Technical Product Description-ATI-v01_02-EN

L ow Po we r 3 D
Digital Output
M a g n e ti c
3D Magnetic Sensor with Digital Output
3D Magnetic Sensor
TLV493D-A1B6
3D Magnetic Sensor
Technical Product Description
Rev 1.0, 2015-05-26
Sense & Control
Sensor
with
3D Magnetic Sensor
TLV493D-A1B6
Table of Contents
1
1.1
1.2
Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Target Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2
2.1
2.1.1
2.1.2
2.1.3
2.2
2.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Power mode control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Sensing part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Communication Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Pin Configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3
3.1
3.2
3.3
3.4
3.5
Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Magnetic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Temperature Measurement (only if activated) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4
4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.4
4.5
4.6
I²C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Interface Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
I²C format description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Timing Diagrams and Access Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
I²C Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Power Up and Power Down Mode I²C Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Fast mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Low Power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Ultra Low Power Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Master-controlled mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Interface and Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
I²C read register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
I²C write register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5
5.1
Typical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Current Consumption vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Technical Product Description
2
Rev 1.0, 2015-05-26
3D Magnetic Sensor
TLV493D-A1B6
List of Tables
Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Overview of Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
TSOP-6 pin description and configuration (see Figure 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Electrical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Magnetic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Conversion table for 12Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Conversion table for 8Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Temperature Measurement Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Overview of modes and its corresponding current consumption with sample rates . . . . . . . . . . 19
Interface and timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
I²C read register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
I²C write register Configuration Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Technical Product Description
3
Rev 1.0, 2015-05-26
3D Magnetic Sensor
TLV493D-A1B6
List of Figures
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Image of TLV493D-A1B6 in TSOP-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Application circuit with external power supply and µC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
General I²C format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Read example with default setting ADDR=1 (=BD; Write = BC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Read example with ADDR=0 (3F; Write = 3E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
I²C Timing Diagram, see also Table 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Current consumption during power up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Fast Mode (/w and w/o temp. measurement) in relation to /INT output . . . . . . . . . . . . . . . . . . . . . 16
Synchronous, low-power I²C readout using an /INT wake-up pulse . . . . . . . . . . . . . . . . . . . . . . . . . 17
Synchronous, fast I²C access using a periodic I²C read-out. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Synchronous, fast I²C access using an /INT trigger for I²C readout . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Typical Current Consumption versus Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Image of TLV493D-A1B6 in TSOP-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Package Outlines (all dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Packing (all dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Technical Product Description
4
Rev 1.0, 2015-05-26
3D Magnetic Sensor
TLV493D-A1B6
Product Description
1
Product Description
1.1
Target Applications
This product is suitable for e.g. joystick, controll elements in white goods or anti tampering functionality in
electric meter applications.
Figure 1
Image of TLV493D-A1B6 in TSOP-6
1.2
Features
•
3D magnetic sensing
•
Very low power consumption = 10µA during operations (10Hz)
•
Power down mode with 7nA power consumption
•
Digital output via 2-wire standard I²C interface
•
12 bit data resolution for each measurement direction
•
Bx, By and Bz linear field measurement up to +150mT
•
Excellent matching of X/Y measurement for accurate angle sensing
•
Variable update frequencies and power modes (configurable during operation)
•
Supply voltage range= 2.7V…3.5V; Temperature range Tj= -40°C…125°C
•
Small, industrial 6 pin TSOP package
•
Triggering by external µC possible
Table 1
Overview of Modes
Mode
Update Rate / Hz
IDD (25°C)
Power Down
-
7 nA
Ultra Low Power
10
10 µA
Low Power
100
100 µA
Fast Mode
3300
3.7 mA
Table 2
Ordering Information
Product Name
Marking
Ordering Code
Package
3D Magnetic Sensor
SA (eng. samples)
VA (serie)
SP001286056
PG-TSOP-6-6-5
Technical Product Description
5
Rev 1.0, 2015-05-26
3D Magnetic Sensor
TLV493D-A1B6
Functional Description
2
Functional Description
2.1
General
Description of the Block diagram and its functions.
