HT16528 Dot Character VFD Controller & Driver

HT16528
Dot Character VFD Controller & Driver
Features
· Logic voltage: 2.7V~5.5V
· Display contents:
- 16 columns by 2 (1) rows + 32 (16) cursors
- 20 columns by 2 (1) rows + 40 (20) cursors
- 24 columns by 2 (1) rows + 48 (24) cursors
· High voltage: 80V (max.)
· Provides a driving segment for cursor display
(48 units)
· Supports display output (80-segment & 24-grid)
· Alphanumeric and symbolic display through built-in
· Supports M68 parallel data input/output (switchable
ROM
4-bit and 8-bit) i80 parallel data input/output (switchable 4-bit and 8-bit) or serial data input/output
· 80´8-bit display RAM
· On chip ROM (5´8 dot), in total 240 characters,
· Built-in oscillation circuit
plus 8 user-defined characters
· Customized ROM acceptable
· 144-pin LQFP package
Applications
· Consumer products panel function control
· Other similar application panel function control
· Industrial measuring instrument panel function
control
General Description
The HT16528 is a Vacuum Fluorescent Display, VFD
controller/driver with dot matrix VFD display. It consists
of 80 segment output lines and 24 grid output lines. It
can display up to 16C´2L, 20C´2L, 24C´2L.
The HT16528 has a character generator ROM which
stores up to 240´5´8 dot characters.
The HT16528 has serial/parallel interface. This VFD
controller/driver is ideal as an MCU peripheral device.
Ordering Information
Part Number
Package Information
HT16528-001
144-pin plastic LQFP (Fine pitch) (20mm´20mm), standard ROM (ROM code: 001)
HT16528-002
144-pin plastic LQFP (Fine pitch) (20mm´20mm), standard ROM (ROM code: 002)
HT16528-003
144-pin plastic LQFP (Fine pitch) (20mm´20mm), standard ROM (ROM code: 003)
Rev. 1.10
1
July 5, 2011
HT16528
Block Diagram
T E S T O
T E S T I
R L 2
R L 1
D L S
D S 1
D S 0
M P U
C G R A M
( 8 x 5 x 8 B its )
C S
7
R S , S T
(W R )
S I, S O
D B 4 ~ D B 7
R E S E T
O S C I
O S C O
X O U T
8
I/O
In te rfa c e
E (R D ), S C K
D B 0 ~ D B 3
5
5
IM
R , W
8 0 - B it O u tp u t
L a tc h & R e g is te r
P a r a lle l to S e r ia l
D a ta C o n v e rte r
8
In s tr u c tio n
R e g is te r ( IR )
S e g m e n t
D r iv e r
8
8
D a ta R e g is te r
(D R )
4
8
C G R O M
( 2 4 8 x 5 x 8 B its )
8
7
4
8 0
7
In s tr u c tio n
D e c o rd e r
7
A d d re s s
C o u n te r
R E S E T
C ir c u it
S 8 0
C r u s o r B lin k C ir c u it
8
D D R A M
( 8 0 x 8 B its )
G r id D r iv e r
7
7
T im in g
G e n e ra to r
O S C
S 1
G 1
G 2 4
2 4
2 4
2 4 - B it S h ift
R e g is te r
4
V D D
L G N D
V H
S D O , S L K , C L , L E
P G N D
Pin Assignment
S 3 5
S 3 6
S 3 7
S 3 8
S 3 9
S 4 0
S 4 1
S 4 2
S 4 3
S 4 4
S 4 5
S 4 6
S 4 7
S 4 8
S 4 9
S 5 0
S 5 1
S 5 2
S 5 3
S 5 4
S 5 5
S 5 6
S 5 7
S 5 8
S 5 9
S 6 0
S 6 1
S 6 2
S 6 3
S 6 4
S 6 5
S 6 6
S 6 7
S 6 8
S 6 9
S 7 0
N C
S 7 1
S 7 2
S 7 3
S 7 4
S 7 5
S 7 6
S 7 7
S 7 8
S 7 9
S 8 0
G 2 4
G 2 3
G 2 2
G 2 1
G 2 0
G 1 9
G 1 8
G 1 7
G 1 6
G 1 5
G 1 4
G 1 3
G 1 2
G 1 1
G 1 0
G 9
G 8
G 7
G 6
G 5
G 4
G 3
G 2
G 1
N C
7 3
7 2
1 0 8
1 0 9
H T 1 6 5 2 8
1 4 4 L Q F P -A
1 4 4
1
3 6
3 7
N C
S 3
S 3
S 3
S 3
S 3
S 2
S 2
S 2
S 2
S 2
S 2
S 2
S 2
S 2
S 2
S 1
S 1
S 1
S 1
S 1
S 1
S 1
S 1
S 1
S 1
S 9
S 8
S 7
S 6
S 5
S 4
S 3
S 2
S 1
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
N C
V H
P G N
L G N
T E S
C L K
S D O
L E
C L
R L 2
R L 1
C S
M P U
IM
D B 7
D B 6
D B 5
D B 4
D B 3
D B 2
D B 1
D B 0
S I, S
E (R
R S ,
R , W
D S 0
D S 1
D L S
T E S
R E S
O S C
O S C
X O U
V D D
P G N
V H
D
D
T O
O
D ), S C K
S T
(W R )
T I
E T
I
O
T
D
Rev. 1.10
2
July 5, 2011
HT16528
Pin Description
Pin Name
I/O
Description
Logic System (Microprocessor Interface)
I
When parallel mode is selected, this pin is utilized to select the register, either Instruction Register or Data Register.
