DATASHEET SEARCH SITE | WWW.ALLDATASHEET.COM

IRLR7833
IRLU7833
Applications
High Frequency Synchronous Buck
Converters for Computer Processor Power
l High Frequency Isolated DC-DC
Converters with Synchronous Rectification
for Telecom and Industrial Use
I-Pak
IRLU7833
D-Pak
IRLR7833
l
Benefits
l Very Low RDS(on) at 4.5V VGS
l Ultra-Low Gate Impedance
l Fully Characterized Avalanche Voltage
and Current
VDSS RDS(on) max
4.5m:
30V
Qg
33nC
Absolute Maximum Ratings
Parameter
Max.
Units
30
V
VDS
Drain-to-Source Voltage
VGS
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
± 20
140
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current
99
Maximum Power Dissipation
140
ID @ TC = 25°C
ID @ TC = 100°C
IDM
c
PD @TC = 100°C
g
Maximum Power Dissipation g
TJ
Linear Derating Factor
Operating Junction and
TSTG
Storage Temperature Range
PD @TC = 25°C
f
f
A
560
W
71
0.95
-55 to + 175
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 screw
W/°C
°C
300 (1.6mm from case)
x
x
10 lbf in (1.1N m)
Thermal Resistance
Parameter
RθJC
RθJA
Junction-to-Case
Junction-to-Ambient (PCB Mount)
RθJA
Junction-to-Ambient
2014-8-25
g
1
Typ.
Max.
–––
1.05
–––
50
–––
110
Units
°C/W
www.kersemi.com
IRLR/U7833
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
BVDSS
∆ΒVDSS/∆TJ
RDS(on)
Drain-to-Source Breakdown Voltage
30
–––
–––
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
–––
–––
19
3.6
–––
4.5
VGS(th)
∆VGS(th)/∆TJ
IDSS
Gate Threshold Voltage
–––
1.4
4.4
–––
5.5
2.3
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
–––
–––
-6.0
–––
–––
1.0
IGSS
Gate-to-Source Forward Leakage
–––
–––
–––
–––
150
100
nA
VDS = 24V, VGS = 0V, TJ = 125°C
VGS = 20V
Gate-to-Source Reverse Leakage
Forward Transconductance
–––
66
–––
–––
-100
–––
S
VGS = -20V
VDS = 15V, ID = 12A
Total Gate Charge
Pre-Vth Gate-to-Source Charge
–––
–––
33
8.7
50
–––
Post-Vth Gate-to-Source Charge
Gate-to-Drain Charge
–––
–––
2.1
13
–––
–––
Qgodr
Qsw
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
–––
9.9
15
–––
–––
Qoss
td(on)
Output Charge
Turn-On Delay Time
–––
–––
22
14
–––
–––
tr
td(off)
Rise Time
Turn-Off Delay Time
–––
–––
6.9
23
–––
–––
tf
Ciss
Fall Time
Input Capacitance
–––
–––
15
4010
–––
–––
Coss
Crss
Output Capacitance
Reverse Transfer Capacitance
–––
–––
950
470
–––
–––
gfs
Qg
Qgs1
Qgs2
Qgd
V
VGS = 0V, ID = 250µA
mV/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 15A
f
= 12A f
V
VGS = 4.5V, ID
VDS = VGS, ID = 250µA
mV/°C
µA VDS = 24V, VGS = 0V
VDS = 16V
nC
VGS = 4.5V
ID = 12A
See Fig. 16
nC
ns
VDS = 16V, VGS = 0V
VDD = 15V, VGS = 4.5V
f
ID = 12A
Clamped Inductive Load
VGS = 0V
pF
VDS = 15V
ƒ = 1.0MHz
Avalanche Characteristics
EAS
IAR
Parameter
Single Pulse Avalanche Energy
Avalanche Current
EAR
Repetitive Avalanche Energy
c
d
c
Typ.
–––
–––
Max.
530
20
Units
mJ
A
–––
14
mJ
Diode Characteristics
Parameter
Min. Typ. Max. Units
140
f
Conditions
IS
Continuous Source Current
–––
–––
ISM
(Body Diode)
Pulsed Source Current
–––
–––
560
VSD
(Body Diode)
Diode Forward Voltage
–––
–––
1.0
V
p-n junction diode.
TJ = 25°C, IS = 12A, VGS = 0V
trr
Qrr
Reverse Recovery Time
Reverse Recovery Charge
–––
–––
39
37
58
55
ns
nC
TJ = 25°C, IF = 12A, VDD = 15V
di/dt = 100A/µs
ton
Forward Turn-On Time
2014-8-25
ch
MOSFET symbol
A
showing the
integral reverse
D
G
S
f
f
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
2
www.kersemi.com
IRLR/U7833
1000
1000
100
BOTTOM
10
VGS
10V
5.0V
4.5V
3.5V
3.0V
2.7V
2.5V
2.25V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
1
2.25V
0.1
100
BOTTOM
10
2.25V
20µs PULSE WIDTH
Tj = 175°C
20µs PULSE WIDTH
Tj = 25°C
0.01
1
0.1
1
10
100
1000
0.1
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
2.0
T J = 175°C
100.00
10.00
T J = 25°C
1.00
