies
Analog
AVDD
-0.3
6.0
V
Digital
DVDD
-0.3
6.0
V
Input Current (any pins except for supplies)
IIN
mA
10
Analog Input Voltage (Note 5)
VINA
-0.3
AVDD+0.3
V
Digital Input Voltage (Note 6)
VIND
-0.3
DVDD+0.3
V
Ambient Temperature (power applied)
Ta
-40
85
C
Storage Temperature
Tstg
-65
150
C
Note 4. All indicated voltages are with respect to ground VSS1, VSS2, VSS3 and VSS4 must be connected to the analog
ground plane.
Note 5. Analog input pins are AINL1-4, AINR1-4, GNDIN1-2 and MONOIN.
Note 6. Digital input pins are SDTI1-4, ILRCK1-3, IBICK1-3, MUTEN, SDA, and SCL.
WARNING: Operating at or beyond these limits may result in permanent damage to the device. Normal operation is not
guaranteed at these critical conditions.
RECOMMENDED OPERATING CONDITIONS
(VSS1=VSS2=VSS3=VSS4 =0V; Note 4)
Parameter
Symbol
min
typ
max
Unit
Power Supplies Analog
AVDD
4.5
5.0
5.5
V
(Note 7)
Digital
DVDD
3.0
5.0
AVDD
V
Note 7. AVDD must be supplied after DVDD is ON. The PDN pin must be “L” until all power supplies are ON, then put
the PDN pin to “H”. All power supplies of the AK7601A are must be ON. Do not turn any power supply off
(means the same voltage as ground or floating) independently. When using the AK7601A with I²C bus, the
power supply of the AK7601A must not be turned off unless the power supplies of the surrounding device are
turned off.
* AKM assumes no responsibility for the usage beyond the conditions in this datasheet.
MS1446-E-01
2015/05
-6-
[AK7601A]
ANALOG CHARACTERISTICS
(Ta=25C; AVDD=5.0V, DVDD =5.0V; VSS1=VSS2=VSS3=VSS4=0V; VREFH=AVDD, fs=44.1kHz; Signal
Frequency=1kHz; 24bit Data; Measurement Frequency=20Hz20kHz at; unless otherwise specified)
Parameter
min
typ
max
Unit
ADC Analog Input Characteristics (Pseudo differential inputs)
Resolution
24
Bits
S/(N+D)
BW=20kHz
-1dBFS
83
90
dB
-60dBFS
35
DR
(-60dBFS with A-weighted)
90
97
dB
S/N
(A-weighted)
90
97
dB
Interchannel Isolation
90
110
dB
Interchannel Gain Mismatch
0
0.5
dB
Gain Drift
20
ppm/C
Input Voltage
AIN=0.65xVREFH
3.09
3.25
3.41
Vpp
Input Resistance
AINL1, AINR1, AINL2, AINR2
22
45
k
GNDIN1, GNDIN2
22
90
k
Power Supply Rejection
(Note 8)
55
dB
Common Mode Rejection Ratio (CMRR)
(Note 9)
40
dB
ADC Analog Input Characteristics (Single-ended inputs)
Resolution
24
Bits
S/(N+D)
BW=20kHz
-1dBFS
83
90
dB
-60dBFS
35
DR
(-60dBFS with A-weighted)
90
97
dB
S/N
(A-weighted)
90
97
dB
Interchannel Isolation
90
110
dB
Interchannel Gain Mismatch
0
0.5
dB
Gain Drift
20
ppm/C
Input Voltage
AIN=0.65xVREFH
3.09
3.25
3.41
Vpp
Input Resistance (AINL3, AINR3, AINL4, AINR4)
22
45
k
Power Supply Rejection
(Note 8)
55
dB
ADC Analog Input Characteristics (Monaural input)
Resolution
24
Bits
S/(N+D)
BW=20kHz
-1dBFS
83
90
dB
-60dBFS
35
DR
(-60dBFS with A-weighted)
90
97
dB
S/N
(A-weighted)
90
97
dB
Gain Drift
20
ppm/C
Input Voltage
AIN=0.65xVREFH
3.09
3.25
3.41
Vpp
Input Resistance
22
45
k
Power Supply Rejection
(Note 8)
55
dB
DAC Analog Output Characteristics (single outputs)
Resolution
24
Bits
S/(N+D)
BW=20kHz
0dBFS
83
90
dB
-60dBFS
39
DR
(-60dBFS with A-weighted)
93
102
dB
S/N
(A-weighted)
93
102
dB
Interchannel Isolation
90
110
dB
Interchannel Gain Mismatch
0
0.5
dB
Gain Drift
20
ppm/C
Output Voltage
AOUT=0.65xVREFH
3.09
3.25
3.41
Vpp
Load Resistance
(AC Load)
5
k
Load Capacitance
30
pF
Power Supply Rejection
(Note 8)
55
dB
MS1446-E-01
2015/05
-7-
[AK7601A]
ADC to DAC Characteristics (single outputs)
Resolution
S/(N+D)
BW=20kHz
24
Bits
87
dB
34
DR
(-60dBFS with A-weighted)
87
96
dB
S/N
(A-weighted)
87
96
dB
Note 8. PSR is applied to AVDD and DVDD with 1kHz, 50mVpp. This is the value of convoluted sinusoidal voltage of
1kHz and 50mVpp when the VREFH pin is held +5V.
Note 9. This is a value when the frequency range is 20Hz ~ 20kHz assuming an external capacitor is 10uF±30% and
GDNIN1/2 amplitude is 100mVpp.
-1dBFS
-60dBFS
80
SRC CHARACTERISTICS
(Ta=25C; AVDD=5.0V, DVDD =5.0V; VSS1=VSS2=VSS3=VSS4=0V; VREFH=AVDD, fs=44.1kHz; Signal
Frequency=1kHz; 24bit Data; Measurement Frequency=20Hz20kHz; unless otherwise specified)
Parameter
Symbol
min
typ
max
SRC Characteristics:
Resolution
24
Input Sample Rate
FSI
8
96
Output Sample Rate
FSO
44.1
THD+N (Input = 1kHz, 0dBFS, Note 10) FSI =48kHz
-130
-100
Dynamic Range (Input = 1kHz, 60dBFS, Note 10)
FSI = 48kHz
Dynamic Range (Input = 1kHz, -60dBFS, A-weighted, Note 10)
FSI = 48kHz
Ratio between Input and Output Sample Rate
Note 10. Measured by Audio Precision System Two Cascade.
136
Bits
kHz
kHz
dB
120
dB
44.1/8
dB
-
140
FSO/FSI
44.1/96
Parameter
min
typ
max
Power Supplies
Power Supply Current
Normal Operation (PDN pin = “H”)
AVDD
54
73
DVDD
11
15
Power-down mode (PDN pin = “L”)
AVDD+DVDD
(Note 12)
10
100
Note 11. Power supply current values are for when ADC, DAC and SRC are in operation.
Note 12. When the AK7601A is not in operation. All digital input pins including clock pins are held to VSS2.
MS1446-E-01
Unit
Unit
mA
mA
µA
2015/05
-8-
[AK7601A]
FILTER CHARACTERISTICS
(Ta= -40  +85C; AVDD=4.5 5.5V, DVDD=3.0 5.5V)
Parameter
Symbol
min
typ
max
Unit
ADC Digital Filter (Decimation LPF):
Passband
(Note 13) 0.1dB
PB
0
17.3
kHz
0.2dB
18.3
kHz
3.0dB
21.1
kHz
Stopband
(Note 13)
SB
25.7
kHz
Passband Ripple
PR
0.04
dB
Stopband Attenuation
SA
68
dB
Group Delay Distortion
GD
0
s
Group Delay
(Note 14)
GD
16
1/fs
ADC Digital Filter (HPF):
Frequency Response (Note 13) 3dB
FR
0.86
Hz
0.1dB
5.9
Hz
DAC Digital Filter (LPF):
Passband
(Note 13) 0.06dB
PB
0
20.0
kHz
6.0dB
22.05
kHz
Stopband
(Note 13)
SB
24.1
kHz
Passband Ripple
PR
0.1
dB
Stopband Attenuation
SA
54
dB
Group Delay Distortion
GD
0
s
Group Delay
(Note 14)
GD
20
1/fs
DAC Digital Filter + Analog Filter:
Frequency Response (Note 15) 20~20kHz
FR
0.1
dB
Note 13. The passband and stopband frequencies scale with fs (system sampling rate). For example, when fs= 44.1kHz,
DAC is PB=0.45412*fs (@±0.06dB).
Note 14. The calculated delay time induced by digital filtering. This time is from the input of an analog signal to the
setting of 24bit data both channels to the ADC output register for ADC. This time is from the set of 24bit data to
the input registers to the output of analog signal for DAC.
Note 15. The reference frequency of these responses is 1kHz.
SRC Digital Filter
Passband -0.01dB
Symbol
min
typ
max
Unit
PB
0
0.4583FSI
kHz
PB
0
0.4167FSI
kHz
PB
0
0.2177FSI
kHz
PB
0
0.1948FSI
kHz
Stopband
SB
0.5417FSI
kHz
SB
0.5021FSI
kHz
SB
0.2813FSI
kHz
SB
0.2604FSI
kHz
Passband Ripple
PR
dB
0.01
Stopband Attenuation
0.985 ≤ FSO/FSI < 5.513
SA
121.2
dB
0.656 ≤ FSO/FSI < 0.985
SA
121.4
dB
0.492 ≤ FSO/FSI < 0.656
SA
100.2
dB
0.459 ≤ FSO/FSI < 0.492
SA
103.3
dB
Group Delay (Ts=1/fs) (Note 16)
GD
64
Ts
Note 16.This delay is the period from the rising edge of ILRCK, just after the SDTI data is input, to the rising edge of
OLRCK, just after the SDTO data is output, when there is no phase difference between ILRCK and OLRCK.
0.985 ≤ FSO/FSI < 5.513
0.656 ≤ FSO/FSI < 0.985
0.492 ≤ FSO/FSI < 0.656
0.459 ≤ FSO/FSI < 0.492
0.985 ≤ FSO/FSI < 5.513
0.656 ≤ FSO/FSI < 0.985
0.492 ≤ FSO/FSI < 0.656
0.459 ≤ FSO/FSI < 0.492
MS1446-E-01
2015/05
-9-
[AK7601A]
DC CHARACTERISTICS
(Ta=-40C+85C; AVDD= 4.55.5V, DVDD=3.05.5V)
Parameter
High-Level Input Voltage
(PDN, SDA, SCL, SDTI1-4, ILRCK1-3, IBICK1-3,
MUTEN, XTI pins)
(CLKMODE pin)
Low-Level Input Voltage
(PDN, SDA, SCL, SDTI1-4, ILRCK1-3, IBICK1-3,
MUTEN, XTI pins)
(CLKMODE pin)
High-Level Output Voltage
(SDTO1-3, OLRCK, OBICK, OMCLK, SDA, DZF pins:
Iout=-100µA)
Low-Level Output Voltage
(SDTO1-3, OLRCK, OBICK, OMCLK, DZF pins:
Iout= 100µA)
(SDA pin:
Iout= 3mA)
Input Leakage Current
PDN, SDA, SCL, SDTI1-4,
ILRCK1-3, IBICK1-3,
MUTEN, XTI
MS1446-E-01
Symbol
min
typ
max
Unit
VIH
70%DVDD
-
-
V
VIH
80%DVDD
-
-
V
VIL
-
-
30%DVDD
V
VIL
-
-
20%DVDD
V
VOH
DVDD-0.5
-
-
V
VOL
VOL
-
-
0.5
0.4
V
V
Iin
-
-
10
µA
2015/05
- 10 -
[AK7601A]
SWITCHING CHARACTERISTICS
(Ta=-40+85C; AVDD=4.5~5.5V; DVDD=3.05.5V; CL=20pF; unless otherwise specified)
Parameter
Symbol
min
typ
max
Unit
Master Clock Timing
Crystal Resonator
Frequency
fXTAL
22.5792
MHz
MCKO Output
fMCK
22.5792
MHz
Frequency MCKO1-0 bit = “10”
fMCK
11.2896
MHz
MCKO1-0 bit = “01”
Duty cycle
512fs (Note 17)
dMCK
40
50
60
%
256fs (Note 17)
dMCK
45
50
55
%
External Clock
Frequency
fCLK
22.35
22.5792
22.80
MHz
Pulse Width Low
tCLKL
18
ns
Pulse Width High
tCLKH
18
ns
MCKO Output
fMCK
22.35
22.5792
22.80
MHz
Frequency 512fs
Duty cycle (Note 18)
dMCK
40
50
60
%
Input LRCK (ILRCK1-3)
Frequency
FSI
8
96
kHz
Duty Cycle
Duty
48
50
52
%
Output LRCK (OLRCK)
Frequency
FSO
44.1
kHz
Duty Cycle
Duty
50
%
Audio Interface Timing
OBICK Frequency
64fs
Hz
fBCK
OBICK Duty
50
%
dBCK
20
ns
OBICK “” to OLRCK
20
tMBLR
20
ns
OBICK “” to SDTO1~3
20
tBSD
ns
30
SDTI3-4 Hold Time
tSDH
ns
30
SDTI3-4 Setup Time
tSDL
Input PORT
ns
1/64fs
tBCK
IBICK1-3 Period
ns
65
tBCKL
IBICK1-3 Pulse Width Low
ns
65
tBCKH
Pulse Width High
ns
tLRB
30
ILRCK1-3 Edge to IBICK1-3 “” (Note 19)
ns
tBLR
30
IBICK1-3 “” to ILRCK1-3 Edge (Note 19)
ns
tSDH
30
SDTI1-3 Hold Time from IBICK1-3 “”
tSDS
ns
30
SDTI1-3 Setup Time to IBICK1-3 “”
Note 17. According to the crystal oscillator values in Table 2.