0: IR (Instruction Register)
1: DR (Data Register)
When serial mode is selected, this pin performs strobe input. Data can be set as input when this
signal goes 0.
During the next rising edge of this signal, command processing is performed.
E (RD),
SCK
I
When M68 parallel mode is selected (E), this pin is write enable. Writes data at the falling edge.
When i80 parallel mode is selected (RD), this pin is read enable. When this pin is ²Low², data is
output to the data Bus.
When Serial mode is selected, this pin is shift clock input, data will be written at the rising edge.
CS
I
When this pin is ²Low², the device is active.
OSCI
OSCO
I
O
Connected to an external resistor to generate an oscillation frequency.
XOUT
O
Oscillator signal output pin
I
When M68 parallel mode is selected (R, W), this pin is data mode select pin
(0: write, 1: read).
When i80 parallel mode is selected (WR), this pin is a write enable pin. Data will be written at
rising edge signal.
When serial mode is selected, connect this pin to ²Hi² or ²Low². Read or Write is chosen by
instruction.
RS, ST
R, W (WR)
SI, SO
I/O
When serial mode is selected, this pin is used as I/O pin.
When parallel mode is selected, this pin needs to be connected to ²Hi² or ²Low².
DB0~DB7
I/O
When parallel mode is selected, these pins are used as I/O pins.
Data are stored sequentially, the first bit which is sent to the HT16528 is MSB.
If 4 bits mode is selected, only DB4~DB7 are used.
RESET
I
Initialize all the internal register and commands.
All segments and digits are fixed PGND.
DS0, DS1
I
Set the duty ratio. Duty ratio will determine the number of grid.
The relationship between duty ratio and these pins is shown in Table 1-1.
IM
I
Select interface mode (parallel mode or serial mode)
0: Serial mode
1: Parallel mode
In parallel mode, instruction will determine the length of word.
MPU
I
Select interface mode (i80 type CPU mode or M68 type CPU mode)
0: i80 type CPU mode
1: M68 type CPU mode
DLS
I
Select number of display line when power ON reset or resetting.
0: Select 1 line (N=0), ²N² is display line select flag in Function set command.
1: Select 2 line (N=1)
RL1, RL2
I
Set segment outputs pin assignment. The selection table is listed as Table 1-2 & Table 1-7
TESTI
I
0 or open: Normal operation mode
1: Test mode
TESTO
O
For IC testing only, leave this pin open.
Logic System ( To External Extension Driver)
SDO
O
Serial data output for extension digit driver.
SLK
O
Shift clock pulse for extension digit driver.
Active during rising edge
Rev. 1.10
3
July 5, 2011
HT16528
Pin Name
I/O
Description
CL
O
Clear signal for extension digit driver, active low.
The digit data stored in the latch register of the extension driver are output when this signal is
²Hi², if this signal is ²Low², extension driver outputs are ²Low².
LE
O
Latch enable signal for extension digit driver.
G1~G24
O
High-voltage output, grid output pins.
S1~S80
O
High-voltage output, segment output pins.