F-OSC
Power Mode Control
LP-OSC
VDD
GND
Bias
Spinning
vertical-Hall plates
X-Direction
SCL; /INT
Spinning lat.
Hall plates
Z-Direction
Comparator
z
ADC
Digital tracking,
demodulation &
I²C interface
SDA
MUX
Spinning
vertical -Hall plates
Y-Direction
Temperature
Figure 2
Block Diagram
The IC consists of three main function units containing the following building blocks:
•
The power mode control system, containing a low-power oscillator, basic biasing, accurate reset,
undervoltage detection and a fast oscillator.
•
The sensing part, containing the HALL biasing, HALL probes with multiplexers and successive tracking
ADC. Furthermore a temperature sensor is implemented.
•
The I²C interface, containing the register file and I/O pads, see Chapter 4.
2.1.1
Power mode control
The power mode control provides power distribution in the IC, a power-on reset function and a specialized
low-power oscillator as clock source. Additionally it is handling the start-up behavior.
•
On start-up this unit:
– activates the biasing, provides an accurate reset detector and fast oscillator
– reads out the voltage level on ADDR pin. The applied voltage represents the address. See also
Chapter 4.2.
– initiates sensor power down mode (needs to be configured via I²C interface)
Note: The sensor is in power down mode after power up
•
After re-configuration a measurement cycle is performed, regularly containing of:
Technical Product Description
6
Rev 1.0, 2015-05-26
3D Magnetic Sensor
TLV493D-A1B6
Functional Description
– the internal biasing, checks for reset condition and provides the the fast oscillator
– the HALL biasing
– three HALL probe channels sequentially incl. temperature (if activated)
•
It then enters the configured mode again
In any case functions are only executed if the supply voltage is high enough, otherwise the reset circuit will
halt the state machine until the level is reached and continues its operation afterwards. The functions are also
restarted if a reset event occurs in between.
2.1.2
Sensing part
Performs measurements of the magnetic field in X, Y and Z directions. Each X, Y and Z-Hall probe is connected
sequentially to a multiplexer, which is then connected to an Analog to Digital Converter (ADC). Optionally, the
temperature is determined after the three Hall channels. The current consumption decreases by -25% when
temperature measurement is deactivated.
2.1.3
Communication Unit
See Chapter 4 for detailled information on communication.
2.2
Pin Configuration (top view)
G
N
D
S
(A D A
DD
R
)
Y
G
V
DD
G
N
D
S
(/I C L
N
T)
ND
Z
X
Figure 3
Pin Configuration
Table 3
TSOP-6 pin description and configuration (see Figure 3)
Pin No.
Name
Description
1
SCL
/INT
Interface serial clock pin (input)
Interrupt pin, signals a finished measurement cycle
2
GND
connect to GND (recommended)
3
GND
Ground Pin
4
VDD
Supply Pin
5
GND
connect to GND (recommended)
6
SDA
ADDR
Interface serial data pin (input/output), open drain
Sensor ID configuration during power up (see Chapter 4.2)
Technical Product Description
7
Rev 1.0, 2015-05-26
3D Magnetic Sensor
TLV493D-A1B6
Functional Description
2.3
Application circuit
The use of an interrupt line is optional, but highly recommended to ensure proper and efficient readout of the
sensor data.
The pull-up resistors of the I²C bus have to be set in a way to keep the rise- and fall time specification of the
interface bus parameters (see specification section) with the parasitic capacitive load of the actual setup.
Please note: too small resistive values have to be prevented to avoid unnecessary power consumption during
interface transmissions, especially for low-power applications. Additionally, 100nF decreases the emission.
R1 = 4.7k
R2 = 4.7k
C1 = 100nF
VDD
Power
Supply
R1
R2
GND
VDD
SDA
C1
Microcontroller
e.g.
TLV493D
XMC 1100
SCL
GND
Figure 4
CBuf
(/INT)
Application circuit with external power supply and µC
Technical Product Description
8
Rev 1.0, 2015-05-26
3D Magnetic Sensor
TLV493D-A1B6
Specification
3
Specification
3.1
Absolute Maximum Ratings
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at these or any other
conditions above those indicated in the operational sections of this specification is not implied.