Note 18. In the case of MCKO1-0bits = “10” (22.5792MHz), these are the values when External Clock Duty is 50%.
Note 19. BICK rising edge must not occur at the same time as LRCK edge.
MS1446-E-01
2015/05
- 11 -
[AK7601A]
Parameter
Symbol
min
typ
max
Unit
Control Interface Timing (I2C Bus mode):
SCL Clock Frequency
fSCL
400
kHz
Bus Free Time Between Transmissions
tBUF
1.3
s
Start Condition Hold Time (prior to first clock pulse)
tHD:STA
0.6
s
Clock Low Time
tLOW
1.3
s
Clock High Time
tHIGH
0.6
s
Setup Time for Repeated Start Condition
tSU:STA
0.6
s
SDA Hold Time from SCL Falling
(Note 20)
tHD:DAT
0
s
SDA Setup Time from SCL Rising
tSU:DAT
0.1
s
Rise Time of Both SDA and SCL Lines
tR
0.3
s
Fall Time of Both SDA and SCL Lines
tF
0.3
s
Setup Time for Stop Condition
tSU:STO
0.6
s
Pulse Width of Spike Noise Suppressed by Input Filter
tSP
0
50
ns
Capacitive load on bus
Cb
400
pF
Power-up Timing
DVDD to AVDD
tPU
>0
ns
Power-down & Reset Timing
PDN “L” Width after AVDD is ON
(Note 21)
tPD1
150
ns
PDN Pulse Width
(Note 21)
tPD2
200
ms
Note 20. Data must be held long enough to bridge the 300ns-transition time of SCL.
Note 21. The AK7601A can be reset by bringing the PDN pin = “L”. The PDN pin must held “L” for more than 200 ms for
a certain reset.
Note 22. I2C-bus is a trademark of NXP B.V.
MS1446-E-01
2015/05
- 12 -
[AK7601A]
■ Timing Diagram
1/fCLK
VIH
XTI
VIL
tCLKH
tCLKL
1/fMCK
MCKO
50%DVDD
tdMCKH
tdMCKL
dMCK
= tdMCKH (or tdMCKL) x fMCK x 100
1/fs
LRCK
50%DVDD
tdLRKH
tdLRKL
dLRK
= tdLRKH (or tdLRKL) x fs x 100
1/fBCK
50%DVDD
BICK
tdBCKH
tdBCKL
dBCK
= tdBCKH (or tdBCKL) x fs x 100
Figure 3. Clock Timing
VIH
LRCK1-3
VIL
tBLR
tLRB
VIH
BICK1-3
VIL
tSDS
tSDH
VIH
SDTI1-3
VIL
Figure 4. Audio Interface Timing (Input Port)
MS1446-E-01
2015/05
- 13 -
[AK7601A]
OLRCK
50%DVDD
tMBLR
50%DVDD
OBICK
tBSD
50%DVDD
SDTO1-3
tSDS
tSDH
VIH
SDTI4
VIL
Figure 5. Audio Interface Timing (Output Port)
VIH
SDA
VIL
tLOW
tBUF
tR
tHIGH
tF
tSP
VIH
SCL
VIL
tHD:STA
Stop
tHD:DAT
Start
DVDD
tSU:DAT
tSU:STA
tSU:STO
Start
Figure 6. I2C Bus Mode Timing
Stop
tPU
AVDD
tPD2
tPD1
VIH
VIL
PDN
“L”
“H”
“L”
“H”
Figure 7. Power Up & Power Down Timing
MS1446-E-01
2015/05
- 14 -
[AK7601A]
OPERATION OVERVIEW
■System Clock
The external clock input or X’tal input is available for MCLK clock source. (Figure 8, Figure 9) The required clock is
22.579MHz MCLK only.
In the normal operation, if the clock is stopped, click noise may occur when the clock supply is restarted. It can be
prevented by external mute.
OLRCK
44.1kHz
MCKO (MHz)
OBICK (MHz)
22.5792
2.8224
Table 1. System Clock Example
■ Clock Source
The clock for the XTI pin can be generated by two methods:
1) External Clock (CLKMODE pin= “H”)
XTI
External Clock
AK7601A
XTO
Figure 8. External Clock Mode
Note. Do not input the clock over DVDD.
2) X’tal (CLKMODE pin= “L”)
XTI
AK7601A
XTO
Figure 9. X’tal Mode
C0
0.78pF~1.2pF
L1
C1
R1
20.475mH~11.8mH 2.428fF~4.2fH 24.1Ω~16.0Ω
Table 2. Recommended Parameters of Crystal Oscillator
L1
C1
CL
12pF~8pF
R1
CL
CL
C0
Figure 10. Equivalent Circuit and Load Capacitance of Crystal Oscillator
MS1446-E-01
2015/05
- 15 -
[AK7601A]
■ Digital High Pass Filter
The ADC has a digital high pass filter for DC offset cancellation. The cut-off frequency of the HPF is 0.86Hz.
■ Master Clock Output Pin
The MCKO pin is the output pin for master clock. MCKO1-0 bits control the master clock frequency.
MCKO1 bit
0
0
1
1
MCKO0 bit
Master Clock Speed
0
“L” Output
1
256fs (11.2896MHz)
0
512fs (22.5792MHz)
1
Reserved
Table 3. Master Clock Output Select
(default)
■ Audio Interface Input Format
In all modes the serial data is MSB-first, two’s complement format and SDTI1-4 are latched on the rising edge of
IBICK1-3 and OBICK respectively.
IDIF1-0 bits setting is reflected on SDTI1-3 and IDIF41-40 bits setting is reflected on SDIT4.
Use OLRCK, OBICK and IDIF when the SDTI3 data is input to Input2 instead of being used for SRC.
Mode
IDIF1 bit
IDIF0 bit
0
1
2
0
0
1
0
1
0
3
1
1
SDTI1-3 Format
ILRCK1-3
pins
16bit, LSB justified
24bit, LSB justified
24bit, MSB justified
Input
24 or 16bit I2S Compatible
16bit, I2S Compatible
Table 4. SDTI1~3 Input Audio Interface Format
Mode
IDIF41 bit
IDIF40 bit
0
1
2
3
0
0
1
1
0
1
0
1
SDTI4 Format
OLRCK
pin
16bit, LSB justified
24bit, LSB justified
Output
24bit, MSB justified
2
24 or 16bit I S Compatible
Table 5. SDTI4 Input Audio Interface Format
MS1446-E-01
IBICK1-3
pins
Input
IBICK1-3
Freq
32~64fs
48~64fs
48~64fs
48~64fs
32fs
OBICK
pin
OBICK
Freq
Output
64fs
(default)
(default)
2015/05
- 16 -
[AK7601A]
ILRCK
0 1 2 3
9 10 11 12 13 14 15 0 1 2 3
9 10 11 12 13 14 15 0 1
IBICK(32fs)
SDTI(i)
15 14 13
7 6 5 4 3 2 1 0 15 14 13
0 1 2 3
17 18 19 20
7 6 5 4 3 2 1 0 15
31 0 1 2 3
17 18 19 20
31 0 1
IBICK(64fs)
SDTI(i)
Don't Care
15 14 13 12
1 0
Don't Care
15 14 13 12
2 1 0
15:MSB, 0:LSB
Lch Data
Rch Data
Figure 11. Mode 0 Timing (16bit, LSB justified)
ILRCK
0 1 2
8 9
24
31 0 1 2
8 9
24
31 0 1
IBICK(64fs)
SDTI(i)
Don't Care
23
8
1 0
Don't Care
23
8
1 0
23:MSB, 0:LSB
Lch Data
Rch Data
Figure 12. Mode 1 Timing (24bit, LSB justified)
ILRCK
0 1 2
20 21 22 23 24
31 0 1 2
20 21 22 23 24
31 0 1
IBICK(64fs)
SDTI(i)
23 22
4 3 2 1 0
Don't Care 23 22
4 3 2 1 0
Don't Care 23
23:MSB, 0:LSB
Lch Data
Rch Data
Figure 13. Mode 2 Timing (24bit, MSB justified)
ILRCK
0 1 2 3
21 22 23 24 25
0 1 2
21 22 23 24 25
0 1
IBICK(64fs)
SDTI(i)
23 22
4 3 2 1 0
Don't Care 23 22
4 3 2 1 0
Don't Care
23:MSB, 0:LSB
Lch Data
Rch Data
2
Figure 14. Mode 3 Timing (24bit I S)
Note : SDTI represents SDTI1, SDTI2, SDTI3 and SDTI4, ILRCK represents ILRCK1, ILRCK2, ILRCK3 and OLRCK,
BICK represents IBICK1 IBICK2, IBICK3 and OBICK in the figures above.
MS1446-E-01
2015/05
- 17 -
[AK7601A]
■ Audio Interface Output Format
DIF bit selects between two serial data modes as shown in Table 6. In all modes the serial data is MSB-first, two’s
complement format and SDTO1-3 are latched on the rising edge of OBICK.
DIF
Mode
OLRCK
I/O
SDTO1-3
24bit, Left
justified
24bit, I2S
0
1
OBICK
I/O
H/L
O
64fs
O
L/H
O
64fs
O
(default)
Table 6. Audio Data Format (Stereo mode)
OLRCK
0
1
2
12
13
14
24
25
31
0
1
2
12
13
14
24
25
31
0
1
OBICK(64fs)
23 22
SDTO(o)
12 11 10
0
23 22
12
11 10
0
23
SDTO-23:MSB, 0:LSB
Lch Data
Rch Data
Figure 15. Mode 0 Timing (Left justified mode)
OLRCK
0
1
2
3
22
23
24
25
29
30
31
0
1
2
3
22
23
24
25
29
30
31
0
1
OBICK(64fs)
SDTO(o)
23 22
2
1
0
23 22
2
1
0
23:MSB, 0:LSB
Lch Data
Rch Data
Figure 16. Mode 1 Timing (I2S Mode)
MS1446-E-01
2015/05
- 18 -
[AK7601A]
■ Zero Detect Function
The AK7601A has independent zeros detect function for each DAC. This function is always enabled. Channel grouping
can be selected by DZD1-3 bits of CONT1 and its covers 6-channel outputs. Counting on “AND” for zero detected flags
of selected channels, when the input data is continuously zeros for 8192 LRCK cycles, the DZF pin goes to “H” if DZLH
bit (CONT1) is “0”, the DZF pin goes to “L” if DZLH bit (CONT1) is “1”. The DZF pin immediately returns to “L”
(DZLH bit “0”) or “H” (DZLH bit “1”) if the input data is not zero after the zero detection.
■ Digital Volume
AK7601A has a channel-independent digital attenuator (256 levels, 0.5dB steps). Attenuation level of each channel can
be set by each the ATT7-0 bits (Table 7).
ATT7-0
00H
01H
02H
:
7DH
7EH
7FH
FEH
FFH
Attenuation Level
0dB
-0.5dB
-1.0dB
:
-62.5dB
-63.0dB
-63.5dB
:
-127.0dB
MUTE (-∞)
(default)
Table 7. Attenuation Level
The transition between set values is a soft transition of 4096 levels eliminating switching noise in the transition. It takes
4096/fs (23.2ms) from 00H(0dB) to FFH(MUTE). If the PDN pin goes to “L”, the ATT7-0 bits are initialized to 00H. The
ATTs also become 00H when RSTN bit = “0”, and fade to their current setting value when RSTN bit returns to “1”.
MS1446-E-01
2015/05
- 19 -
[AK7601A]
■ Soft Mute (MUTE1, MUTE2) (Figure 33)
Soft mute operation is performed in the digital domain. When the MUTEN pin is set to “L” or SMUTE bit is set “0”, the
output signal is attenuated to -∞ in the time set by MCONT bit. When the SMUTE bit is returned to “1”, the mute is
cancelled and the output attenuation level gradually changes to 0dB in the time set by MCONT bit. If the soft mute is
cancelled before attenuating -∞, the attenuation is discontinued and the attenuation level is returned to 0dB by the same
cycle. Soft mute is effective for changing the signal source without stopping the signal transmission.
MUTEN pin or SMUTEN bit
D-Volume1 Full Level
(1)
(3)
(5)
(2)
ATT Level
-
(2)
GD
(4)
GD
AOUT
DZF
(6)
8192/fs
Note:
(1) The transition time to attenuate input data to -∞ in linear steps is set by MCONT bit.
(2) There is delay, which is set by the Delay block, from a falling edge of the MUTEN pin or SMUTEN bit to start the
attenuation.
(3) The transition time to return to the full scale of the input signal to LG1, RG1, LG2 and RG2 is set by MCONT bit.