VDD
¾
Pins for logic circuit
LGND
¾
LGND is ground pin for logic circuit
VH
¾
Power supply pins for VFD driver circuit
PGND
¾
PGND is ground pin for VFD driver circuit
Output Pins
Power System
Table 1-1. Duty Ratio Setting
Note:
DS0
DS1
Duty Ratio
0
0
1/16 (# of grid = 16)
0
1
1/24 (# of grid = 24)
1
0
1/20 (# of grid = 20)
1
1
1/40 (# of grid = 40)*
* When setting to 1/40 duty mode, use the external extension grid driver.
Table 1-2. Segment Setting: 2 Line Display (N=1)
Rev. 1.10
RL1
RL2
Table No.
0
0
Table 1-3
0
1
Table 1-4
1
0
Table 1-5
1
1
Table 1-6
4
July 5, 2011
HT16528
Table 1-3. The Number Of Segment Pins 1
No.
Name
No.
Name
No.
Name
No.
Name
1
VH
37
NC
73
S35
109
NC
2
PGND
38
S1
74
S36
110
S71
3
VDD
39
S2
75
S37
111
S72
4
XOUT
40
S3
76
S38
112
S73
5
OSCO
41
S4
77
S39
113
S74
6
OSCI
42
S5
78
S40
114
S75
7
RESET
43
S6
79
S41
115
S76
8
TESTI
44
S7
80
S42
116
S77
9
DLS
45
S8
81
S43
117
S78
10
DS1
46
S9
82
S44
118
S79
11
DS0
47
S10
83
S45
119
S80
12
R, W (WR)
48
S11
84
S46
120
G24
13
RS, ST
49
S12
85
S47
121
G23
14
E (RD), SCK
50
S13
86
S48
122
G22
15
SI, SO
51
S14
87
S49
123
G21
16
DB0
52
S15
88
S50
124
G20
17
DB1
53
S16
89
S51
125
G19
18
DB2
54
S17
90
S52
126
G18
19
DB3
55
S18
91
S53
127
G17
20
DB4
56
S19
92
S54
128
G16
21
DB5
57
S20
93
S55
129
G15
22
DB6
58
S21
94
S56
130
G14
23
DB7
59
S22
95
S57
131
G13
24
IM
60
S23
96
S58
132
G12
25
MPU
61
S24
97
S59
133
G11
26
CS
62
S25
98
S60
134
G10
27
RL1
63
S26
99
S61
135
G9
28
RL2
64
S27
100
S62
136
G8
29
CL
65
S28
101
S63
137
G7
30
LE
66
S29
102
S64
138
G6
31
SDO
67
S30
103
S65
139
G5
32
SLK
68
S31
104
S66
140
G4
33
TESTO
69
S32
105
S67
141
G3
34
LGND
70
S33
106
S68
142
G2
35
PGND
71
S34
107
S69
143
G1
36
VH
72
NC
108
S70
144
NC
Rev. 1.10
5
July 5, 2011
HT16528
Table 1-4. The Number Of Segment Pins 2
No.
Name
No.
Name
No.
Name
No.
Name
1
VH
37
NC
73
S6
109
NC
2
PGND
38
S40
74
S5
110
S71
3
VDD
39
S39
75
S4
111
S72
4
XOUT
40
S38
76
S3
112
S73
5
OSC
41
S37
77
S2
113
S74
6
OSCI
42
S36
78
S1
114
S75
7
RESET
43
S35
79
S41
115
S76
8
TESTI
44
S34
80
S42
116
S77
9
DLS
45
S33
81
S43
117
S78
10
DS1
46
S32
82
S44
118
S79
11
DS0
47
S31
83
S45
119
S80
12
R, W (WR)
48
S30
84
S46
120
G24
13
RS, ST
49
S29
85
S47
121
G23
14
E (RD), SCK
50
S28
86
S48
122
G22
15
SI, SO
51
S27
87
S49
123
G21
16
DB0
52
S26
88
S50
124
G20
17
DB1
53
S25
89
S51
125
G19
18
DB2
54
S24
90
S52
126
G18
19
DB3
55
S23
91
S53
127
G17
20
DB4
56
S22
92
S54
128
G16
21
DB5
57
S21
93
S55
129
G15
22
DB6
58
S20
94
S56
130
G14
23
DB7
59
S19
95
S57
131
G13
24
IM
60
S18
96
S58
132
G12
25
MPU
61
S17
97
S59
133
G11
26
CS
62
S16
98
S60
134
G10
27
RL1
63
S15
99
S61
135
G9
28
RL2
64
S14
100
S62
136
G8
29
CL
65
S13
101
S63
137
G7
30
LE
66
S12
102
S64
138
G6
31
SDO
67
S11
103
S65
139
G5
32
SLK
68
S10
104
S66
140
G4
33
TESTO
69
S9
105
S67
141
G3
34
LGND
70
S8
106
S68
142
G2
35
PGND
71
S7
107
S69
143
G1
36
VH
72
NC
108
S70
144
NC
Rev. 1.10
6
July 5, 2011
HT16528
Table 1-5. The Number Of Segment Pins 3
No.