Furthermore, only single error cases are assumed. More than one stress/error case may also damage
the device.
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
During absolute maximum rating overload conditions the voltage on VDD pins with respect to ground
(VSS) must not exceed the values defined by the absolute maximum ratings.
Table 4
Absolute maximum ratings
Parameter
Symbol min
Junction temperature
Tj
Voltage on VDD
VDD
Magnetic field
Bmax
Voltage range on any pin to GND
3.2
Operating Range
Table 5
Operating Range
Parameter
Symbol
Operating temperature Tj
Supply voltage
VDD
Reset level
Vres
Technical Product Description
typ
max
unit
-40
125
°C
-0.3
3.5
V
1
T
3.5
V
max
unit
Note/Condition
125
°C
Tj = Ta + 3K in fast mode
3.5
V
-0.1
min
typ
-40
2.7
3.3
2.2
Note/Condition
open-drain outputs are not
current limited when forced
by a voltage in enabled state!
V
9
Rev 1.0, 2015-05-26
3D Magnetic Sensor
TLV493D-A1B6
Specification
3.3
Electrical Characteristics
Note: All specification parameters refer to 3.3V +5% nominal supply Vdd on the pins directly. Typical values
refer to 25°C and to 3.3V +5% nominal supply.
Table 6
Electrical setup
Parameter
min
Supply current IDD1)
Maximum supply current IDD_max
Input voltage low threshold
typ
max
unit
Note/Condition
7
nA
power down mode (default after
power on), all off
10
µA
ultra low power mode, see
Chapter 4.3.3
100
µA
low power mode, see Chapter 4.3.4
3.7
mA
fast mode, see Chapter 4.3.4.1
3.7
mA
peak in ULP mode for about 300µs2)
%Vdd
all input pads
70
%Vdd
all input pads
20
%Vdd
all output pads, static load
0.3
µs
0.3µs for 400kHz mode (or may
require less C load)
30
Input voltage high threshold
Output voltage low level @ 3 mA load
3)
Fall time SDA/SCL signal (tFALL)
0.25
Rise time SDA/SCL signal (tRISE)3)
0.54)
µs
R=4.7k
Output high level
VDD
V
given by ext. pull-up resistor
1)
2)
3)
4)
4)
Average values
During power down mode the current consumption is about 7nA
Dependent on used R-C-combination
For given AppCircuit; Capacitive load for each bus line = 400pF (SDA, SCL)
Technical Product Description
10
Rev 1.0, 2015-05-26
3D Magnetic Sensor
TLV493D-A1B6
Specification
3.4
Magnetic Characteristics
Typical values for 25°C and VS = 3.3V +5%
Table 7
Magnetic Characteristics
Parameter
min
Usable magnetic linear range
typ
max
+150
unit
Note/Condition
mT
Bx, By and Bz
Bx, By and Bz @ RT
Magnetic offset error
-1
+0.2
+1
mT
Magnetic gain error
-20
+5
+20
%
X to Y static channel matching
X/Y to Z static channel matching
%
+2
-20
+5
+20
%
Magnetic noise (rms)
0.1
mT
rms = 1 sigma
Resolution 12bit readout
98
µT/
LSB
Resolution 8bit readout
1.56
mT/
LSB
Temperature compensation
01)
ppm/K factory setting for external magnet
Magnetic hysteresis
1
LSB12
only due to quantization effects
DNL
+2
LSB12
Differential Non-Linearity
INL
0.1
%
Integral Non-Linearity
1) Can be changed by programming; further values are -2000, -1000, +500 ppm/K
Conversion register value to magnetic field value:
The conversion is realized by the two’s complement. Please use following table for transformation:
Table 8
e.g.
Conversion table for 12Bit
Bit11
Bit10
Bit9
Bit8
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
LSB
-2048
1024
512
256
128
64
32
16
8
4
2
1
1
1
1
1
0
0
0
0
1
1
1
1
Example for 12Bit read out: 1111 0000 1111: -2048 + 1024 + 512 + 256 + 0 + 0 + 0 + 0 + 8 + 4 + 2 +1 = -241 LSB
Calculation to mT: -241 LSB * 0.098 mT/LSB = -23.6mT
Table 9
e.g.
