AOT12N30/AOTF12N30

AOT12N30/AOTF12N30
300V,11.5A N-Channel MOSFET
General Description
Product Summary
The AOT12N30/AOTF12N30 is fabricated using an
advanced high voltage MOSFET process that is designed
to deliver high levels of performance and robustness in
popular AC-DC applications.By providing low RDS(on), Ciss
and Crss along with guaranteed avalanche capability this
parts can be adopted quickly into new and existing offline
power supply designs.These parts are ideal for boost
converters and synchronous rectifiers for consumer,
telecom, industrial power supplies and LED backlighting.
VDS
ID (at VGS=10V)
350V@150℃
11.5A
RDS(ON) (at VGS=10V)
< 0.42Ω
100% UIS Tested
100% Rg Tested
For Halogen Free add "L" suffix to part number:
AOT12N30L/AOTF12N30L
Top View
TO-220
TO-220F
G
D
AOT12N30
D
G
S
G
AOTF12N30
D
S
S
Absolute Maximum Ratings TA=25°C unless otherwise noted
Parameter
Symbol
AOT12N30
Drain-Source Voltage
VDS
300
Gate-Source Voltage
±30
Continuous Drain
Current
VGS
TC=25°C
TC=100°C
ID
Avalanche Current C
IAS
Single pulsed avalanche energy G
Peak diode recovery dv/dt
TC=25°C
Power Dissipation B Derate above 25oC
Junction and Storage Temperature Range
Maximum lead temperature for soldering
purpose, 1/8" from case for 5 seconds
Thermal Characteristics
Parameter
Maximum Junction-to-Ambient A,D
EAS
dv/dt
Rev 1: Nov 2011
11.5*
7.3
IDM
Units
V
V
11.5
Pulsed Drain Current C
Maximum Case-to-sink A
Maximum Junction-to-Case
AOTF12N30
7.3*
A
3.8
A
430
5
132
36
mJ
V/ns
W
1
0.3
29
PD
TJ, TSTG
-55 to 150
W/ oC
°C
300
°C
TL
Symbol
RθJA
RθCS
AOT12N30
65
AOTF12N30
65
Units
°C/W
0.5
0.95
-3.5
°C/W
°C/W
RθJC
www.aosmd.com
Page 1 of 6
AOT12N30/AOTF12N30
Electrical Characteristics (TJ=25°C unless otherwise noted)
Symbol
Parameter
Conditions
Min
ID=250µA, VGS=0V, TJ=25°C
300
Typ
Max
Units
STATIC PARAMETERS
BVDSS
Drain-Source Breakdown Voltage
BVDSS
/∆TJ
Zero Gate Voltage Drain Current
IDSS
Zero Gate Voltage Drain Current
IGSS
Gate-Body leakage current
VDS=0V, VGS=±30V
VGS(th)
Gate Threshold Voltage
VDS=5V ID=250µA
ID=250µA, VGS=0V, TJ=150°C
350
V
ID=250µA, VGS=0V
0.29
V/ oC
VDS=300V, VGS=0V
1
VDS=240V, TJ=125°C
10
±100
3.4
4
4.5
nΑ
V
0.42
Ω
1
V
11.5
A
29
A
pF
RDS(ON)
Static Drain-Source On-Resistance
VGS=10V, ID=6A
0.31
gFS
Forward Transconductance
VDS=40V, ID=6A
11
VSD
Diode Forward Voltage
IS=1A,VGS=0V
IS
Maximum Body-Diode Continuous Current
ISM
Maximum Body-Diode Pulsed Current
DYNAMIC PARAMETERS
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
VGS=0V, VDS=25V, f=1MHz
VGS=0V, VDS=0V, f=1MHz
SWITCHING PARAMETERS
Qg
Total Gate Charge
Gate Source Charge
Qgd
tD(on)
tr
Turn-On Rise Time
tD(off)
Turn-Off DelayTime
tf
trr
Turn-Off Fall Time
Qrr
Body Diode Reverse Recovery Charge IF=12A,dI/dt=100A/µs,VDS=100V
S
0.74
500
632
790
55
90
125
pF
3
7
11
pF
1.3
2.7
4.1
Ω
10
12.8
16
VGS=10V, VDS=240V, ID=12A
Qgs
µA
nC
4.4
nC
Gate Drain Charge
4.3
nC
Turn-On DelayTime
18
ns
31
ns
Body Diode Reverse Recovery Time
VGS=10V, VDS=150V, ID=12A,
RG=25Ω
IF=12A,dI/dt=100A/µs,VDS=100V
36
ns
20
ns
130
170
205
1
1.3
1.6
ns
µC
A. The value of R θJA is measured with the device in a still air environment with T A =25°C.
B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper
dissipation limit for cases where additional heatsinking is used.
C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C, Ratings are based on low frequency and duty cycles to keep initial
TJ =25°C.