(4) Analog output corresponding to digital input has a group delay (GD).
(5) If the soft mute is cancelled before attenuating -∞ after starting the operation, the attenuation is discontinued and
the digital volume is returned to the full scale level by the same cycle.
(6) When the input data for both channels are continuously zero for 8192 LRCK cycles and DZLH bit is “0”, the DZF
pin goes to “H” (the DZF pin goes to “L” if the DZLH bit is “1”). The DZF pin immediately returns to “L” if the
input data are not zero after going to DZF “H” (DZLH bit =“0”).
Figure 17. Soft Mute and Zero Detect Function
MS1446-E-01
2015/05
- 20 -
[AK7601A]
■ Soft Mute (FMUTE, RMUTE, SWMUTE, MOMUTE) (Figure 33)
Soft mute operation is performed in the digital domain. When the FMUTE, RMUTE, SWMUTE or MOMUTE bit is set
“1”, the output signal is attenuated to -∞ in 1024 LRCK cycles. When these bits are returned to “0”, the mute is cancelled
and the output attenuation level gradually changes to 0dB in 1024 LRCK cycles. If the soft mute is cancelled within the
1024 LRCK cycles after starting this operation, the attenuation is discontinued and the attenuation level is returned to 0dB
by the same cycle. Soft mute is effective for changing the signal source without stopping the signal transmission.
FMUTE bit
RMUTE bit
SWMUTE bit
MOMUTE bit
D-Volume1 Full Level
(1)
(2)
(4)
ATT Level
-
GD
(3)
GD
AOUT
DZF
(5)
8192/fs
Note:
(1) The transition time to attenuate input data to -∞ in linear steps is 1024 LRCK cycles (1024/fs).
(2) The transition time to return to the full scale of digital volume output signal is 1024 LRCK cycles (1024/fs).
(3) Analog output corresponding to digital input has group delay (GD).
(4) If the soft mute is cancelled before attenuating -∞ after starting the operation, the attenuation is discontinued and
returned to ATT level by the same cycle.
(5) When the input data for both channels are continuously zero for 8192 LRCK cycles and DZLH bit is “0”, the DZF
pin goes to “H” (the DZF pin goes to “L” if DZLH bit is “1”). The DZF pin immediately returns to “L” if the input
data are not zero after going to DZF “H” (DZLH bit =“0”).
Figure 18 Soft Mute and Zero Detect Function
MS1446-E-01
2015/05
- 21 -
[AK7601A]
■ Pseudo-Differential Input (AINL1/AINR1, AINL2/AINR2)
The AK7601A has two sets of pseudo-differential input channels.
LIN1
+
AAF
+
GND1
VCOM=AVDD/2
+
-
AAF
RIN1
Figure 19. Pseudo-Differential Input Block
When power-on the AK7601A, capacitors that connected to the pseudo-differential input pin are charged in high speed
(Fast mode). This first mode is controlled by a register (FCHA0 bit). The charging time in fast mode is 40ms (typ) and
100ms (max).
(01H: D4 bit)
FCHA0
1
0
Fast Charge
ON
OFF
Table 8. Fast Charge
(default)
■ Input Selector
The AK7601A has an analog input selector for ADC and a digital input selector for SRC. SEL01-00 bits and SEL11-10
bits control these input selectors. Click noise may occur when SEL01-00 bits and SEL11-10 bits are changed. Mute digital
output if the click noise affects system performance.
SEL01
0
0
1
1
SEL00
0
1
0
1
ADC Input
AINL1/AINR1
AINL2/AINR2
AINL3/AINR3
AINL4/AINR4
(default)
Table 9. Analog Input Selector
SEL11
0
0
1
1
SEL10
0
1
0
1
SRC Input
SDTI1
SDTI2
SDTI 3
Reserved
(default)
Table 10. Digital Input Selector
MS1446-E-01
2015/05
- 22 -
[AK7601A]
■ Power-up Sequence
The PDN pin must be “L” until all power supplies are ON. AVDD must be supplied after DVDD is ON.
DVDD
AVDD
PDN
“L”
“H”
Figure 20. Power-up Sequence
■ System Reset
The internal regulator will be powered-up by inputting the master clock to the XTI pin or connecting a X’tal after setting
the PDN pin to “H”. In X’tal mode, the internal regulator is powered-up in 5ms after the PDN pin becomes “H”. In
external clock mode, the internal regulator is powered-up in 5ms after clock input. When the regulator is powered-up, the
internal master clock starts by setting RSTN bit to “1”.
MS1446-E-01
2015/05
- 23 -
[AK7601A]
■ Power Down
The ADC and DAC parts of the AK7601A are placed in the power-down mode by bringing the PDN pin “L” and the
digital filter is also reset at the same time. The internal registers are initiated to their default value by the PDN pin = “L”.
This reset should always be made after power-up. In the power-down mode, SDTO1/SDTO3, SDTO2/SDTI4, OBICK,
OLRCK and DZF pins go to “L” and the analog output is VSS. When exiting the power-down mode, the AK7601A will
be in reset state since the RSTN bit = “0”. Figure 21 shows the power on/off sequence example.
PDN
5ms(1)
PDN Internal
(2)
RSTN
Regulator
ADC Internal
State
DAC Internal
State
ADC In
(Analog)
Normal Operation
Normal Operation
Power Down
Normal Operation
Power Down
GD(4)
“0” data(5)
SDTO1~3
DAC Out
(Analog)
Clock In
XTI(external)
Clock In
X'tal
DZF
(3)
Power Down
GD(4)
(7)
(6)
(8)
(9)
DZLH= “1”
(10)
DZLH= “0”
Note:
(1) After the PDN pin = “H”, the internal PDN is “L” until X’tal and regulator are powered-up. (Register writing is not
valid for 5ms of this period)
(2) During the RSTN bit is “0”, all circuits will be powered down except the regulator and X’tal even when the
internal PDN is “H”.
(3) Regulator will be powered-up after the PDN pin becomes “H”.
(4) The DAC and SDTO1-3 outputs corresponding to the ADC input has group delay (GD).
(5) The SDTP1-3 outputs are “0” when the AK7601A is powered-down.
(6) The DAC output is VSS voltage when the AK7601A is powered-down.
(7) Click noise occurs at the falling edge of PDN.
(8) In case of connecting a X’tal, the clock output is “L” when the PDN pin =“L”. The X’tal will be powered up after
the PDN pin =“H”.
(9) In power down mode (PDN pin = “L”), the DZF pin = “L”.
(10) The DZF pin output will reflects the DZLH bit setting when internal PDN is “H”.
Figure 21. Power Up/Down Sequence Example
MS1446-E-01
2015/05
- 24 -
[AK7601A]
■ Reset Function
When the RSTN bit = “0”, ADC and DAC parts of the AK7601A is powered down, but the internal register values are not
initialized. The analog outputs settle to VCOM voltage, SDTO1/SDTO3, SDTO2/SDTI4, OBICK and OLRCK pins go to
“L” and the DZF pins for both channels go to “H” or “L” depending on the DZLH bit setting. Click noise occurs at this
timing. Mute the analog output externally if the click noise influences system application. Figure 22 shows the example of
reset by RSTN bit.
RSTN bit
Internal
RSTN(ADC)
Internal
RSTN(IIR)
Internal
RSTN(DAC)
ADC Internal
State
IIR Internal
State
DAC Internal
State
ADC In
(Analog)
~1/fs(2)
4~5/fs(1)
8/fs (3)
Normal Operation
Power Down
Normal Operation
Power Down
Normal Operation
Power Down
Normal Operation
7~8/fs
(4)
Init
Normal Operation
1.5~2.5/fs (5)
Normal Operation
Init
GD(6)
GD(6)
"0" data(7)
SDTO13~
DAC Out
(Analog)
Init Cycle
GD(6)
(9)
(10)
(8)
(9)
GD(6)
(8)
Don't care(11)
Clock In
XTI(external)
Clock In
X'tal
DZF
9/fs
DZLH="0"
(12)
Note:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
Internal RSTN will be “L”, 4~5/fs after RSTN bit changed to “0”.
ADC internal RSTN will be “H”, within 1/fs from RSTN bit = “1”.
The reset cycle is 8/fs after ADC internal RSTN became “H”.
Internal RSTN for IIR will be “H” after 7~8/fs from RSTN bit =“1”.
Internal RSTN for DAC will be “H” after 1.5~2.5/fs from RSTN bit = “1”.
The DAC, SDTO1/SDTO3 and SDTO2/SDTI4 outputs corresponding to the ADC input has group delay (GD).
The SDTO1/SDTO3 and SDTO2/SDTI4 outputs are “0” data when the AK7601A is in powered down mode.
Click noise occurs when the initialization of ADC block is finished. Mute digital output if click noise adversely
affects system performance.
(9) Click noise occurs at the edge of internal RSTN.
(10) Analog output is VCOM voltage (AVDD/2) when RSTN bit = “0”.
(11) In case of inputting CLK from the XTI pin, the clock should be input before the RSTN bit is changed to “1” after
the RSTN bit was set to “0”.
(12) The DZF pin reflects the setting of DZLH bit. This pin changes to “L” or “H” 9/fs after the RSTN bit was set to
“0”.
(13) Register settings for path switching except SEL01-00, SEL11-10 and SW1 bits, and command code change should
be made during RSTN bit = “0”.
Figure 22. Reset Sequence Example
MS1446-E-01
2015/05
- 25 -
[AK7601A]
■ I2C BUS INTERFACE (Microcontroller Interface)
Access to the AK7601A registers and RAM is processed by I²C bus. The format of the I²C is complement with fast mode
(max: 400kHz). The AK7601A does not support Hs mode. (max: 3.4MHz).
■ Data Transfer
In order to access any IC devices on the I2C BUS, input a start condition first, followed by a single Slave address
which includes the Device Address. IC devices on the BUS compare this Slave address with their own addresses
and the IC device which has an identical address with the Slave-address generates an acknowledgement. An IC
device with the identical address then executes either a read or a write operation. After the command execution,
input a Stop condition.
1-1. Data Change
Change the data on the SDA line while SCL line is “L”. SDA line condition must be stable and fixed while the
clock is “H”. Change the Data line condition between “H” and “L” only when the clock signal on the SCL line is
“L”. Change the SDA line condition while SCL line is “H” only when the start condition or stop condition is input.
SCL
SDA
DATA LINE
STABLE :
DATA VALID
CHANGE
OF DATA
ALLOWED
Figure 23. Data Transition
1-2. Start condition and Stop condition
Start condition is generated by the transition of “H” to “L” on the SDA line while the SCL line is “H”. All
instructions are initiated by Start condition. Stop condition is generated by the transition of “L” to “H” on SDA
line while SCL line is “H”. All instructions end by Stop condition.
SCL
SDA
START CONDITION
STOP CONDITION
Figure 24. Start Condition and Stop Condition
MS1446-E-01
2015/05
- 26 -
[AK7601A]
1-3. Repeated Start Condition
When a start condition is received again instead of a stop condition, the bus changes to repeated start condition. A
repeated start condition is functionally the same as a start condition.
SCL
SDA
START CONDITION
Repeated Start CONDITION
Figure 25. Repeated Start Condition
1-4. Acknowledge
An external device that is sending data to the AK7601A releases the SDA line (“H”) after receiving one-byte of
data. An external device that receives data from the AK7601A then sets the SDA line to “L” at the next clock. This
operation is called “acknowledgement” and it enables verification that the data transfer has been properly
executed. The AK7601A generates an acknowledgement upon receipt of Start condition and Slave address. For a
write instruction, an acknowledgement is generated whenever receipt of each byte is completed. For a read
instruction, succeeded by generation of an acknowledgement, the AK7601A releases the SDA line after outputting
data at the designated address, and it monitors the SDA line condition. When the Master side generates an
acknowledgement without sending a Stop condition, the AK7601A outputs data at the next address location.
When no acknowledgement is generated, the AK7601A ends data output (not acknowledged).
Clock pulse
for acknowledge
SCL FROM
MASTER
1
8
DATA
OUTPUT BY
TRANSMITTER
DATA
OUTPUT BY
RECEIVER
9
not acknowledge
acknowledge
START
CONDITION
Figure 26. Acknowledge
MS1446-E-01
2015/05
- 27 -
[AK7601A]
1-5. The First byte
The First Byte which includes the Slave-address is input after the Start condition is set, and a target IC device that
will be accessed on the bus is selected by the Slave-address. The Slave-address is configured with the upper 7-bits.
Data of the upper 7-bits is “0011000”. The address bits that select the desired IC are fixed. When the Slave-address
is inputted, an external device that has the identical device address generates an acknowledgement and
instructions are then executed. The 8th bit of the First Byte (lowest bit) is allocated as the R/W Bit. When the R/W
Bit is “1”, the read instruction is executed, and when it is “0”, the write instruction is executed.
Note 23. In this document, there is a case that describes a “Write Slave-address assignment” when both address
bits match and a Slave-address at R/W Bit = “0” is received. There is a case that describes “Read
Slave-address assignment” when both address bits matches and a Slave-address at R/W Bit = “1” is
received.
0
0
1
1
0
0
0
R/W
Slave Address is fixed 30H(write) or 31H(read).