Conversion table for 8Bit
Bit8
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
LSB
-128
64
32
16
8
4
2
1
0
1
0
1
1
1
0
1
Example for 8-Bit read out: 0101 1101: 0 + 64 + 0 + 16 + 8 + 4 + 0 + 1 = 93 LSB
Calculation to mT: 93 LSB * 1.56 mT/LSB = 145.1 mT
Technical Product Description
11
Rev 1.0, 2015-05-26
3D Magnetic Sensor
TLV493D-A1B6
Specification
3.5
Temperature Measurement (only if activated)
Table 10
Temperature Measurement Characteristics
Parameter
min
1)
typ
max
unit
Digital value @ 25°C
340
LSB
Resolution 12bit
1.1
°C/LSB
Resolution 8bit
17
°C/LSB
Accuracy
+5
°C
Note/Condition
not recommended
1) Theoretical possible measurement range from -50°C to 150°C
Technical Product Description
12
Rev 1.0, 2015-05-26
3D Magnetic Sensor
TLV493D-A1B6
I²C Interface
4
I²C Interface
4.1
Interface Description
•
The I²C interface requires two pins:
– A serial clock (SCL) input pin.
– A serial data pin (SDA) for in- & output (open drain)
•
The interface does not require the internal oscillators to be active, thus it can operate in any power mode.
•
The values of all three axis are stored in separate registers. After a power-on reset these registers will read
zero.
•
A reset event (operated during an ADC conversion) does not reset these values but only inhibits the ADC
conversion. Only a complete supply failure, which is detected by the “zero current” reset block will reset
this registers and initiate a new power-on cycle to be executed.
•
A 2 bit frame counter checks for a “frozen” sensor condition (e.g. the power unit did not initiate a
measurement cycle - which means the frame counter does not get incremented anymore).
4.2
I²C format description
The interface can be accessed in any power mode. It conforms to the I2C fast mode specification (400kBit/sec
max.) but allows operation up to at least 1 Mbit/sec in case the electrical setup of the bus is lean enough
(which means the amount of devices and thus the parasitic load of the bus line is limited to keep rise/fall time
conditions small). The allowed max. clock rate above 400kHz has to be defined on demand given a specific
electrical setup.
The protocol uses a standard 7 bit address followed by data bytes to be sent or received. 12bit addressing or
any sub-addressing is not implemented, so each start condition always begins with writing the address,
followed by reading (or writing) the first byte of the bitmap and continues with reading (or writing) the next
byte until all bytes are read (or written) or the communication is simply terminated by a stop condition. The
basic initiator for the protocol is the falling SDA edge.
A(6)
A(5)
A(4)
A(3)
A(2)
A(1)
A(0)
R/W
ACK
D(7)
D(6)
D(5)
D(4)
D(3)
D(2)
D(1)
D(0)
ACK
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
SDA
SCL
Figure 5
P
opt. further frames
S
General I²C format
Note: A reset can be triggered with general I²C address 0x00. After this command the sensor will do an power
up sequence. (See Chapter 4.3.2)
Technical Product Description
13
Rev 1.0, 2015-05-26
3D Magnetic Sensor
TLV493D-A1B6
I²C Interface
The default setting after startup for a read operation is shown below for ADDR=1 and ADDR=0. ADDR=1 is
defined by Pin SDA at power up to be high according AppCircuit Figure 4. In order to set ADDR=0 SDA must
pulled down to low during power up. To set the address the high or low level must be kept 200µs after
supplying the sensor.
A(6)
A(5)
A(4)
A(3)
A(2)
A(1)
A(0)
R/W
ACK
D(7)
D(6)
D(5)
D(4)
D(3)
D(2)
D(1)
D(0)
ACK
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
SDA
SCL
Figure 6
P
opt. further frames
S
Read example with default setting ADDR=1 (=BD; Write = BC)
For ADDR=1 bit A(6)=1 and A(0)=NOT(Addr) = 0 is used.