Name
No.
Name
No.
Name
No.
Name
1
VH
37
NC
73
S75
109
NC
2
PGND
38
S41
74
S76
110
S10
3
VDD
39
S42
75
S77
111
S9
4
XOUT
40
S43
76
S78
112
S8
5
OSCO
41
S44
77
S79
113
S7
6
OSCI
42
S45
78
S80
114
S6
7
RESET
43
S46
79
S40
115
S5
8
TESTI
44
S47
80
S39
116
S4
9
DLS
45
S48
81
S38
117
S3
10
DS1
46
S49
82
S37
118
S2
11
DS0
47
S50
83
S36
119
S1
12
R, W (WR)
48
S51
84
S35
120
G24
13
RS, ST
49
S52
85
S34
121
G23
14
E (RD), SCK
50
S53
86
S33
122
G22
15
SI, SO
51
S54
87
S32
123
G21
16
DB0
52
S55
88
S31
124
G20
17
DB1
53
S56
89
S30
125
G19
18
DB2
54
S57
90
S29
126
G18
19
DB3
55
S58
91
S28
127
G17
20
DB4
56
S59
92
S27
128
G16
21
DB5
57
S60
93
S26
129
G15
22
DB6
58
S61
94
S25
130
G14
23
DB7
59
S62
95
S24
131
G13
24
IM
60
S63
96
S23
132
G12
25
MPU
61
S64
97
S22
133
G11
26
CS
62
S65
98
S21
134
G10
27
RL1
63
S66
99
S20
135
G9
28
RL2
64
S67
100
S19
136
G8
29
CL
65
S68
101
S18
137
G7
30
LE
66
S69
102
S17
138
G6
31
SDO
67
S70
103
S16
139
G5
32
SLK
68
S71
104
S15
140
G4
33
TESTO
69
S72
105
S14
141
G3
34
LGND
70
S73
106
S13
142
G2
35
PGND
71
S74
107
S12
143
G1
36
VH
72
NC
108
S11
144
NC
Rev. 1.10
7
July 5, 2011
HT16528
Table 1-6. The Number Of Segment Pins 4
No.
Name
No.
Name
No.
Name
No.
Name
1
VH
37
NC
73
S46
109
NC
2
PGND
38
S80
74
S45
110
S10
3
VDD
39
S79
75
S44
111
S9
4
XOUT
40
S78
76
S43
112
S8
5
OSCO
41
S77
77
S42
113
S7
6
OSCI
42
S76
78
S41
114
S6
7
RESET
43
S75
79
S40
115
S5
8
TESTI
44
S74
80
S39
116
S4
9
DLS
45
S73
81
S38
117
S3
10
DS1
46
S72
82
S37
118
S2
11
DS0
47
S71
83
S36
119
S1
12
R, W (WR)
48
S70
84
S35
120
G24
13
RS, ST
49
S69
85
S34
121
G23
14
E (RD), SCK
50
S68
86
S33
122
G22
15
SI, SO
51
S67
87
S32
123
G21
16
DB0
52
S66
88
S31
124
G20
17
DB1
53
S65
89
S30
125
G19
18
DB2
54
S64
90
S29
126
G18
19
DB3
55
S63
91
S28
127
G17
20
DB4
56
S62
92
S27
128
G16
21
DB5
57
S61
93
S26
129
G15
22
DB6
58
S60
94
S25
130
G14
23
DB7
59
S59
95
S24
131
G13
24
IM
60
S58
96
S23
132
G12
25
MPU
61
S57
97
S22
133
G11
26
CS
62
S56
98
S21
134
G10
27
RL1
63
S55
99
S20
135
G9
28
RL2
64
S54
100
S19
136
G8
29
CL
65
S53
101
S18
137
G7
30
LE
66
S52
102
S17
138
G6
31
SDO
67
S51
103
S16
139
G5
32
SLK
68
S50
104
S15
140
G4
33
TESTO
69
S49
105
S14
141
G3
34
LGND
70
S48
106
S13
142
G2
35
PGND
71
S47
107
S12
143
G1
36
VH
72
NC
108
S11
144
NC
Rev. 1.10
8
July 5, 2011
HT16528
Table 1-7. Segment Setting: 1 Line Display (N=0)
RL1
RL2
Table No.