Figure 27. The First Byte Structure
1-6. The Second and Succeeding Bytes
The data format of the second and succeeding bytes of the AK7601A Transfer / Receive Serial data (command
code, address and data in microcontroller interface format) on the I 2C BUS are all configured with a multiple of
8-bits. When transferring or receiving those data on the I 2C BUS, they are divided into an 8-bit data stream
segment and they are transferred / received with the MSB side data first with an acknowledgement in-between.
When transferring / receiving A1B2C3 (hex) 24-bit serial data in microprocessor interface format:
(1)I2C Format
A1
B2
C3
A
8BIT
A
8BIT
8BIT
A Acknowledge
Figure 28. Division of the Data
Note 24. In this document, there is a case that describes a write instruction command code which is received at the second
byte as “Write Command”. There is a case that describes a read instruction command code which is received at
the second byte as “Read Command”
MS1446-E-01
2015/05
- 28 -
[AK7601A]
■ Command Code
BIT7
BIT6
8/16(*1)/16(*2)/32 flag
BIT5
BIT4
BIT3
BIT2
Area to be accessed
BIT1
BIT0
(1) 8/16(*1)/16(*2)/32 flag
When BIT[7:6] bits are “00”, the following data will be 8bit. The data will be 16bit 1word in 2byte transfer when “01”,
16bit 1word x 5 in 10byte transfer when “10”, and 32bit 1word x 5 in 20byte transfer when “11”.
(2) Accompanying data to the access area
BIT7 BIT6 BIT5 BIT4 BIT3 BIT2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
1
1
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
1
0
0
0
1
0
1
0
0
0
1
0
1
0
0
0
1
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
0
0
0
1
0
1
0
0
0
1
0
1
0
0
0
1
0
1
0
0
BIT1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
0
1
1
BIT0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
0
1
MS1446-E-01
Command and Content
01H Control Register CONT1 Setting
02H Control Register CONT2 Setting
03H Control Register CONT3 Setting
04H Control Register CONT4 Setting
05H Control Register CONT5 Setting
06H Control Register LOUT1VOL Setting
07H Control Register ROUT1VOL Setting
08H Control Register LOUT2VOL Setting
09H Control Register ROUT2VOL Setting
0AH Control Register LOUT3VOL Setting
0BH Control Register ROUT3VOL Setting
0CH Control Register MONOLVOL Setting
0DH Control Register MONORVOL Setting
0EH Control Register SWCONT1 Setting
0FH Control Register SWCONT2 Setting
40H EQ Gain1 Setting
41H EQ Gain2 Setting
42H Cross Over Fout Gain Setting
43H Cross Over Rout Gain Setting
44H Cross Over SWout Gain Setting
45H FrontL1 Delay Setting
46H FrontR1 Delay Setting
47H RearL2 Delay Setting
48H RearR2 Delay Setting
49H SWL3 Delay Setting
4AH SWR3 Delay Setting
50H Read SpeAna 1Band (125Hz)
51H Read SpeAna 2Band (500Hz)
52H Read SpeAna 3Band (2KHz)
53H Read SpeAna 4Band (8KHz)
2015/05
- 29 -
[AK7601A]
BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
1
0
0
0
0
1
0
0
1
0
0
0
0
1
0
1
1
0
0
0
1
0
0
0
1
0
0
0
1
1
0
0
1
0
0
0
1
1
0
1
1
0
0
1
0
0
0
0
1
0
0
1
0
0
0
1
1
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
1
0
0
1
0
1
0
0
1
0
0
1
0
1
0
1
1
0
0
1
0
1
1
0
1
0
0
1
0
1
1
1
1
0
0
1
1
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
0
1
1
0
1
1
1
0
0
1
1
1
0
0
1
0
0
1
1
1
0
1
1
0
0
1
1
1
1
0
1
0
0
1
1
1
1
1
1
0
1
0
0
0
0
0
1
0
1
0
0
0
0
1
1
0
1
0
0
0
1
0
Command and Content
80H Input Gain Setting
81H function1 Gain1 Setting
82H function1 Gain2 Setting
84H function1 in Filter Coefficient Setting Preparation
85H function1 out Filter Coefficient Setting Preparation
88H function2 LPF2 Filter Coefficient Setting Preparation
8CH function2 Gain1 Setting
8DH funciotn2 Gain Low Setting
90H Function3 Gain1 Coefficient Setting Preparation
91H Function3 Gain2 Coefficient Setting Preparation
92H Function3 Filter Coefficient Setting Preparation
93H Function4 Gain Coefficient Setting Preparation
94H Function5 Gain Coefficient Setting Preparation
95H Function5 Filter Coefficient Setting Preparation
96H EQ Bind2 Coefficient Setting Preparation
97H EQ Band5 Coefficient Setting Preparation
98H EQ Band6 Coefficient Setting Preparation
99H EQ Band7 Coefficient Setting Preparation
9AH EQ Band9 Coefficient Setting Preparation
9BH EQ Band12 Coefficient Setting Preparation
9CH EQ Band13 Coefficient Setting Preparation
9DH EQ Band14 Coefficient Setting Preparation
9EH X’ Over Filter1-3 Coefficient Setting Preparation
9FH SpeAna3Band Coefficient Setting Preparation
A0H SpeAna4Band Coefficient Setting Preparation
A1H FR Gain Setting
A2H SW Gain Setting
MS1446-E-01
2015/05
- 30 -
[AK7601A]
BIT7
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
BIT6 BIT5 BIT4
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
BIT3
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
BIT2 BIT1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
BIT0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
MS1446-E-01
Command and Content
C0H function2 LPF0 Filter Coefficient Setting
Preparation
C2H Function4 Filter Coefficient Setting Preparation
C3H EQ Band1 Coefficient Setting Preparation
C4H EQ Band3 Coefficient Setting Preparation
C5H EQ Band4 Coefficient Setting Preparation
C6H EQ Band8 Coefficient Setting Preparation
C7H EQ Bnad10 Coefficient Setting Preparation
C8H EQ Band11 Coefficient Setting Preparation
C9H X’ Over Filter1-1 Coefficient Setting Preparation
CAH X’ Over Filter2-1 Coefficient Setting Preparation
CBH X’ Over Filter3-1 Coefficient Setting Preparation
CCH X’ Over Filter1-2 Coefficient Setting Preparation
CDH X’ Over Filter2-2 Coefficient Setting Preparation
CEH X’ Over Filter3-2 Coefficient Setting Preparation
CFH SpeAna1Band Coefficient Setting Preparation
D0H SpeAna2Band Coefficient Setting Preparation
D1H SpeAna SDS Coefficient Setting Preparation
2015/05
- 31 -
[AK7601A]
Write Sequence
In the AK7601A, when a “Write-Slave-address assignment” is received at the first byte, the write command at the second
byte and data at the third and succeeding bytes are received. At the data block, address and write data are received in a
single-byte unit each in accordance with a command code. The number of write data bytes (*1 in Figure 29) is fixed by the
received command code.
Usable command codes in write sequence are listed below as “Table 11. List of Usable Command Codes in Write
Sequence”.
S
SLAD
W
A
Cmd
A
Data
A
Stp
repeat N times (*1)
Figure 29. Write Sequence
Command Code
40H ~ 4AH
80H ~ A2H
C0H ~ D1H
01H ~ 0F
Data Length
2-byte
10-byte
20-byte
1byte
Content
Transferring 16bit coefficient data in 1-coefficient unit
Transferring 16bit coefficient data in 5-coefficient or 1-filter unit
Transferring 28bit coefficient data in 5-coefficient or 1-filter unit
Writing Control Register
Table 11. List of Usable Command Codes in Write Sequence
MS1446-E-01
2015/05
- 32 -
[AK7601A]
Data Format
Data Write
(1) Control Register Write
SDA
(1) COMMAND
01H~0F
(2) DATA
D7~D0
(2) 16bit Coefficient (1-coefficient unit) or Delay Data Write
SDA
(1) COMMAND
40H~4AH
(2) DATA1-1
D15~D8
(3) DATA1-2
D7~D0
(3)16bit Coefficient (5-coefficient unit) Write
SDA
(1) COMMAND
80H~A2H
(2) DATA1-1
D15~D8
(3) DATA1-2
D7~D0
(4) DATA2-1
D15~D8
(5) DATA2-2
D7~D0
(6)~(11)
(Continues in 2byte unit from DATA3 to DATA5. In total 10byte DATA)
(4)28bit Coefficient Data Write
SDA
(1) COMMAND
C0H~D1H
(2) DATA1-1
0 0 0 0 D27~D24
(3) DATA1-2
D23~D16
(4) DATA1-3
D15~D8
(5) DATA1-4
D7~D0
(6)~(21)
(Continues in 4byte unit from DATA2 to DATA5. In total 20byte DATA)
MS1446-E-01
2015/05
- 33 -
[AK7601A]
Read Sequence
In the AK7601A, when a “write- slave-address assignment” is received at the first byte, the command is send from micro
controller in the second byte. When the slave address is received after the start condition, the AK7601A starts outputting
the data regarding to command code.
When cancelling read operation before the AK7601A sends all data, assure that a “not acknowledged” signal is received
by the AK7601A. If this “not acknowledged” signal is not received, the AK7601A continues to send data until specified
number, and since it did not release the BUS, the stop condition cannot be properly received.
Usable command codes in read sequence are listed in Table 12
S
SLAD
W
A
Cmd
A
rS
SLAD
R
A
Data
A
repeat N times
Data
Na
Stp
* Cancel
Figure 30. Read Sequence
Command Code
40H ~ 4AH
80H ~ A2H
C0H ~ D1H
01H ~ 0F
50H ~ 53H
Data Length
2-byte
10-byte
20-byte
1byte
2-byte
Content
Reading 16bit coefficient data in 1-coefficient unit
Reading 16bit coefficient data in 5-coefficient or 1-filter unit.
Reading 28bit coefficient data in 5-coefficient or 1-filter unit.
Reading Control Register
Reading Spectrum Analyzer Data
Table 12. List of Usable Read Command Codes in Read Sequence
MS1446-E-01
2015/05
- 34 -
[AK7601A]
Data Read
(1) Control Register Read
SDA
(1) COMMAND
01H~0F (Input)
(2) DATA
D7~D0
(2) 16bit Coefficient (1-coefficient unit) or Delay Time Read
SDA
(1) COMMAND
40H~4AH (Input)
(2) DATA1-1
D15~D8 (Output)
(3) DATA1-2
D7~D0
(3)16bit Coefficient (5-coefficient unit) Read
SDA
(1) COMMAND
80H~A2H (Input)
(2) DATA1-1
D15~D8 (Output)
(3) DATA1-2
D7~D0
(4) DATA2-1
D15~D8
(5) DATA2-2
D7~D0
(6)~(11)
(Continues in 4byte unit from DATA3 to DATA5. In total 10byte DATA)
(4)28bit Coefficient Data Read
SDA
(1) COMMAND
C0H~D1 (Input )
(2) DATA1-1
0 0 0 0 D27~D24 (Output )
(3) DATA1-2
D23~D16
(4) DATA1-3
D15~D8
(5) DATA1-4
D7~D0
(6)~(21)
(Continues in 4byte unit from DATA2 to DATA5. In total 20byte DATA)
(5) Spectrum Analyzer Data Read
SDA
(1) COMMAND
50H, 51H, 52H, 53H (Input)
(2) DATA2
D15 D14 D13 D12 D11 D10 D9 D8 (Output)
(3) DATA1
D7 D6 D5 D4 D3 D2 D1 D0
MS1446-E-01
2015/05
- 35 -
[AK7601A]
■ Register Map
Command
01H
02H
03H
04H
05H
06H
07H
08H
09H
0AH
0BH
0CH
0DH
0EH
0FH
Register Name
CONT1
CONT2
CONT3
CONT4
CONT5
LOUT1
Volume Control
ROUT1
Volume Control
LOUT2
Volume Control
ROUT2
Volume Control
LOUT3
Volume Control
ROUT3
Volume Control
MONOIN L
Volume Control
MONOINR
Volume Control
SWCONT1
SWCONT2
D7
0
DZD3
D6
0
DZD2
D5
0
DZD1
D4
FCHA
DZLH
MOMUTE
FMUTE
RMUTE
SWMUTE
LRCK
0
BICK
0
MCKO1
0
ATT7
ATT6
ATT7
D3
MCKO0
0
ODIF
IDIF41
DO21
SEL11
D2
PMADC
0
IDIF40
DO20
SEL10
D1
PMDAC
MCONT
IDIF1
DO11
SEL01
D0
RSTN
SMUTEN
IDIF0
DO10
SEL00
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
0
0
SW51
0
SW50
0
SW4
SWSW
SW31
RSW
SW30
FSW
SW2
EQSW1
SW1
EQSW0
PMADCM
Note: All registers are initialized by the PDN pin = “L”.
When RSTN bit becomes “0”, the internal timing is reset but the registers are not initialized.
Data must not be written into addresses from 10H to 1FH.
The bits defined as 0 must contain a “0” value.