After configuration to ADDR=0 following sequence is used.
A(6)
A(5)
A(4)
A(3)
A(2)
A(1)
A(0)
R/W
ACK
D(7)
D(6)
D(5)
D(4)
D(3)
D(2)
D(1)
D(0)
ACK
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
SDA
SCL
Figure 7
P
opt. further frames
S
Read example with ADDR=0 (3F; Write = 3E)
For ADDR=0 bit A(6)=0 and A(0)=NOT(Addr) = 1 is used.
Technical Product Description
14
Rev 1.0, 2015-05-26
3D Magnetic Sensor
TLV493D-A1B6
I²C Interface
4.3
Timing Diagrams and Access Modes
4.3.1
I²C Timing
tSTOP
tWAIT
tSTA
tRISE
tSU
tHOLD
tFALL
tH
tFALL
tL
tRISE
SDA
SCL
STOP
START
R/W BIT
Figure 8
I²C Timing Diagram, see also Table 12
4.3.2
Power Up and Power Down Mode I²C Bus
R/W BIT
R/W BIT
At power up the sensor starts with the factory configuration and uses this as default mode (= power down).
After power up, the sensor reads out the voltage applied on ADDR pin for 200µs. If the voltage level on
ADDR=high then the address is set to “1”. If the voltage level on ADDR = low the address is set to “0”.
For a short period of time the power consumption increases to 3.7mA. During this short period all functional
blocks are active. After this the sensor enters the “power- down mode”. In this power down mode all
functional blocks are off. Even the low power oscillator is switched off. No magnetic measurement takes place
now.
VDD
IDD
I peak = 3.7mA
Power down mode = 7 nA
Figure 9
Current consumption during power up
Technical Product Description
15
Rev 1.0, 2015-05-26
3D Magnetic Sensor
TLV493D-A1B6
I²C Interface
4.3.3
Fast mode
Settings: fastmode=1, lp_mode=0, int_out=1 (byte settings [hex] = 00, x6, xx, xx; keep certain bits)
tS (including T measurement)
tINT
tRD1
tRDn
tINT
/INT
FRM & CH
(IIC reg .)
0000
ADC
sample
T0
0001
read
sample
BX 0
ADC
sample
BX 1
read
sample
BY0
0010
ADC
sample
BY1
read
sample
BZ0
0011
ADC
sample
BZ1
0100
read
sample
T0
ADC
sample
T1
read
sample
BX 1
tS (excluding T measurement)
tINT
tRD1
tRDn
tINT
/INT
FRM & CH
(IIC reg .)
0000
ADC
sample
BZ0
Figure 10
0001
read
sample
BX 0
ADC
sample
BX 1
read
sample
BY0
0010
ADC
sample
BY1
read
sample
BZ0
0100
ADC
sample
BZ1
0101
read
sample
BX1
ADC
sample
BX 2
read
sample
BY 1
Fast Mode (/w and w/o temp. measurement) in relation to /INT output
It is possible to optimize the readout in a way that the sample of the last conversion can be read while the next
conversion is performed. To achieve this, the readout from I²C has to be done faster than the given time when
the next value gets overwritten, including any possible clock variance between sensor and master (µC).
Note: This read mode assumes to read only first three 8 bit values via I²C after an /INT pulse.
To read out the 8 bit values for Bx, By and Bz the I²C address write and first byte read needs to be done within
tRD1 (minus the w.c. accuracy of the sensor clock and the µC clock) after the rising interrupt clock edge. The
next byte needs to be read latest within an additional tRDn timeframe (minus tolerances) and so on. Assuming
all 3 values are read directly in one I²C sequence, the time for readout of the first byte is the most critical (as
two I²C frames are required), reading the remaining bytes should not be a timing issue as here nevertheless
more time is available.
Note: Thus, this mode requires a non-standard 1MHz I²C clock to be used to read the data fast enough.