Don¢t care
0
Table 1-8
Don¢t care
1
Table 1-9
Table 1-8. The Number Of Segment Pins 5
No.
Name
No.
Name
No.
Name
No.
Name
1
VH
37
NC
73
S35
109
NC
2
PGND
38
S1
74
S36
110
Don¢t use
3
VDD
39
S2
75
S37
111
4
XOUT
40
S3
76
S38
112
5
OSCO
41
S4
77
S39
113
6
OSCI
42
S5
78
S40
114
7
RESET
43
S6
79
Don¢t use
115
8
TESTI
44
S7
80
116
9
DLS
45
S8
81
117
10
DS1
46
S9
82
118
11
DS0
47
S10
83
119
12
R, W (WR)
48
S11
84
120
G24
13
RS, ST
49
S12
85
121
G23
14
E (RD), SCK
50
S13
86
122
G22
15
SI, SO
51
S14
87
123
G21
16
DB0
52
S15
88
124
G20
17
DB1
53
S16
89
125
G19
18
DB2
54
S17
90
126
G18
19
DB3
55
S18
91
127
G17
20
DB4
56
S19
92
128
G16
21
DB5
57
S20
93
129
G15
22
DB6
58
S21
94
130
G14
23
DB7
59
S22
95
131
G13
24
IM
60
S23
96
132
G12
25
MPU
61
S24
97
133
G11
26
CS
62
S25
98
134
G10
27
RL1
63
S26
99
135
G9
28
RL2
64
S27
100
136
G8
29
CL
65
S28
101
137
G7
30
LE
66
S29
102
138
G6
31
SDO
67
S30
103
139
G5
32
SLK
68
S31
104
140
G4
33
TESTO
69
S32
105
141
G3
34
LGND
70
S33
106
142
G2
35
PGND
71
S34
107
143
G1
36
VH
72
NC
108
144
NC
Rev. 1.10
9
July 5, 2011
HT16528
Table 1-9. The Number Of Segment Pins 6
No.
Name
No.
Name
No.
Name
No.
Name
1
VH
37
NC
73
S6
109
NC
2
PGND
38
S40
74
S5
110
Don¢t use
3
VDD
39
S39
75
S4
111
4
XOUT
40
S38
76
S3
112
5
OSCO
41
S37
77
S2
113
6
OSCI
42
S36
78
S1
114
7
RESET
43
S35
79
Don¢t use
115
8
TESTI
44
S34
80
116
9
DLS
45
S33
81
117
10
DS1
46
S32
82
118
11
DS0
47
S31
83
119
12
R, W (WR)
48
S30
84
120
G24
13
RS, ST
49
S29
85
121
G23
14
E (RD), SCK
50
S28
86
122
G22
15
SI, SO
51
S27
87
123
G21
16
DB0
52
S26
88
124
G20
17
DB1
53
S25
89
125
G19
18
DB2
54
S24
90
126
G18
19
DB3
55
S23
91
127
G17
20
DB4
56
S22
92
128
G16
21
DB5
57
S21
93
129
G15
22
DB6
58
S20
94
130
G14
23
DB7
59
S19
95
131
G13
24
IM
60
S18
96
132
G12
25
MPU
61
S17
97
133
G11
26
CS
62
S16
98
134
G10
27
RL1
63
S15
99
135
G9
28
RL2
64
S14
100
136
G8
29
CL
65
S13
101
137
G7
30
LE
66
S12
102
138
G6
31
SDO
67
S11
103
139
G5
32
SLK
68
S10
104
140
G4
33
TESTO
69
S9
105
141
G3
34
LGND
70
S8
106
142
G2
35
PGND
71
S7
107
143
G1
36
VH
72
NC
108
144
NC
Rev. 1.10
10
July 5, 2011
HT16528
HT16528 Connect to VFD as Below Figure
HT16528
Rev. 1.10
11
July 5, 2011
HT16528
Approximate Internal Connections
(M P U ) (R S , S T ) (C S ) (D L S ) (D S 0 ) (D S 1 )
(IM ) (R L 1 ) (R L 2 ) (T E S T I)
V
S L K , E (R D ), R E S E T , (R , W /W R )
V
S D O , S L K C L , L E , T E S T O
D D
V