MS1446-E-01
2015/05
- 36 -
[AK7601A]
■ Register Definitions
Command Register name
01H
CONT1
Default
R/W
D7
0
0
RD
D6
0
0
RD
D5
0
0
RD
D4
FCHA
1
R/W
D3
PMADCM
1
R/W
D2
PMADC
1
R/W
D1
PMDAC
1
R/W
D0
RSTN
0
R/W
FCHA: High Speed Charge Mode Enable
0: High Speed Charge Disable
1: High Speed Charge Enable (default)
PMADCM: ADC Mono Power Management
0: ADC Power Down
1: Normal Operation
PMADC: ADC Power Management
0: ADC Power Down
1: Normal Operation
PMDAC: DAC1-3 Power Management
0: All DACs Power Down
1: Normal Operation
RSTN: Internal Timing Reset
0: Reset
The DZF pin becomes “H” or “L” depending on DZLH bit but registers are not initialized.
1: Normal Operation
MS1446-E-01
2015/05
- 37 -
[AK7601A]
Command
02H
Register Name
CONT2
Default
R/W
D7
DZD3
0
R/W
D6
DZD2
0
R/W
D5
DZD1
0
R/W
D4
DZLH
0
R/W
D3
DIF
1
R/W
D2
0
0
RD
D1
MCONT
0
R/W
D0
SMUTEN
0
R/W
DZD3: DZF Setting
0: The DZF pin reflects the zero-detection of DAC3
1: The DZF pin ignores the zero-detection of DAC3
DZD2: DZF Setting
0: The DZF pin reflects the zero-detection of DAC2
1: The DZF pin ignores the zero-detection of DAC2
DZD1: DZF Setting
0: The DZF pin reflects the zero-detection of DAC1
1: The DZF pin ignores the zero-detection of DAC1
DZLH: DZF pin polarity setting
0: Output “H” when the zero data is detected.
1: Output “L” when the zero data is detected
D7
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
D6
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
D5
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
D4
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
DAC3
Zero
Zero
Zero
Zero
Zero
Zero
Zero
Zero
-
DAC2
DAC1
DZF pin output Level
Zero
Zero
H
Zero
H
Zero
H
H
Zero
Zero
H
Zero
H
Zero
H
H
Zero
Zero
L
Zero
L
Zero
L
L
Zero
Zero
L
Zero
L
Zero
L
L
Table 13. Zero Detection Control
DIF: Digital Output Format (DIF mode setting)
0: Left justified mode
1: I2S mode (default)
MCONT: Soft Mute Time Setting
0: 1024/fs (default)
1: 22/fs
SMUTEN: MUTE1, MUTE2 Block
MUTEN pin
L
H
SMUTEN bit
All Analog Outputs Status
0
Mute
1
Mute
0
Mute
1
Unmute
Table 14. Soft Mute Control
MS1446-E-01
(default)
(default)
2015/05
- 38 -
[AK7601A]
Command Register Name
03H
CONT3
Default
R/W
D7
MOMUTE
0
R/W
D6
FMUTE
0
R/W
D5
RMUTE
0
R/W
D4
SWMUTE
0
R/W
D3
IDIF41
1
R/W
D2
IDIF40
1
R/W
D1
IDIF1
1
R/W
D0
IDIF0
1
R/W
MOMUTE: MOMUTE Block
0: Un-mute (default)
1: Mute
(Refer to p44; DSP Block Construction)
FMUTE: FMUTE Block
0: Un-mute (default)
1: Mute
(Refer to p44; DSP Block Construction)
RMUTE: RMUTE Block
0: Un-mute (default)
1: Mute
(Refer to p44; DSP Block Construction)
SWMUTE: SWMUTE Block
0: Un-mute (default)
1: Mute
(Refer to p44; DSP Block Construction)
IDIF41-IDIF40: Digital Input Format, IDIF Mode Setting (SDIT4)
00: 16bit LSB Justified Mode
01: 24bit LSB Justified Mode
10: 24bit MSB Justified Mode
11: 16bit/24bit I2S Mode (default)
IDIF1-IDIF0: SRC Digital Input Format, IDIF Mode Setting (SDIT1, SDTI2, SDTI3)
00: 16bit LSB Justified Mode
01: 24bit LSB Justified Mode
10: 24bit MSB Justified Mode
11: 16bit/24bit I2S Mode (default)
MS1446-E-01
2015/05
- 39 -
[AK7601A]
Command
04H
Register Name
CONT4
Default
R/W
D7
LRCK
0
R/W
D6
BICK
0
R/W
D5
MCKO1
0
R/W
D4
MCKO0
0
R/W
D3
DO21
0
R/W
D2
DO20
0
R/W
D1
DO11
0
R/W
D0
DO10
0
R/W
LRCK: LRCK Output Enable
0: The OLRCK pin outputs “L”. (default)
1: The OLRCK pin outputs LRCK(1fs).
BICK: BIT Clock Output Enable
0: The OBICK pin outputs “L”. (default)
1: The OBICK pin outputs 64fs BIT clock.
MCKO1-0: Master Clock Output Enable
MCKO1
MCKO0
Master Clock Speed
0
0
“L” Output
(default)
0
1
256fs (11.2896MHz)
1
0
512fs (22.5792MHz)
1
1
Reserved
Table 3. Master Clock Output Select
DO21-DO20: SDTO2/SDTI4 In/Output Enable
DO21
DO20
SDTO2/SDTI4 pin
0
0
“L” Output
0
1
SDTO2
1
0
SDTI4 (Input)
1
1
Reserved
Table 15. SDTO2/SDTI4 Input/Output Select
(default)
DO11-DO10: SDTO1/SDTO3 Output Enable
DO11
DO10
SDTO1/SDTO3 pin
0
0
“L” Output
0
1
SDTO1
1
0
SDTO3
1
1
Reserved
Table 16. SDTO1/SDTO3 Output Select
MS1446-E-01
(default)
2015/05
- 40 -
[AK7601A]
Command
05H
Register Name
CONT5
Default
R/W
D7
0
0
RD
D6
0
0
RD
D5
0
0
RD
D4
0
0
RD
D3
SEL11
0
R/W
D2
SEL10
0
R/W
D1
SEL01
0
R/W
D0
SEL00
0
R/W
SEL11-10: SRC Input Selector Control
SEL11
SEL10
SRC Input
0
0
SDTI1
0
1
SDTI2
1
0
SDTI3
1
1
Reserved
Table 10. Digital Input Selector
(default)
SEL01-00: Analog Input Selector Control
SEL01
SEL00
ADC Input
0
0
AINL1/AINR1
0
1
AINL2/AINR2
1
0
AINL3/AINR3
1
1
AINL4/AINR4
Table 9. Analog Input Selector
MS1446-E-01
(default)
2015/05
- 41 -
[AK7601A]
Command
06H
07H
08H
09H
0AH
0BH
0CH
0DH
Register Name
LOUT1VOL
ROUT1VOL
LOUT2VOL
ROUT2VOL
LOUT3VOL
ROUT3VOL
MONOLVOL
MONORVOL
Default
R/W
D7
ATT7
ATT7
ATT7
ATT7
ATT7
ATT7
ATT7
ATT7
0
R/W
D6
ATT6
ATT6
ATT6
ATT6
ATT6
ATT6
ATT6
ATT6
0
R/W
D5
ATT5
ATT5
ATT5
ATT5
ATT5
ATT5
ATT5
ATT5
0
R/W
D4
ATT4
ATT4
ATT4
ATT4
ATT4
ATT4
ATT4
ATT4
0
R/W
D3
ATT3
ATT3
ATT3
ATT3
ATT3
ATT3
ATT3
ATT3
0
R/W
D2
ATT2
ATT2
ATT2
ATT2
ATT2
ATT2
ATT2
ATT2
0
R/W
D1
ATT1
ATT1
ATT1
ATT1
ATT1
ATT1
ATT1
ATT1
0
R/W
D0
ATT0
ATT0
ATT0
ATT0
ATT0
ATT0
ATT0
ATT0
0
R/W
ATT7-ATT0: Attenuation Level
ATT7-0
00H
01H
02H
:
7DH
7EH
7FH
FEH
FFH
Attenuation Level
(default)
0dB
-0.5dB
-1.0dB
:
-62.5dB
-63.0dB
-63.5dB
:
-127.0dB
MUTE (-∞)
Table 7. Attenuation Level
MS1446-E-01
2015/05
- 42 -
[AK7601A]
Command
0EH
Register Name
SWCONT1
Default
R/W
D7
0
0
RD
D6
SW51
0
R/W
SW51-50: SDTO3, SDTI4 Selector Control
Mode
SW51 SW50
Switch a
Mode1
0
0
GND
Mode2
0
1
SDTO EQ
Mode3
1
0
SDTO Delay
Mode4
1
1
-
D5
SW50
0
R/W
Switch b
SDTOEQ
SDTI4
SDTOEQ
-
D4
SW4
0
R/W
D3
SW31
0
R/W
Switch c
SDTO Delay
SDTO Delay
SDTI4
-
D2
SW30
1
R/W
D1
SW2
0
R/W
D0
SW1
0
R/W
Comment
No In/Output
In/Output before Delay
In/Output after Delay
Reserved
Refer to Figure 33
Table 17. SDTO3/SDTI4 Selector Control
SDTI4
SDTO3
a
SDTO Delay
c
SDTO EQ
R1
Delay Control
L1
b
Figure 31. SDTO3/SDTI4 Block Diagram
SW4: AOUT3L/R pin Output Control
0: Outputs AOUT3L/R (default)
1: Outputs AOUT2L/R
Refer to Figure 33
SW31-30: MG2 Selector Control
Refer to Figure 33
SW31
0
0
1
1
SW30
MG2 Input
0
SRC
1
ADC
(default)
0
SDTI3
1
Table 18. MG2 Selector Control
SW2: MG1 Selector Control
0: SRC (default)
1: ADC
Refer to Figure 33
SW1: De-emphasis Control
0: Dem-OFF (default)
1: Dem-ON (44.1kHz)
Refer to Figure 33
MS1446-E-01
2015/05
- 43 -
[AK7601A]
Command
0FH
Register Name
SWCONT2
Default
R/W
D7
0
0
RD
D6
0
0
RD
D5
0
0
R/W
D4
SWSW
0
R/W
D3
RSW
0
R/W
D2
FSW
0
R/W
D1
EQSW1
0
R/W
D0
EQSW0
0
R/W
SWSW: SW Input Source Select
0: Input1 (default)
1: Input2
Refer to Figure 33
RSW: Rear Input Source Select
0: Input1 (default)
1: Input2
Refer to Figure 33.
FSW: Front Input Source Select
0: Input1 (default)
1: Input2
Refer to Figure 33
EQSW2-1: Equalizer Block Setting
Mode
EQSW2 EQSW1
Mode1
0
0
Mode2
0
1
Mode3
1
0
Mode4
1
1
Switch A
EQBand2
EQBand9
EQBand2
EQBand2
Switch B
Comment
EQBand7
14 band mode
(default)
EQBand2
4 band + 5 band x 2 mode
EQGain2
7 band x 2 mode1
EQGain1
7 band x 2 mode2
Refer to Figure 39 about Switch A and B
Table 19. EQSW Mode Select
Mode1
2Band
5Band
2Band
2Band
Mode2
2Band
5Band
5Band
5Band
Mode3
2Band
5Band
2Band
5Band
2Band
5Band
2Band
5Band
Mode4
Figure 32. EQSW1-0 Setting Examples
MS1446-E-01
2015/05
- 44 -
[AK7601A]
■ Blocks and Circuits Construction of Command Setting
SDTO2/SDTI4
SDTO1/3
D-volume * set by CONT5-12(06H~0D)
SDTO1
SDTO2
ADC
SW1
RMV
b
SW2
DAC
FMUTE
AOUT1L
AOUT1R
SDTO1
R2V
L2
AOUT2L
DAC
RMUTE
MUTE2
AOUT2R
SDTO2
SW4
R2
Input2
Xover
<<2
SW3
L3V
R3V
DAC
RG2
L2V
SWMUTE
AIN4L/R
ADC
AIN3L/R
Selector
AIN2L/R
LG2
R1V
Xover
Spectrum Analyzer
<<2
L1V
Input1
Delay
R1
<<2
AIN1L/R
Xover
L1
Equalizer 14Band
Function5
Function4
Function3
Function2
RG1
Function1
LG1
c
MUTE1
De-emp
SRC
SDTI3
DZF
<<2
SDTI1
SDTI2
LMV
MOMUTE
a
MCLKO
OBICK
OLRCK
CLK
MONOIN
AOUT3L
AOUT3R
*Refer to Figure 42 for delay block.