Technical Product Description
16
Rev 1.0, 2015-05-26
3D Magnetic Sensor
TLV493D-A1B6
I²C Interface
4.3.4
Low Power mode
Settings: fastmode=0, lp_mode=1, int_out=1 (byte settings [hex]: 00, x5, xx, 4x; keep certain bits)
tS (low power modes)
/INT
IIC
idle
or
other comm .
a
d
r
b
0
b
1
b
2
b
3
b
4
b
5
b
6
idle
or
other comm .
b
7
a
d
r
b
0
b
1
power down
ADC
b
2
b
3
b
4
b
5
b
6
b
7
power down
LPOSC
Figure 11
Synchronous, low-power I²C readout using an /INT wake-up pulse
In this low-power mode the sensor goes into power-down mode until it wakes up by itself to perform the next
conversion. After the conversion the interrupt line will be pulled (if activated). This means for the low power
modes the time window to read out all registers after the rising edge of the /INT pulse is equal one over the
sample rate of this low power mode minus the conversion time.
4.3.5
Ultra Low Power Mode
Settings: fastmode=0, lp_mode=1, int_out=1 (byte settings [hex]: 00, x5, xx, 0x; keep certain bits)
In this mode an excellent combination of ultra low power consumption and internal regular wake up function
is reached. The basic function is equal to Low Power Mode, but Low Power Mode has about 8 times higher
current consumption than Ultra Low Power Mode. As well the interrupt is available, if an even lower power
consumption is needed.
Technical Product Description
17
Rev 1.0, 2015-05-26
3D Magnetic Sensor
TLV493D-A1B6
I²C Interface
4.3.6
Master-controlled mode
Settings: fastmode=1, lp_mode=1, int_out=0/1 (byte settings: 00, x7, xx, xx)
•
The fast oscillator is constantly enabled
•
One measurement cycle is performed and /INT is pulsed.
•
Measurement data is available for read out of the registers.
•
The sensor is waiting for read-out and no other measurements are done.
•
As soon as the master performs a read-out a new measurment cycle is internally started by the sensor and
new values will be stored in the registers. If no further read out takes place no new measurement cycle is
initiated.
In the simplest case, periodic read-out of I²C causes a re-run of a new measurement cycle. It only needs to be
ensured that the read-out time is larger than the time for the I²C read frame plus the sensor conversion time.
constant time interval for IIC readouts (e.g. using a µC timer)
tS (fast mode)
µC internal
IIC readout
periodically
initiated
µC internal
IIC readout
periodically
initiated
IIC
ADC
idle
or
other comm .
a
d
r
b
0
(T)
Figure 12
b
1
b
2
b
3
b
4
b
5
b
6
idle
or
other comm .
b
7
Bx
wait
By
Bz
a
d
r
b
0
b
1
(T)
b
2
b
3
b
4
b
5
b
6
b
7
Bx
wait
Synchronous, fast I²C access using a periodic I²C read-out
If possible, the /INT output should be activated and used in this mode as well. This will provide the fastest and
safest way to read out all axis with a 12bit resolution value, as to be shown next.
This allows a read-out of the sensor to the master (µC) using an interrupt service routine. The sample rate is
now basically determined by the ADC conversion time plus the I²C readout time only, and fully avoids the read
of inconsistent values. The possible sample rate for this mode at regular 400kHz I²C speed is given in the
specification section.
tS (fast mode)
/INT
IIC
ADC
idle
or
other comm .
(T)
Figure 13
a
d
r
b
0
b
1
b
2
wait
b
3
b
4
b
5
b
6
idle
or
other comm .
b
7
Bx
By
Bz
(T)
a
d
r
b
0
b
1
b
2
wait
b
3
b
4
b
5
b
6
b
7
Bx
Synchronous, fast I²C access using an /INT trigger for I²C readout
Technical Product Description
18
Rev 1.0, 2015-05-26
3D Magnetic Sensor
TLV493D-A1B6
I²C Interface
Please be aware that this modes does not switch off the internal biasing and oscillator, it should therefore not
be used for low-power operation with large time intervals between measurements.