D. The R θJA is the sum of the thermal impedance from junction to case R θJC and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a
maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating.
G. L=60mH, IAS=3.8A, VDD=150V, RG=25Ω, Starting TJ=25°C
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Rev 1: Nov 2011
www.aosmd.com
Page 2 of 6
AOT12N30/AOTF12N30
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
100
20
VDS=40V
10V
-55°C
16
10
6.5V
125°C
ID(A)
ID (A)
12
8
6V
4
1
25°C
VGS=5.5V
0
0
5
10
15
20
25
0.1
30
0
2
VDS (Volts)
Fig 1: On-Region Characteristics
1.5
6
8
10
Normalized On-Resistance
3
1.2
RDS(ON) (Ω)
4
VGS(Volts)
Figure 2: Transfer Characteristics
VGS=10V
0.9
0.6
0.3
5
10
15
20
2
1.5
1
0.5
0
-100
0.0
0
VGS=10V
ID=6A
2.5
25
-50
0
50
100
150
200
Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
ID (A)
Figure 3: On-Resistance vs. Drain Current and Gate
Voltage
1.2
1.0E+02
40
1.0E+00
IS (A)
BVDSS (Normalized)
1.0E+01
1.1
1
125°C
1.0E-01
1.0E-02
25°C
0.9
1.0E-03
0.8
-100
1.0E-04
-50
0
50
100
150
200
TJ (°C)
Figure 5:Break Down vs. Junction Temperature
Rev 1: Nov 2011
www.aosmd.com
0.0
0.2
0.4
0.6
0.8
1.0
VSD (Volts)
Figure 6: Body-Diode Characteristics (Note E)
Page 3 of 6
AOT12N30/AOTF12N30
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
10000
15
VDS=240V
ID=12A
Ciss
1000
Capacitance (pF)
VGS (Volts)
12
9
6
100
Coss
10
3
Crss
0
1
0
4
8
12
16
20
0.1
Qg (nC)
Figure 7: Gate-Charge Characteristics
10
100
VDS (Volts)
Figure 8: Capacitance Characteristics
100
100
10µs
10µs
RDS(ON)
limited
RDS(ON)
limited
10
100µs
1
1ms
DC
10ms
0.1
100µs
ID (Amps)
10
ID (Amps)
1
1
1ms
DC
10ms
1s
0.1
TJ(Max)=150°C
TC=25°C
TJ(Max)=150°C
TC=25°C
0.01
0.01
1
10
100
1000
VDS (Volts)
Figure 9: Maximum Forward Biased Safe
Operating Area for AOT12N30 (Note F)
1
10
100
1000
VDS (Volts)
Figure 10: Maximum Forward Biased Safe
Operating Area for AOTF12N30 (Note F)
Current rating ID(A)
12
9
6
3
0
0
25
50
75
100
125
150
TCASE (°C)
Figure 11: Current De-rating (Note B)
Rev 1: Nov 2011
www.aosmd.com
Page 4 of 6
AOT12N30/AOTF12N30
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
ZθJC Normalized Transient
Thermal Resistance
10
1
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
D=Ton/T
TJ,PK=TC+PDM.ZθJC.RθJC
RθJC=0.95°C/W
0.1
PD
0.01
Ton
Single Pulse
T
0.001
0.00001
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s)
Figure 12: Normalized Maximum Transient Thermal Impedance for AOT12N30 (Note F)
ZθJC Normalized Transient
Thermal Resistance
10
1
D=Ton/T
TJ,PK=TC+PDM.ZθJC.RθJC
RθJC=3.5°C/W
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
0.1
PD
0.01
Ton
Single Pulse
T
0.001
0.00001
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s)
Figure 13: Normalized Maximum Transient Thermal Impedance for AOTF12N30 (Note F)
Rev 1: Nov 2011
www.aosmd.com
Page 5 of 6
AOT12N30/AOTF12N30
Gate Charge Test Circuit & Waveform
Vgs
Qg
10V
+
+ Vds
VDC
-
Qgs
Qgd
VDC
DUT
-
Vgs
Ig
Charge
Res istive Switching Test Circuit & Waveforms
RL
Vds
Vds
DUT
Vgs
+
VDC
90%
Vdd
-
Rg
10%
Vgs
Vgs
t d(on)
tr
t d(off)
t on
tf
t off
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms
L
EAR= 1/2 LI
Vds
2
AR
BVDSS
Vds
Id
+ Vdd
Vgs
Vgs
I AR
VDC
-
Rg
Id
DUT
Vgs
Vgs
Diode Recovery Tes t Circuit & Waveforms
Qrr = - Idt
Vds +
DUT
Vgs
Vds -
Isd
Vgs
Ig
Rev 1: Nov 2011
L
Isd
+
VDC
-
IF
trr
dI/dt
IRM
Vdd
Vdd
Vds
www.aosmd.com
Page 6 of 6