Figure 33. DSP Block Construction
Command
Data 1 (2byte)
Data 2 (2byte)
Data 3 (2byte)
Data 4 (2byte)
Data 5 (2byte)
80H
LG1
RG1
LG2
RG2
Dummy
Shift Setting
2bit Left x 4
2bit Left x 4
2bit Left x 4
2bit Left x 4
-
MS1446-E-01
R/W
R/W
R/W
R/W
R/W
-
Default
0x 2000
0x 2000
0x 2000
0x 2000
-
2015/05
- 45 -
[AK7601A]
Function1 (High Frequency Expansion)
ThrGainL
Lch
<<1
HighOut
HiIn
<<1
a00
Multiplier
a01
a11
-1
-1
Z
Z
a12
b02
Single Precision
Single Precision
HiIn
HighOut
<<1
a00
Multiplier
a10
-1
-1
a01
a11
b11
-1
Z
Z
Z
a02
-1
Z
-1
-1
Z
HighGainR
<<1
<<1
Z
b01
-1
b12
-1
Z
Z
a12
b02
HighGainL
b11
-1
Z
a02
Z
Z
b01
-1
Z
-1
-1
Z
Z
<<1
<<1
a10
-1
-1
Single Precision
b12
Single Precision
<<1
Rch
ThrGainR
Figure 34. Function1 Block Diagram
Command
Data 1 (2byte)
Data 2 (2byte)
Data 3 (2byte)
Data 4 (2byte)
Data 5 (2byte)
81H
ThrGainL
ThrGainR
Dummy
Dummy
Dummy
Shift Setting
1bit Left x 2
1bit Left x 2
-
R/W
R/W
R/W
-
Default
0x 4000
0x 4000
-
Comment
Command
Data 1 (2byte)
Data 2 (2byte)
Data 3 (2byte)
Data 4 (2byte)
Data 5 (2byte)
82H
HighGainL
HighGainR
Multiplier1
Multiplier2
Multiplier3
Shift Setting
1bit Left x 2
1bit Left x 2
-
R/W
R/W
R/W
R/W
R/W
R/W
Default
0x 0000
0x 0000
0x 4000
0x 0000
0x 0000
Comment
Command
Data 1 (2byte)
Data 2 (2byte)
Data 3 (2byte)
Data 4 (2byte)
Data 5 (2byte)
84H
HiIn_a02
HiIn_a01
HiIn_a00
HiIn_b02
HiIn_b01
Shift Setting
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
R/W
R/W
R/W
R/W
R/W
R/W
Default
0x 0000
0x 0000
0x 4000
0x 0000
0x 0000
Comment
Command
Data 1 (2byte)
Data 2 (2byte)
Data 3 (2byte)
Data 4 (2byte)
Data 5 (2byte)
85H
HiOut_a12
HiOut_a11
HiOut_a10
HiOut_b12
HiOut_b11
Shift Setting
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
R/W
R/W
R/W
R/W
R/W
R/W
Default
0x 0000
0x 0000
0x 4000
0x 0000
0x 0000
Comment
MS1446-E-01
Control register of Lch through gain
Control register of Rch through gain
Control register of Lch IIR out gain
Control register of Rch IIR out gain
Control register of Multiplier block
Control register of Multiplier block
Control register of Multiplier block
Control register of Hi In IIR Filter
Control register of Hi In IIR Filter
Control register of Hi In IIR Filter
Control register of Hi In IIR Filter
Control register of Hi In IIR Filter
Control register of Hi Out IIR Filter
Control register of Hi Out IIR Filter
Control register of Hi Out IIR Filter
Control register of Hi Out IIR Filter
Control register of Hi Out IIR Filter
2015/05
- 46 -
[AK7601A]
Function2 (Compressor)
Thr_G
Lch
<<1
LPF
Z-1
a01
b01
a02
b02
-1
-1
Z
Z
Double Precision
Compressor
<<1
a00
-1
Z
LPF
a00
<<1
-1
-1
Z
Z
a01
b01
Z-1
Z-1
a02
b02
Double Precision
Thr_G
<<1
Rch
Figure 35. Function2 Block Diagram
Command
Data 1 (4byte)
Data 2 (4byte)
Data 3 (4byte)
Data 4 (4byte)
Data 5 (4byte)
C0H
LPF_a02
LPF_a01
LPF_a00
LPF_b02
LPF_b01
Shift Setting
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
R/W
R/W
R/W
R/W
R/W
R/W
Default
0x 00000000
0x 00000000
0x 04000000
0x 00000000
0x 00000000
Comment
Command
Data 1 (2byte)
Data 2 (2byte)
Data 3 (2byte)
Data 4 (2byte)
Data 5 (2byte)
88H
LPF_a21
LPF_a20
LPF_b21
Dummy
Dummy
Shift Setting
1bit Left x 2
1bit Left x 2
1bit Left x 2
-
R/W
R/W
R/W
R/W
-
Default
0x 0000
0x 0000
0x 0000
Comment
Command
Data 1 (2byte)
Data 2 (2byte)
Data 3 (2byte)
Data 4 (2byte)
Data 5 (2byte)
8CH
Thr_G
Dummy
Dummy
Dummy
Dummy
Shift Setting
1bit Left x 2
-
Command
Data 1 (2byte)
Data 2 (2byte)
Data 3 (2byte)
Data 4 (2byte)
Data 5 (2byte)
8DH
Compressor1
Compressor2
Compressor3
Compressor4
Dummy
Shift Setting
-
R/W
R/W
R/W
R/W
R/W
R/W
R/W
-
MS1446-E-01
-
Default
0x 4000
Control register of LPF
Control register of LPF
Control register of LPF
Control register of LPF
Control register of LPF
Control register of Compressor block
Control register of Compressor block
Control register of Compressor block
Control register of Compressor block
Control register of Compressor block
Comment
Control register of through gain
-
Default
0x 0000
0x 0000
0x 0000
0x 0000
Comment
Control register of Compressor block
Control register of Compressor block
Control register of Compressor block
Control register of Compressor block
-
2015/05
- 47 -
[AK7601A]
Function3 (Surround Effect)
F3ThrG
Lch
<<1
F3D
F3InL
Z-n
F3OutL
Max0x2D Sample
F3FBG
F3IIR
<<1
a00
Z
-1
Z
a01
F3InR
Z
-1
b01
F3OutR
Z-1
-1
a02
Single Precision
b02
<<1
Rch
F3ThrG
Figure 36. Function3 Block Diagram
Command
Data 1 (2byte)
Data 2 (2byte)
Data 3 (2byte)
Data 4 (2byte)
Data 5 (2byte)
90H
F3ThrG
F3OutL
F3OutR
Dummy
Dummy
Shift Setting
1bit Left x 2
1bit Left x 2
1bit Left x 2
-
R/W
R/W
R/W
R/W
-
Default
0x 4000
0x 0000
0x 0000
Command
Data 1 (2byte)
Data 2 (2byte)
Data 3 (2byte)
Data 4 (2byte)
Data 5 (2byte)
91H
F3InL
F3InR
F3D
F3FBG
Dummy
Shift Setting
-
R/W
R/W
R/W
R/W
R/W
-
Default
0x 0000
0x 0000
0x 0000
0x 0000
Command
Data 1 (2byte)
Data 2 (2byte)
Data 3 (2byte)
Data 4 (2byte)
Data 5 (2byte)
92H
F3IIR_a02
F3IIR_a01
F3IIR_a00
F3IIR_b02
F3IIR_b01
Shift Setting
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
R/W
R/W
R/W
R/W
R/W
R/W
Default
0x 0000
0x 0000
0x 4000
0x 0000
0x 0000
MS1446-E-01
Comment
Control register of through gain
Control register of Lch F3 IIR out gain
Control register of Rch F3 IIR out gain
-
Comment
-
Comment
2015/05
- 48 -
[AK7601A]
Function4 (Bass Boost)
F4ThrL
Lch
<<1
F4InL
F4IIR
<<1
a00
Z
-1
Z
a01
F4InR
Z
-1
b01
Z-1
-1
a02
b02
Double Precision
<<1
Rch
F4ThrR
Figure 37. Function4 Block Diagram
Command
Data 1 (2byte)
Data 2 (2byte)
Data 3 (2byte)
Data 4 (2byte)
Data 5 (2byte)
93H
F4ThrL
F4ThrR
F4InL
F4InR
Dummy
Command
Data 1 (4byte)
Data 2 (4byte)
Data 3 (4byte)
Data 4 (4byte)
Data 5 (4byte)
C2H
F4IIR_a02
F4IIR_a01
F4IIR_a00
F4IIR_b02
F4IIR_b01
Shift Setting
1bit Left x 2
1bit Left x 2
Shift Setting
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
MS1446-E-01
Default
0x 4000
0x 4000
0x 0000
0x 0000
Comment
Control register of through gain
Control register of Rch through gain
Control register of Lch F4 IIR input gain
Control register of Rch F4 IIR input gain
-
Default
0x 00000000
0x 00000000
0x 04000000
0x 00000000
0x 00000000
Comment
Control register of F4IIR Filter
Control register of F4 IIR Filter
Control register of F4 IIR Filter
Control register of F4 IIR Filter
Control register of F4 IIR Filter
2015/05
- 49 -
[AK7601A]
Function5 (Loudness)
F5ThrG
F5IIR
Lch
<<1
<<1
a00
F5OutG
Z-1
Z-1
a01
Z-1
b01
Z-1
F3IIR
a02
Single Precision
b02
F5ThrG
F5IIR
a00
<<1
<<1
Rch
a01
Z
F5OutG
Z-1
Z-1
b01
Z-1
-1
a02
Single Precision
b02
Figure 38. Function5 Block Diagram
Command
Data 1 (2byte)
Data 2 (2byte)
Data 3 (2byte)
Data 4 (2byte)
Data 5 (2byte)
94H
F5ThrG
F5OutG
Dummy
Dummy
Dummy
Shift Setting
1bit Left x 2
1bit Left x 2
-
R/W
R/W
R/W
-
Default
0x 4000
0x 0000
Command
Data 1 (2byte)
Data 2 (2byte)
Data 3 (2byte)
Data 4 (2byte)
Data 5 (2byte)
95H
F5IIR_a02
F5IIR_a01
F5IIR_a00
F5IIR_b02
F5IIR_b01
Shift Setting
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
R/W
R/W
R/W
R/W
R/W
R/W
Default
0x 0000
0x 0000
0x 4000
0x 0000
0x 0000
MS1446-E-01
Comment
Control register of through gain
Control register of F5 IIR out gain
-
Comment
Control register of F5 IIR Filter
Control register of F5 IIR Filter
Control register of F5 IIR Filter
Control register of F5 IIR Filter
Control register of F5 IIR Filter
2015/05
- 50 -
[AK7601A]
Equalizer
EQGain1
EQBanzd1
Z-1
a01
b01
a02
b02
Double Precision
Z-1
Single Precision
Z-1
Z
Z-1
a00
a00
a01
b01
a02
b02
Z-1
Z-1
<<1
Z-1
a02
b02
a02
b02
Z
a00
a01
b01
a02
b02
Z-1
b01
a02
b02
<<1
Z-1
a01
b01
a02
b02
Z-1
Z
Single Precision
a00
-1
Single Precision
EQBand13
<<1
EQBanzd14
<<1
<<1
a00
Z-1
-1
<<1
a00
a01
EQBanzd12
Z
b02
EQBanzd7
<<1
Z-1
Single Precision
Z-1
a02
Single Precision
Z-1
a00
b01
EQBand6
-1
<<1
Z-1
a01
Z-1
Z-1
EQBand11
<<1
Single Precision
<<1
a00
b01
a00
b01
Z-1
Double Precision
<<1
a01
EQBanzd5
a01
EQBanzd10
Z-1
b02
Z-1
Double Precision
a00
a02
Z-1
Single Precision
Z-1
<<1
b01
EQBand4
<<1
EQBand9
<<1
a01
<<1
a00
Z-1
Z-1
Z-1
Single Precision
EQBanzd8
<<1
A
-1
b02
a02
Double Precision
b02
Double Precision
Z-1
b01
Z-1
b02
a02
Z-1
a00
Z-1
a01
b01
a00
b02
b01
EQBanzd3
Z-1
EQGain2
a02
a01
EQBanzd7
<<1
a00
Z-1
Double Precision
<<1
a00
a02
b01
EQBand2
a00
a01
a01
EQBand6
<<1
a00
Z-1
Z-1
Z-1
b02
a02
EQBanzd5
<<1
a00
Z-1
b01
EQBand1
Z-1
R1
a01
EQBand4
<<1
a00
Z-1
Z-1
EQGain1
<<1
EQBanzd3
<<1
a00
Z-1
L1
EQBand2
a00
<<1
Z-1
<<1
Z
-1
L2
Z
a01
b01
a02
b02
-1
a01
b01
a02
b02
Z-1
Z-1
Double Precision
a00
<<1
R2
a02
b02
Z-1
a00
b01
a02
b02
Z-1
a02
b02
Z
a01
b01
a02
b02
-1
Z-1
Z-1
b01
a02
b02
Z-1
Single Precision
b02
a01
b01
a02
b02
Z-1
Z
a00
b01
a02
b02
a01
b01
a02
b02
a00
b02
Z-1
EQBanzd14
<<1
a01
b01
a02
b02
<<1
a00
Z-1
Z-1
Single Precision
a02
-1
Single Precision
Z-1
Z-1
Double Precision
b01
EQBand13
<<1
Z-1
a01
a01
Single Precision
EQBanzd12
<<1
Z-1
Double Precision
a02
EQBand11
a00
Z-1
a01
b01
Single Precision
Double Precision
<<1
a00
a01
Z-1
EQBanzd10
<<1
Z-1
Double Precision
b01
Double Precision
Z-1
a01
a01
Z-1
EQBand9
<<1
Z-1
B
b01
Single Precision
EQBand8
EQGain2
a01
<<1
Z-1
a01
b01
a02
b02
Z-1
Z-1
Single Precision
Single Precision
Figure 39. Equalizer Block Diagram
Command
Data 1 (2byte)
40H
EQGain1
Shift Setting
1bit Left x 2
R/W
R/W
Default
0x 4000
Command
Data 1 (2byte)
41H
EQGain2
Shift Setting
1bit Left x 2
R/W
R/W
Default
0x 4000