Table 11
Overview of modes and its corresponding current consumption with sample rates
Mode
Bytehex
0,1,2,31)
Update Rate / Hz
Idd (25°C)
Remark
Power Down
-
-
7 nA
default after power on2)
Ultra Low Power
00, 01, 00, 00
10
10 µA
temp measurement4)
Low Power
00, 05, 00, 40
100
100 µA
temp measurement
00, 06, 00, 00
3300
3.7 mA
temp measurement
00, 07, 00, 00
variable up to f = 2.2kHz
Fast Mode
5)
Master controlled
3)
temp measurement
1) Please use logical Operation: byte 7, 8, 9 (from read out) OR byte 1,2, 3 --> command for mode
2) Configurable after power on via I²C interface. Settings will be lost after power down. Any temporary overwrite via the
I²C interface will be lost on a power-on reset.
3) Factory setting, can be changed to any other mode on request
4) IDD increases by +33% for enabled temperature measurement
5) In master controlled mode the oscillator is constantly enabled. For smaller current consumptions the sensor can be
set in power down mode after read out.
Technical Product Description
19
Rev 1.0, 2015-05-26
3D Magnetic Sensor
TLV493D-A1B6
I²C Interface
4.4
Interface and Timing Description
This chapter refers to howthe boundary conditions are set in order to establish a proper interface
communication.
Table 12
Interface and timing
Parameter
min
unit
Note/Condition
3.3
kHz
continuous mode (temp. off)
2.2
kHz
Sample rate defined by I²C master
Update rate (all axis), ultra low p.
10
Hz
triggered internally, incl. T
Update rate (all axis), low p.
100
Hz
triggered internally, incl. T
End-of-Conversion /INT pulse (tINT)
1.2
µs
low-active (when activated)
Time window to read first value (tRD1)
32.8
µs
read after rising /INT edge
Time window to read next value.
(tRDn)
33.6
µs
consecutive reads
+25
%
all above timing parameters
1000
kHz
400kHz is I²C fast mode
Update rate X, Y, Z in fast mode
Update rate I²C master controlled
mode
Internal clock accuracy
0
typ
max
-25
Allowed I²C bit clock frequency
400
Low period of SCL clock (tL)
0.5
µs
1.3µs for 400kHz mode
High period of SCL clock (tH)
0.4
µs
0.6µs for 400kHz mode
SDA fall to SCL fall hold time (tSTA)
(hold time start condition to clock)
0.4
µs
0.6µs for 400kHz mode
SCL rise to SDA rise su. time (tSTOP)
(setup time clock to stop condition)
0.4
µs
0.6µs for 400kHz mode
SDA rise to SDA fall hold time (tWAIT)
(wait time from stop to start cond.)
0.4
µs
0.6µs for 400kHz mode
SDA setup before SCL rising (tSU)
0.1
µs
SDA hold after SCL falling (tHOLD)
0
µs
Technical Product Description
20
Rev 1.0, 2015-05-26
3D Magnetic Sensor
TLV493D-A1B6
I²C Interface
4.5
I²C read register
The I²C registers can be read at any time. To avoid reading inconsistent values, especially when running the
fast mode with significantly changing magnetic input signals, it is recommended to use the sensor interrupt
and read the data after an interrupt occurred. Additionally, several flags can be checked to ensure the data
values are consistent and the ADC was not running at the time of readout.
Table 13
I²C read register
Description of I²C read register
Byte No. D(7) D(6) D(5) D(4) D(3) D(2) D(1) D(0)
Bx value – vertical HALL probe (MSBs)
0
Bx(11…4)
By value – vertical HALL probe (MSBs)
1
By(11…4)
2
Bz(11…4)
Bz value – lateral HALL probe (MSBs)
1)
Selected channel (must be “00” at readout)
Frame counter, increments for each X/Y/Z
sample
CH(1…0)
3
Temperature values (MSB’s, only when enabled)
FRM(1…0)
Temp (11..8)
By value – vertical HALL probe (remaining LSBs)
Bx value – vertical HALL probe (remaining LSBs)
By(3…0)
4
Bx(3…0)
Bz value – lateral HALL probe (remaining LSBs)
Bz(3…0)
Power-down PD flag (must be “0” at readout)
5
Temperature values (only when enabled)
6
Temp (7..0)
Factory settings
7
to be read out and stored
Factory settings
8
to be read out and stored
Factory settings
1) If not “00”, a further read-out is necessary
9
to be read out and stored
only internal
PD
The factory settings (byte7 .. byte 9) should be read out once and stored. Those values are needed for further
writing commands and are not allowed to change.