VDS = 25V
20µs PULSE WIDTH
ID = 30A
VGS = 10V
1.5
(Normalized)
RDS(on) , Drain-to-Source On Resistance
1000.0
ID, Drain-to-Source Current (Α)
VGS
10V
5.0V
4.5V
3.5V
3.0V
2.7V
2.5V
2.25V
1.0
0.5
0.10
2.0
3.0
4.0
5.0
6.0
Fig 3. Typical Transfer Characteristics
2014-8-25
-60 -40 -20 0
20 40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
VGS , Gate-to-Source Voltage (V)
Fig 4. Normalized On-Resistance
vs. Temperature
3
www.kersemi.com
IRLR/U7833
100000
6.0
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, C ds SHORTED
Crss = Cgd
VGS , Gate-to-Source Voltage (V)
ID= 12A
C, Capacitance(pF)
Coss = Cds + Cgd
10000
Ciss
Coss
1000
Crss
VDS= 24V
VDS= 15V
5.0
4.0
3.0
2.0
1.0
0.0
100
1
10
0
100
20
30
40
50
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
10000
100.00
ID, Drain-to-Source Current (A)
1000.00
ISD, Reverse Drain Current (A)
10
Q G Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1000
T J = 175°C
100
10.00
T J = 25°C
1.00
100µsec
10
1msec
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
10msec
1
0.10
0.0
0.5
1.0
1.5
2.0
2.5
10
100
1000
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode
Forward Voltage
2014-8-25
1
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
4
www.kersemi.com
IRLR/U7833
2.5
150
VGS(th) Gate threshold Voltage (V)
LIMITED BY PACKAGE
125
ID , Drain Current (A)
100
75
50
25
2.0
ID = 250µA
1.5
1.0
0.5
0.0
0
25
50
75
100
125
150
-75 -50 -25
175
°
TC, Case Temperature (°C)
0
25
50
75
100 125 150 175
T J , Temperature ( °C )
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 10. Threshold Voltage vs. Temperature
(Z thJC)
10
1
Thermal Response
D = 0.50
0.20
P DM
0.10
0.1
0.05
0.02
0.01
t1
SINGLE PULSE
(THERMAL RESPONSE)
t2
Notes:
1. Duty factor D =
2. Peak T
0.01
0.00001
0.0001
0.001
0.01
t1/ t 2
J = P DM x Z thJC
+TC
0.1
1
t1, Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
2014-8-25
5
www.kersemi.com
IRLR/U7833
15V
+
V
- DD
IAS
20V
VGS
EAS , Single Pulse Avalanche Energy (mJ)
10000
D.U.T
RG
A
0.01Ω
tp
ID
8.2A
14A
BOTTOM 20A
TOP
12500
DRIVER
L
VDS
15000
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
7500
5000
2500
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
I AS
VDS
Fig 12b. Unclamped Inductive Waveforms
VGS
RG
Current Regulator
Same Type as D.U.T.
RD
D.U.T.
+
-V DD
V GS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
50KΩ
12V
.2µF
Fig 14a. Switching Time Test Circuit
.3µF
D.U.T.
+
V
- DS
VDS
90%
VGS
3mA
IG
10%
VGS
ID
Current Sampling Resistors
td(on)
Fig 13. Gate Charge Test Circuit
2014-8-25
tr
t d(off)
tf
Fig 14b. Switching Time Waveforms
6
www.kersemi.com
IRLR/U7833
D.U.T
Driver Gate Drive
ƒ
+
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by R G
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
V DD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
‚
D=
Period
P.W.
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
+
Body Diode
VDD
Forward Drop
Inductor Curent
-
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Id
Vds
Vgs
Vgs(th)
Qgs1 Qgs2
Qgd
Qgodr
Fig 16. Gate Charge Waveform
2014-8-25
7
www.kersemi.com
IRLR/U7833
Power MOSFET Selection for Non-Isolated DC/DC Converters
Control FET
Synchronous FET
Special attention has been given to the power losses
in the switching elements of the circuit - Q1 and Q2.
Power losses in the high side switch Q1, also called
the Control FET, are impacted by the Rds(on) of the
MOSFET, but these conduction losses are only about
one half of the total losses.
The power loss equation for Q2 is approximated
by;
*
Ploss = Pconduction + Pdrive + Poutput
(
2
Ploss = Irms × Rds(on)
)
Power losses in the control switch Q1 are given
by;
+ (Qg × Vg × f )
Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput
Q