D D
L G N D
S 1 ~ S 8 0 , G 1 ~ G 2 4
V H
P G N D
L G N D
L G N D
O S C O , O S C I, X O U T
D 0 ~ D 7 , S I, S O
V
X O U T
D D
D D
O S C O
O S C I
Absolute Maximum Ratings
Logic Supply Voltage .................VSS-0.3V to VSS+6.0V
Driver Supply Voltage .................VSS-0.3V to VSS+88V
Input Voltage..............................VSS-0.3V to VDD+0.3V
Output Voltage...........................VSS-0.3V to VDD+0.3V
Driver Output Voltage............................VSS-0.3V to VH
Driver Output Current .........................................±50mA
Driver Output Current (Total) ...................500 (Est.) mA
Storage Temperature ............................-55°C to 125°C
Operating Temperature ...........................-40°C to 85°C
Note: These are stress ratings only. Stresses exceeding the range specified under ²Absolute Maximum Ratings² may
cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed
in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.
Rev. 1.10
12
July 5, 2011
HT16528
D.C. Characteristics
Symbol
Unless otherwise specified, VH=50V, VSS=VLGND=VPGND=0V, Ta=-40°C~85°C
Test Conditions
Parameter
VDD
Conditions
Min.
Typ.
Max.
Unit
VDD
Logic Supply Voltage
¾
¾
2.7
5.0
5.5
V
VH
VFD Supply Voltage
¾
¾
20
¾
80
V
IDD
Operating Current
2.7V~5.5V No load, CPU Non-access
¾
¾
1000
mA
IH
Operating Current
2.7V~5.5V No load
¾
¾
500
mA
ILOH
Hi-level Leakage Current 2.7V~5.5V
¾
¾
1
mA
ILOL
Hi-level Leakage Current 2.7V~5.5V Logic VIN/OUT=VSS
¾
¾
-1
mA
IIH
Hi-level Input Current
2.7V~5.5V TEST, VIN=VDD
5
¾
500
mA
IP
Pull-up MOS Current
2.7V~5.5V DB0~DB7, SI, SO
5
125
280
mA
VIH1
²H² Input Voltage 1
¾
Except E, SCK, RESET, R,
W (WR)
0.7VDD
¾
VDD
V
VIL1
²L² Input Voltage 1
¾
Except E,SCK, RESET, R,
W (WR)
0
¾
0.3VDD
V
VIH2
²H² Input Voltage 2
¾
E, SCK, RESET, R, W (WR)
0.8VDD
¾
VDD
V
VIL2
²L² Input Voltage 2
¾
E, SCK, RESET, R ,W (WR)
0
¾
0.2VDD
V
VOH1
Hi-level Output Voltage
DB0~DB7, SI,SO, SDO, SLK,
VDD-0.5
LE, CL, IOL1= -0.1mA
¾
VDD
V
VOL1
Low-level Output Voltage 2.7V~5.5V
DB0~DB7, SI,SO, SDO, SLK,
LE, CL, IOL1= 0.1mA
0
¾
VSS+0.5
V
S1~S80, IOH2= -0.5mA
48
¾
¾
V
2.7V~5.5V
VOH21
VOH22
2.7V~5.5V S1~S80, IOH2= -1mA
Hi-level Output Voltage
G1~G24, IOH2= -15mA
VOH2G
VOL2
Low-level Output Voltage 2.7V~5.5V S1~S80, G1~G24, IOL2= 1mA
A.C. Characteristics
Symbol
Test Conditions
Parameter
fC
Oscillation Frequency
tF
¾
¾
V
¾
¾
V
¾
¾
5
V
Min.
Typ.
Max.