Command
Data 1 (4byte)
Data 2 (4byte)
Data 3 (4byte)
Data 4 (4byte)
Data 5 (4byte)
C3H
EQBand1_a2
EQBand1_a1
EQBand1_a0
EQBand1_b2
EQBand1_b1
Shift Setting
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
R/W
R/W
R/W
R/W
R/W
R/W
Default
0x 00000000
0x 00000000
0x 04000000
0x 00000000
0x 00000000
Command
Data 1 (2byte)
Data 2 (2byte)
Data 3 (2byte)
Data 4 (2byte)
Data 5 (2byte)
96H
EQBand2_a2
EQBand2_a1
EQBand2_a0
EQBand2_b2
EQBand2_b1
Shift Setting
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
R/W
R/W
R/W
R/W
R/W
R/W
Default
0x 0000
0x 0000
0x 4000
0x 0000
0x 0000
MS1446-E-01
2015/05
- 51 -
[AK7601A]
Command
Data 1 (4byte)
Data 2 (4byte)
Data 3 (4byte)
Data 4 (4byte)
Data 5 (4byte)
C4H
EQBand3_a2
EQBand3_a1
EQBand3_a0
EQBand3_b2
EQBand3_b1
Shift Setting
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
R/W
R/W
R/W
R/W
R/W
R/W
Default
0x 00000000
0x 00000000
0x 04000000
0x 00000000
0x 00000000
Command
Data 1 (4byte)
Data 2 (4byte)
Data 3 (4byte)
Data 4 (4byte)
Data 5 (4byte)
C5H
EQBand4_a2
EQBand4_a1
EQBand4_a0
EQBand4_b2
EQBand4_b1
Shift Setting
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
R/W
R/W
R/W
R/W
R/W
R/W
Default
0x 00000000
0x 00000000
0x 04000000
0x 00000000
0x 00000000
Command
Data 1 (2byte)
Data 2 (2byte)
Data 3 (2byte)
Data 4 (2byte)
Data 5 (2byte)
97H
EQBand5_a2
EQBand5_a1
EQBand5_a0
EQBand5_b2
EQBand5_b1
Shift Setting
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
R/W
R/W
R/W
R/W
R/W
R/W
Default
0x 0000
0x 0000
0x 4000
0x 0000
0x 0000
Command
Data 1 (2byte)
Data 2 (2byte)
Data 3 (2byte)
Data 4 (2byte)
Data 5 (2byte)
98H
EQBand6_a2
EQBand6_a1
EQBand6_a0
EQBand6_b2
EQBand6_b1
Shift Setting
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
R/W
R/W
R/W
R/W
R/W
R/W
Default
0x 0000
0x 0000
0x 4000
0x 0000
0x 0000
Command
Data 1 (2byte)
Data 2 (2byte)
Data 3 (2byte)
Data 4 (2byte)
Data 5 (2byte)
99H
EQBand7_a2
EQBand7_a1
EQBand7_a0
EQBand7_b2
EQBand7_b1
Shift Setting
1bit Left x 2
1bit Left x 2
2bit Left x 4
1bit Left x 2
1bit Left x 2
R/W
R/W
R/W
R/W
R/W
R/W
Default
0x 0000
0x 0000
0x 2000
0x 0000
0x 0000
Command
Data 1 (4byte)
Data 2 (4byte)
Data 3 (4byte)
Data 4 (4byte)
Data 5 (4byte)
C6H
EQBand8_a2
EQBand8_a1
EQBand8_a0
EQBand8_b2
EQBand8_b1
Shift Setting
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
R/W
R/W
R/W
R/W
R/W
R/W
Default
0x 00000000
0x 00000000
0x 04000000
0x 00000000
0x 00000000
Command
Data 1 (2byte)
Data 2 (2byte)
Data 3 (2byte)
Data 4 (2byte)
Data 5 (2byte)
9AH
EQBand9_a2
EQBand9_a1
EQBand9_a0
EQBand9_b2
EQBand9_b1
Shift Setting
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
R/W
R/W
R/W
R/W
R/W
R/W
Default
0x 0000
0x 0000
0x 4000
0x 0000
0x 0000
MS1446-E-01
2015/05
- 52 -
[AK7601A]
Command
Data 1 (4byte)
Data 2 (4byte)
Data 3 (4byte)
Data 4 (4byte)
Data 5 (4byte)
C7H
EQBand10_a2
EQBand10_a1
EQBand10_a0
EQBand10_b2
EQBand10_b1
Shift Setting
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
R/W
R/W
R/W
R/W
R/W
R/W
Default
0x 00000000
0x 00000000
0x 04000000
0x 00000000
0x 00000000
Command
Data 1 (4byte)
Data 2 (4byte)
Data 3 (4byte)
Data 4 (4byte)
Data 5 (4byte)
C8H
EQBand11_a2
EQBand11_a1
EQBand11_a0
EQBand11_b2
EQBand11_b1
Shift Setting
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
R/W
R/W
R/W
R/W
R/W
R/W
Default
0x 00000000
0x 00000000
0x 04000000
0x 00000000
0x 00000000
Command
Data 1 (2byte)
Data 2 (2byte)
Data 3 (2byte)
Data 4 (2byte)
Data 5 (2byte)
9BH
EQBand12_a2
EQBand12_a1
EQBand12_a0
EQBand12_b2
EQBand12_b1
Shift Setting
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
R/W
R/W
R/W
R/W
R/W
R/W
Default
0x 0000
0x 0000
0x 4000
0x 0000
0x 0000
Command
Data 1 (2byte)
Data 2 (2byte)
Data 3 (2byte)
Data 4 (2byte)
Data 5 (2byte)
9CH
EQBand13_a2
EQBand13_a1
EQBand13_a0
EQBand13_b2
EQBand13_b1
Shift Setting
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
R/W
R/W
R/W
R/W
R/W
R/W
Default
0x 0000
0x 0000
0x 4000
0x 0000
0x 0000
Command
Data 1 (2byte)
Data 2 (2byte)
Data 3 (2byte)
Data 4 (2byte)
Data 5 (2byte)
9DH
EQBand14_a2
EQBand14_a1
EQBand14_a0
EQBand14_b2
EQBand14_b1
Shift Setting
1bit Left x 2
1bit Left x 2
2bit Left x 4
1bit Left x 2
1bit Left x 2
R/W
R/W
R/W
R/W
R/W
R/W
Default
0x 0000
0x 0000
0x 2000
0x 0000
0x 0000
MS1446-E-01
2015/05
- 53 -
[AK7601A]
Cross Over
XO1IIR
XO1IIR
FL
<<1
a00
XO1IIR
<<1
a10
-1
Z-1
a01
b02
b12
a12
Single Precision
XO1IIR
<<1
a10
a20
Z-1
Z-1
a01
b02
a02
b12
a12
<<1
<<1
a10
-1
<<1
-1
Z
Z-1
Z
a01
a11
b01
-1
Z
Z-1
Z
b02
a02
b12
a12
Double Precision
Double Precision
XO2IIR
XO2IIR
<<1
<<1
a10
Z-1
<<1
Z-1
a01
Z-1
a11
b01
Z-1
b02
a02
Z-1
b12
a12
Double Precision
Double Precision
XO3IIR
XO3IIR
a10 ~ b12
a00 ~ c02
SWR
ROutGain
b11
Z-1
SWL
ROutGain
b11
-1
a00
b22
Single Precision
XO2IIR
XO2IIR
RR
Z-1
a22
Double Precision
FOutGain
b21
Z-1
Double Precision
a00
<<1
Z-1
a21
b11
Z-1
Z
<<1
Z-1
a11
b01
-1
b22
a22
XO1IIR
<<1
RL
Z-1
Double Precision
XO1IIR
a00
FOutGain
b21
Z-1
Double Precision
FR
a21
b11
Z-1
a02
Z-1
Z
a11
b01
<<1
-1
Z
Z-1
<<1
a20
Double Precision
SWOutGain
Double Precision
Figure 40. Cross Over Block Diagram
Command
Data 1 (2byte)
42H
Fout Gain
Shift Setting
1bit Left x 2
R/W
R/W
Default
0x 4000
Command
Data 1 (2byte)
43H
Rout Gain
Shift Setting
1bit Left x 2
R/W
R/W
Default
0x 4000
Command
Data 1 (2byte)
44H
SWout Gain
Shift Setting
1bit Left x 2
R/W
R/W
Default
0x 4000
Command
Data 1 (4byte)
Data 2 (4byte)
Data 3 (4byte)
Data 4 (4byte)
Data 5 (4byte)
C9H
XO1IIR_a02
XO1IIR_a01
XO1IIR_a00
XO1IIR_b02
XO1IIR_b01
Shift Setting
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
R/W
R/W
R/W
R/W
R/W
R/W
Default
0x 00000000
0x 00000000
0x 04000000
0x 00000000
0x 00000000
MS1446-E-01
2015/05
- 54 -
[AK7601A]
Command
Data 1 (4byte)
Data 2 (4byte)
Data 3 (4byte)
Data 4 (4byte)
Data 5 (4byte)
CAH
XO2IIR_a02
XO2IIR_a01
XO2IIR_a00
XO2IIR_b02
XO2IIR_b01
Shift Setting
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
R/W
R/W
R/W
R/W
R/W
R/W
Default
0x 00000000
0x 00000000
0x 04000000
0x 00000000
0x 00000000
Command
Data 1 (4byte)
Data 2 (4byte)
Data 3 (4byte)
Data 4 (4byte)
Data 5 (4byte)
CBH
XO3IIR_a02
XO3IIR_a01
XO3IIR_a00
XO3IIR_b02
XO3IIR_b01
Shift Setting
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
R/W
R/W
R/W
R/W
R/W
R/W
Default
0x 00000000
0x 00000000
0x 04000000
0x 00000000
0x 00000000
Command
Data 1 (4byte)
Data 2 (4byte)
Data 3 (4byte)
Data 4 (4byte)
Data 5 (4byte)
CCH
XO1IIR_a12
XO1IIR_a11
XO1IIR_a10
XO1IIR_b12
XO1IIR_b11
Shift Setting
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
R/W
R/W
R/W
R/W
R/W
R/W
Default
0x 00000000
0x 00000000
0x 04000000
0x 00000000
0x 00000000
Command
Data 1 (4byte)
Data 2 (4byte)
Data 3 (4byte)
Data 4 (4byte)
Data 5 (4byte)
CDH
XO2IIR_a12
XO2IIR_a11
XO2IIR_a10
XO2IIR_b12
XO2IIR_b11
Shift Setting
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
R/W
R/W
R/W
R/W
R/W
R/W
Default
0x 00000000
0x 00000000
0x 04000000
0x 00000000
0x 00000000
Command
Data 1 (4byte)
Data 2 (4byte)
Data 3 (4byte)
Data 4 (4byte)
Data 5 (4byte)
CEH
XO3IIR_a12
XO3IIR_a11
XO3IIR_a10
XO3IIR_b12
XO3IIR_b11
Shift Setting
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
R/W
R/W
R/W
R/W
R/W
R/W
Default
0x 00000000
0x 00000000
0x 04000000
0x 00000000
0x 00000000
Command
Data 1 (2byte)
Data 2 (2byte)
Data 3 (2byte)
Data 4 (2byte)
Data 5 (2byte)
9EH
XO1IIR_a22
XO1IIR_a21
XO1IIR_a20
XO1IIR_b22
XO1IIR_b21
Shift Setting
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
R/W
R/W
R/W
R/W
R/W
R/W
Default
0x 0000
0x 0000
0x 4000
0x 0000
0x 0000
MS1446-E-01
2015/05
- 55 -
[AK7601A]
Spectrum Analyzer
SASIIR
SAIIR1
Lch
>>3
a00
Rch
Z
<<1
-1
|X|
Z
-1
Z
a02
Z
-1
b51
Double Precision
Z-1
-1
-1
a51
b01
Z
Resister
a50
b02
Double Precision
SAIIR2
a10 ~ c12 Double Precision
a50 ~ b52 Double Precision
SAIIR3
a20 ~ c22 Single Precision
a50 ~ b52 Double Precision
SAIIR4
a30 ~ c32 Single Precision
a50 ~ b52 Double Precision
Figure 41. Spectrum Analyzer Block Diagram
Command
Data 1 (4byte)
Data 2 (4byte)
Data 3 (4byte)
Data 4 (4byte)
Data 5 (4byte)
CFH
SAIIR1_a02
SAIIR1_a00
SAIIR1_b02
SAIIR1_b01
Dummy
Shift Setting
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
-
R/W
R/W
R/W
R/W
R/W
-
Default
0x 0FFE2D4D
0x 0001D2B3
0x 0C009B92
0x 07FF1150
Command
Data 1 (4byte)
Data 2 (4byte)
Data 3 (4byte)
Data 4 (4byte)
Data 5 (4byte)
D0H
SAIIR2_a02
SAIIR2_a00
SAIIR2_b02
SAIIR2_b01
Dummy
Shift Setting
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
-
R/W
R/W
R/W
R/W
R/W
-
Default
0x 0FF51627
0x 000AE9D9
0x 0C03A349
0x 07F72D4D
Command
Data 1 (4byte)
Data 2 (4byte)
Data 3 (4byte)
Data 4 (4byte)
Data 5 (4byte)
D1H
SASIIR_a51
SASIIR_a50
SASIIR_b51
Dummy
Dummy
Shift Setting
-
R/W
R/W
R/W
R/W
-
Default
0x 00031773
0x 00031773
0x 07FBA0B8
Command
Data 1 (2byte)
Data 2 (2byte)
Data 3 (2byte)
Data 4 (2byte)
Data 5 (2byte)
9FH
SAIIR3_a22
SAIIR3_a20
SAIIR3_b22
SAIIR3_b21
Dummy
Shift Setting
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
-
R/W
R/W
R/W
R/W
R/W
-
Default
0x FD52
0x 02AE
0x C0E5
0x 79FB
Command
Data 1 (2byte)
Data 2 (2byte)
Data 3 (2byte)
Data 4 (2byte)
Data 5 (2byte)
A0H
SAIIR4_a32
SAIIR4_a30
SAIIR4_b32
SAIIR4_b31
Dummy
Shift Setting
1bit Left x 2
1bit Left x 2
1bit Left x 2
1bit Left x 2
-
R/W
R/W
R/W
R/W
R/W
-
Default
0x F779
0x 0887
0x C2D8
0x 3449
MS1446-E-01
-
-
-
-
-
2015/05
- 56 -
[AK7601A]
Each data level read of spectrum analyzer.