Technical Product Description
21
Rev 1.0, 2015-05-26
3D Magnetic Sensor
TLV493D-A1B6
I²C Interface
4.6
I²C write register
Configuration Map:
Table 14
I²C write register Configuration Map
Description of I²C write register
Keep 0x00
Byte D(7) D(6) D(5) D(4) D(3) D(2) D(1) D(0)
No.
0
00000000
1=low power mode activated (0=lowp. mode off)
0/1
1=fast mode activated (0=fast mode off)
0/1
1=/INT pad activated (0=no /INT pulse given)
Keep factory setting (set same as “read” byte 7 D(3))
0/1
1
keep
Keep factory setting (set same as “read” byte 7 D(4))
keep
Keep factory setting (se same values as byte 7 D(5) &
D(6))
keep keep
Parity of configuration map (sum of all 24 bits ==
odd)1)
Keep factory setting (set same as “read” as byte 8)
0/1
2
keep value
Keep factory setting (set same as “read” as byte 9 D(0)
.. D(4))
1=enable parity test (0=disable);
1=12ms LP period (0=100ms ULP period)
keep value
0/1
3
1=disable T measurement (0=enable T meas.)
0/1
0/1
1) Parity needs to be calculated and set accordingly before a write command is executed. After the write command the
sensor ( =slave) verifies the parity with the bits in the register. If the parity fails then the sensor sets ACK=high at the
next read command
Technical Product Description
22
Rev 1.0, 2015-05-26
3D Magnetic Sensor
TLV493D-A1B6
Typical Characteristics
5
Typical Characteristics
5.1
Current Consumption vs. Temperature
Figure 14
Typical Current Consumption versus Temperature
Technical Product Description
23
Rev 1.0, 2015-05-26
3D Magnetic Sensor
TLV493D-A1B6
Package Information
6
Package Information
Figure 15
Image of TLV493D-A1B6 in TSOP-6
Figure 16
Package Outlines (all dimensions in mm)
Technical Product Description
24
Rev 1.0, 2015-05-26
3D Magnetic Sensor
TLV493D-A1B6
Package Information
Figure 17
Packing (all dimensions in mm)
Technical Product Description
25
Rev 1.0, 2015-05-26
3D Magnetic Sensor
TLV493D-A1B6
Revision History
7
Revision History
Revision Date
Changes
1.0
Initial version
2015-05-26
Technical Product Description
26
Rev 1.0 2015-05-26
Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™,
EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, myd™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™,
SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SPOC™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited,
UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of
Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay
Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association
Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc.
MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA
MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave
Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™
of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc.
TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas
Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.
Last Trademarks Update 2011-11-11
www.infineon.com
Edition 2015-05-26
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2014 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: [email protected]
Document reference
Legal Disclaimer
The information given in this document shall in
no event be regarded as a guarantee of
conditions or characteristics. With respect to any
examples or hints given herein, any typical
values stated herein and/or any information
regarding the application of the device, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation, warranties of noninfringement of intellectual property rights of
any third party.
Information
For further information on technology, delivery
terms and conditions and prices, please contact
the nearest Infineon Technologies Office
(www.infineon.com).
Warnings
Due to technical requirements, components
may contain dangerous substances. For
information on the types in question, please
contact the nearest Infineon Technologies
Office. Infineon Technologies components may
be used in life-support devices or systems only
with the express written approval of Infineon
Technologies, if a failure of such components
can reasonably be expected to cause the failure
of that life-support device or system or to affect
the safety or effectiveness of that device or
system. Life support devices or systems are
intended to be implanted in the human body or
to support and/or maintain and sustain and/or
protect human life. If they fail, it is reasonable to
assume that the health of the user or other
persons may be endangered.