+  oss × Vin × f + (Qrr × Vin × f )
 2

This can be expanded and approximated by;
*dissipated primarily in Q1.
Ploss = (Irms 2 × Rds(on ) )

Qgd
+I ×
× Vin ×
ig


 
Qgs 2
f +  I ×
× Vin × f 
ig
 

+ (Qg × Vg × f )
+
 Qoss
× Vin × f 
 2

This simplified loss equation includes the terms Qgs2
and Qoss which are new to Power MOSFET data sheets.
Qgs2 is a sub element of traditional gate-source
charge that is included in all MOSFET data sheets.
The importance of splitting this gate-source charge
into two sub elements, Qgs1 and Qgs2, can be seen from
Fig 16.
Qgs2 indicates the charge that must be supplied by
the gate driver between the time that the threshold
voltage has been reached and the time the drain current rises to Idmax at which time the drain voltage begins to change. Minimizing Q gs2 is a critical factor in
reducing switching losses in Q1.
Qoss is the charge that must be supplied to the output capacitance of the MOSFET during every switching cycle. Figure A shows how Qoss is formed by the
parallel combination of the voltage dependant (nonlinear) capacitance’s Cds and Cdg when multiplied by
the power supply input buss voltage.
For the synchronous MOSFET Q2, Rds(on) is an important characteristic; however, once again the importance of gate charge must not be overlooked since
it impacts three critical areas. Under light load the
MOSFET must still be turned on and off by the control IC so the gate drive losses become much more
significant. Secondly, the output charge Qoss and reverse recovery charge Qrr both generate losses that
are transfered to Q1 and increase the dissipation in
that device. Thirdly, gate charge will impact the
MOSFETs’ susceptibility to Cdv/dt turn on.
The drain of Q2 is connected to the switching node
of the converter and therefore sees transitions between ground and Vin. As Q1 turns on and off there is
a rate of change of drain voltage dV/dt which is capacitively coupled to the gate of Q2 and can induce
a voltage spike on the gate that is sufficient to turn
the MOSFET on, resulting in shoot-through current .
The ratio of Qgd/Qgs1 must be minimized to reduce the
potential for Cdv/dt turn on.
Figure A: Qoss Characteristic
2014-8-25
8
www.kersemi.com
IRLR/U7833
TO-252AA (D-Pak) Package Outline
Dimensions are shown in millimeters (inches)
2.38 (.094)
2.19 (.086)
6.73 (.265)
6.35 (.250)
-A1.27 (.050)
0.88 (.035)
5.46 (.215)
5.21 (.205)
1.14 (.045)
0.89 (.035)
0.58 (.023)
0.46 (.018)
4
6.45 (.245)