Command
Data1 (2byte)
50H
125Hz (default)
R/W
RD
Command
Data1 (2byte)
51H
500Hz (default)
R/W
RD
Command
Data1 (2byte)
52H
2kHz (default)
R/W
RD
Command
Data1 (2byte)
53H
8kHz (default)
R/W
RD
Delay Block
(1/fs = 1/44100 = approximately 0.0226ms)= one unit
Command
45H
Data 1 (2byte)
Front L1 out delay time
Set range (0x0000~0x031A)
Command
46H
Data 1 (2byte)
Front R1 out delay time
Set range (0x0000~0x031A)
Command
47H
Data 1 (2byte)
Rear L2 out delay time
Set range (0x0000~0x031A)
Command
48H
Data 1 (2byte)
Rear R2 out delay time
Set range (0x0000~0x031A)
Command
49H
Data 1 (2byte)
SW L3 out delay time
Set range (0x0000~0x031A)
Command
4AH
Data 1 (2byte)
SW R3 out delay time
Set range (0x0000~0x031A)
Setting Unit
Delay time: 1/fs unit
R/W
R/W
Default
0x 0000
Setting Unit
Delay time: 1/fs unit
R/W
R/W
Default
0x 0000
Setting Unit
Delay time: 1/fs unit
R/W
R/W
Default
0x 0000
Setting Unit
Delay time: 1/fs unit
R/W
R/W
Default
0x 0000
Setting Unit
Delay time: 1/fs unit
R/W
R/W
Default
0x 0000
Setting Unit
Delay time: 1/fs unit
R/W
R/W
Default
0x 0000
MS1446-E-01
2015/05
- 57 -
[AK7601A]
Command
Data 1 (2byte)
Data 1 (2byte)
Data 1 (2byte)
Data 1 (2byte)
Data 1 (2byte)
A1H
Front L Gain Setting Coefficient
Front R Gain Setting Coefficient
Rear L Gain Setting Coefficient
Rear R Gain Setting Coefficient
Dummy
Shift Setting
1bit Left x2
1bit Left x2
1bit Left x2
1bit Left x2
-
R/W
R/W
R/W
R/W
R/W
-
Command
A2H
Shift Setting
R/W
Data 1 (2byte) SW L Gain Setting Coefficient
1bit Left x2
R/W
Data 1 (2byte) SW R Gain Setting Coefficient
1bit Left x2
R/W
Data 1 (2byte) Dummy
Data 1 (2byte) Dummy
Data 1 (2byte) Dummy
Note: All data are R/W.
When the delay time is set over its limit, it will be set to the maximum value.
Default
0x 4000
0x 4000
0x 4000
0x 4000
-
Default
0x 4000
0x 4000
-
<Delay Amount Setting Example>
SWSW, RSW and FSW bits in 0FH control input source setting.
Lch input 1
Example1. Input1 → L1, L2, L3
Input2 → No data
FL
RL
NL
Delay Memory 1word=24bit
18ms Delay = 794word (44.1kHz x 0.018)
<< 1
<< 1
L1 out (Front)
L2 out (Rear)
L3 out (SW)
<< 1
Example2. Input1 →L2, L3
Input2 → L1
Lch input 1
Lch input 2
FL
RL
NL
Delay Memory 1word=24bit
18ms Delay = 794word (44.1kHz x 0.018)
<< 1
<< 1
L1 out (Front)
L2 out (Rear)
L3 out (SW)
<< 1
Figure 42. Delay Amount Setting Example
MS1446-E-01
2015/05
- 58 -
[AK7601A]
SYSTEM DESIGN
Figure 43 shows system connection diagram. An evaluation board (AKD7601A) is available for fast evaluation as well as
suggestions for peripheral circuitry.
DSP1
DSP2
DSP3
DVDD 25
10u
SDTO1/SDTO3 23
39 CLKMODE
0.1u
0.1u
VSS2 24
38 VSS3
2.2u
SDTI3 26
SDTI2 27
SDTI1 28
IBICK3 29
IBICK2 30
IBICK1 31
ILRCK3 32
ILRCK2 33
XTI 35
37 MUTEN
ILRCK1 34
XTO 36
Digital 5V
SDTO2/SDTI4 22
40 REF18
OLRCK 21
41 VSS4
OBICK 20
AK7601AVQ
42 MONOIN
MCKO 19
Top View
43 AINL1
DSP4
SCL 18
44 GNDIN1
SDA 17
45 AINR1
PDN 16
46 AINL2
μP
DZF 15
AOUT3R 14
AOUT3L
13
12
AOUT2R
11 AOUT2L
9 AOUT1L
10 AOUT1R
7 VSS1
6 AVDD
5 VCOM
4 AINR4
3 AINL4
2 AINR3
1 AINL3
48 AINR2
8 VREFH
47 GNDIN2
0.1u
MUTEN
Mute
Mute
Mute
Analog
Ground
Digital
Ground
Mute
2.2u
0.1u
10u
Mute
Mute
0.1u
10u
Analog 5V
Figure 43. System Connection Diagram
• X’tal mode (CLKMODE pin = “L”)
• SDTO3, SDTI4 Select Mode (DO21-20 bits = “10”, DO11-10 bits = “10”)
Note: Do not take current from the REF18 pin.
MS1446-E-01
2015/05
- 59 -
[AK7601A]
1. Grounding and Power Supply Decoupling
The AK7601A requires careful attention to power supply and grounding arrangements. AVDD and DVDD are usually
supplied from the system’s analog supply. If AVDD and DVDD are supplied separately, AVDD must be ON after DVDD
is ON. VSS1, VSS2, VSS3 and VSS4 of the AK7601A should be connected to the analog ground plane. System
analog ground and digital ground should be connected together near to where the supplies are brought onto the printed
circuit board. Decoupling capacitors should be as near to the AK7601A as possible, with the small value ceramic
capacitor being the nearest.
2. Voltage Reference Inputs
The input voltage to the VREFH pin sets the analog output range. Usually the VREFH pin is connected to the AVDD pin
and a 0.1F ceramic capacitor is connected between the AVDD pin and the VSS1 pin. VCOM is a signal ground of this
chip (AVDD/2). The electrolytic capacitor around 2.2µF attached between the VCOM pin an the VSS1 pin eliminates the
effects of high frequency noise. The ceramic capacitor in particular should be connected as close as possible to the pin. No
load current may be taken from the VCOM pin. All signals, especially clock, should be kept away from the VREFH pin
and the VCOM pin in order to avoid unwanted coupling into the AK7601A.
3. Analog Inputs
The ADC supports single-ended and pseudo-differential inputs. It is biased to VCOM voltage (AVDD/2) internally by
45kΩ(typ). The inputs signal range scales with nominally at 0.65 x VREFH Vpp (typ). The AK7601A can accept input
voltage from VSS1 to AVDD. The output code format is 2's complement. Input DC offset is canceled by an integrated
high-pass filter.
The AK7601A samples the analog input at 64fs. A digital filter removes the noise over the stopband attenuation level,
except for a band of integral multiplication of 64fs. AK7601A has an integrated anti-alias RC filter in order to reduce the
noise at 64fs.
4. Analog output
The DAC output is single-ended and output range is 0.65xVREFH Vpp (typ) centered on VCOM. The bias voltage of the
external summing circuit is supplied externally. The input data format is two’s compliment. Positive full-scale output
corresponds to 7FFFFFH (@24bit) input code, Negative full scale is 800000H (@24bit) and VCOM voltage ideally is
000000H (@24bit). The Out-of-Band noise (shaping noise) generated by the internal delta-sigma modulator is attenuated
by an integrated switched capacitor filter (SCF) and a continuous time filter (CTF).
DC offsets on analog outputs are eliminated by AC coupling since analog outputs has DC offset of VCOM.
MS1446-E-01
2015/05
- 60 -
[AK7601A]
PACKAGE
48pin LQFP(Unit: mm)
1.70Max
9.0
0.13 0.13
7.0
36
1.40 0.05
24
48
13
7.0
37
1
9.0
25
12
0.09 0.20
0.5
0.22 0.08
0.10 M
0° 10°
S
0.10 S
0.30 ~ 0.75
■ Materials and Lead Specification
Package: Epoxy
Lead frame: Copper
Lead-finish: Soldering plate (Pb free)
MS1446-E-01
2015/05
- 61 -
[AK7601A]
MARKING
AK7601AVQ
XXXXXXX
1
1) Pin #1 indication
2) Date Code: XXXXXXX(7 digits)
3) Marking Code: AK7601AVQ
REVISION HISTORY
Date (Y/M/D)
12/07/11
15/05/18
Revision
00
01
Reason
First Edition
Specification
Change
Page
Contents
6
RECOMMENDED OPERATING CONDITIONS
Note 7 was changed.
SWITCHING CHARACTERISTICS
“Power-up Timing” was added.
“tPD2” was added.
■ Timing Diagram
Figure 7: “Power Down & Reset Timing”
→ “Power Up & Power Down Timing”
“■ Power-up Sequence” was added.
■ System Reset
“The AK7601A should be powered-up when the PDN pin
= “L”.” was deleted.
SYSTEM DESIGN
1. Grounding and Power Supply Decoupling
Description was changed.
12
14
23
23
60
MS1446-E-01
2015/05
- 62 -
[AK7601A]
IMPORTANT NOTICE
0. Asahi Kasei Microdevices Corporation (“AKM”) reserves the right to make changes to the
information contained in this document without notice. When you consider any use or application
of AKM product stipulated in this document (“Product”), please make inquiries the sales office of
AKM or authorized distributors as to current status of the Products.
1. All information included in this document are provided only to illustrate the operation and
application examples of AKM Products. AKM neither makes warranties or representations with
respect to the accuracy or completeness of the information contained in this document nor
grants any license to any intellectual property rights or any other rights of AKM or any third party
with respect to the information in this document. You are fully responsible for use of such
information contained in this document in your product design or applications. AKM ASSUMES
NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM
THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS.
2. The Product is neither intended nor warranted for use in equipment or systems that require
extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may
cause loss of human life, bodily injury, serious property damage or serious public impact,
including but not limited to, equipment used in nuclear facilities, equipment used in the
aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other
transportation, traffic signaling equipment, equipment used to control combustions or
explosions, safety devices, elevators and escalators, devices related to electric power, and
equipment used in finance-related fields. Do not use Product for the above use unless
specifically agreed by AKM in writing.
3. Though AKM works continually to improve the Product’s quality and reliability, you are
responsible for complying with safety standards and for providing adequate designs and
safeguards for your hardware, software and systems which minimize risk and avoid situations in
which a malfunction or failure of the Product could cause loss of human life, bodily injury or
damage to property, including data loss or corruption.
4. Do not use or otherwise make available the Product or related technology or any information
contained in this document for any military purposes, including without limitation, for the design,
development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or
missile technology products (mass destruction weapons). When exporting the Products or
related technology or any information contained in this document, you should comply with the
applicable export control laws and regulations and follow the procedures required by such laws
and regulations. The Products and related technology may not be used for or incorporated into
any products or systems whose manufacture, use, or sale is prohibited under any applicable
domestic or foreign laws or regulations.
5. Please contact AKM sales representative for details as to environmental matters such as the
RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws
and regulations that regulate the inclusion or use of controlled substances, including without
limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as
a result of noncompliance with applicable laws and regulations.
6. Resale of the Product with provisions different from the statement and/or technical features set
forth in this document shall immediately void any warranty granted by AKM for the Product and
shall not create or extend in any manner whatsoever, any liability of AKM.
7. This document may not be reproduced or duplicated, in any form, in whole or in part, without
prior written consent of AKM.
MS1446-E-01
2015/05
- 63 -