5.68 (.224)
6.22 (.245)
5.97 (.235)
10.42 (.410)
9.40 (.370)
1.02 (.040)
1.64 (.025)
1
2
1 - GATE
1.52 (.060)
1.15 (.045)
3X
1.14 (.045)
0.76 (.030)
0.89 (.035)
0.64 (.025)
0.25 (.010)
2 - DRAIN
0.51 (.020)
MIN.
-B-
2X
LEAD ASSIGNMENTS
3
3 - SOURCE
4 - DRAIN
0.58 (.023)
0.46 (.018)
M A M B
NOTES:
2.28 (.090)
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH.
3 CONFORMS TO JEDEC OUTLINE TO-252AA.
4.57 (.180)
4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP,
SOLDER DIP MAX. +0.16 (.006).
TO-252AA (D-Pak) Part Marking Information
5
)
5
,
1
$
6
,
6
,
+
7
(
/
3
2
&
(
7
$
'
(
'
5
$
(
<
2
*
2
/
.
(
(
:
$
(
1
,
/
<
/
%
0
(
6
6
$
(
+
7
1
,
$ 8
)
,5
5
(
,
)
,
7
&
(
5
:
:
1
2
'
(
/
%
0
(
6
6
$
$
(
1
,
/
<
/
%
0
(
6
6
$
(
'
2
&
7
2
/
8
5
(
%
/
$
1
2
,
7
$
1
5
(
7
1
,
<
/
% 0 ( (
6
'
6
$ 2
&
+ 7
7
,
2
: /
0
8
1
7
5
$
3
0
$
;
(
2014-8-25
www.kersemi.com
IRLR/U7833
I-Pak (TO-251AA) Package Outline
Dimensions are shown in millimeters (inches)
6.73 (.265)
6.35 (.250)
2.38 (.094)
2.19 (.086)
-A-
0.58 (.023)
0.46 (.018)
1.27 (.050)
0.88 (.035)
5.46 (.215)
5.21 (.205)
LEAD ASSIGNMENTS
4
6.45 (.245)
5.68 (.224)
6.22 (.245)
5.97 (.235)
1.52 (.060)
1.15 (.045)
1
2
2.28 (.090)
1.91 (.075)
1.14 (.045)
0.76 (.030)
2.28 (.090)
3 - SOURCE
4 - DRAIN
3
-B-
3X
1 - GATE
2 - DRAIN
3X
9.65 (.380)
8.89 (.350)
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH.
3 CONFORMS TO JEDEC OUTLINE TO-252AA.
4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP,
SOLDER DIP MAX. +0.16 (.006).
0.89 (.035)
0.64 (.025)
1.14 (.045)
0.89 (.035)
0.25 (.010)
M A M B
0.58 (.023)
0.46 (.018)
2X
I-Pak (TO-251AA) Part Marking Information
2014-8-25
10
www.kersemi.com
IRLR/U7833
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR
TRR
16.3 ( .641 )
15.7 ( .619 )
12.1 ( .476 )
11.9 ( .469 )
TRL
16.3 ( .641 )
15.7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
FEED DIRECTION
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
13 INCH
16 mm
NOTES :
1. OUTLINE CONFORMS TO EIA-481.
Notes:
 Repetitive rating; pulse width limited by
„ Calculated continuous current based on maximum allowable
max. junction temperature.
‚ Starting TJ = 25°C, L = 2.6mH, RG = 25Ω,
IAS = 20A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
… When mounted on 1" square PCB (FR-4 or G-10 Material).
2014-8-25
junction temperature. Package limitation current is 30A.
For recommended footprint and soldering techniques refer to
application note #AN-994.
11
www.kersemi.com