Unit
2.7V~5.5V ROSC=56kW
392
560
728
kHz
VDD
Oscillation Frequency
tR2
46
45
Unless otherwise specified, VH=50V, VSS=VLGND=VPGND=0V, Ta=-40°C~85°C
fOSC
tR1
Logic except DB0~DB7, SI,
SO, VIN/OUT=VDD
Rise Time
Fall Time
Conditions
2.7V~5.5V OSCI external clock
350
560
750
kHz
2.7V~5.5V CL= 50pF, S1~S80
¾
¾
2.5
ms
2.7V~5.5V CL=50pF, G1~G24
¾
¾
0.25
ms
¾
¾
2
ms
2.7V~5.5V
CL= 50pF, S1~S80,
G1~G24
Switching Timing
tF
tR 1 , tR
9 0 %
2
9 0 %
S n , G n
1 0 %
Rev. 1.10
1 0 %
13
July 5, 2011
HT16528
Timing Conditions 1 for M68-Type for Parallel Mode, Write
Symbol
Parameter
Test Conditions
VDD
Conditions
4.5V~5.5V
tCYCLE
Enable Cycle Time
PWEH
Enable Pulse Width High
PWEL
Enable Pulse Width Low
Ta=25°C
2.7V~4.5V
E­ ® E­
4.5V~5.5V
tAH
((RS), (R, W)) ¾ (E)
Hold Time
tCH
(CS) ¾ (E) Hold Time
Write Data Setup Time
tDH
Write Data Hold Time
tWRE
Reset Pulse Width
Unit
500
¾
¾
ns
1000
¾
¾
ns
230
¾
¾
ns
450
¾
¾
ns
230
¾
¾
ns
450
¾
¾
ns
4.5V~5.5V
20
¾
¾
ns
60
¾
¾
ns
10
¾
¾
ns
20
¾
¾
ns
E
2.7V~4.5V
4.5V~5.5V
2.7V~4.5V
4.5V~5.5V
2.7V~4.5V
4.5V~5.5V
tDS
Max.
2.7V~4.5V
4.5V~5.5V
((RS), (R, W), (CS)) ¾ (E)
Setup Time
Typ.
E
2.7V~4.5V
tAS
Min.
2.7V~4.5V
4.5V~5.5V
2.7V~4.5V
RS, R, W, CS ® E­
E¯ ® RS, R, W
E¯ ® CS
Data ® E­
E¯ ® Data
4.5V~5.5V
¾
2.7V~4.5V
20
¾
¾
ns
40
¾
¾
ns
80
¾
¾
ns
195
¾
¾
ns
10
¾
¾
ns
10
¾
¾
ns
500
¾
¾
ns
500
¾
¾
ns
M68-Type for Parallel Mode, Read
Symbol
Parameter
Test Conditions
Min.
Typ.
Max.
Unit
500
¾
¾
ns
1000
¾
¾
ns
230
¾
¾
ns
450
¾
¾
ns
230
¾
¾
ns
2.7V~4.5V
450
¾
¾
ns
4.5V~5.5V
20
¾
¾
ns
60
¾
¾
ns
10
¾
¾
ns
30
¾
¾
ns
20
¾
¾
ns
40
¾
¾
ns
¾
¾
160
ns
¾
¾
360
ns
5
¾
¾
ns
5
¾
¾
ns
VDD
4.5V~5.5V
tCYCLE
Enable Cycle Time
PWEH
Enable Pulse Width High
PWEL
Enable Pulse Width Low
2.7V~4.5V
Conditions
E­ ® E­
4.5V~5.5V
E
2.7V~4.5V
4.5V~5.5V
tAS
((RS), (R, W), (CS)) ¾ (E)
Setup Time
tAH
((RS), (R, W)) ¾ (E)
Hold Time
tCH
(CS) ¾ (E) Hold Time
E
2.7V~4.5V
4.5V~5.5V
2.7V~4.5V
4.5V~5.5V
2.7V~4.5V
4.5V~5.5V
tDD
Read Data Setup Time
tDHr
Read Data Hold Time
Rev. 1.10
Ta=25°C
2.7V~4.5V
4.5V~5.5V
2.7V~4.5V
RS, R, W, CS ® E­
E¯ ® RS, R, W
E¯ ® CS
Data ® E­
E¯ ® Data
14
July 5, 2011
HT16528
Parallel Mode (M68 Input)
R S
R , W
tA
tA
S
H
C S
P W
E
P W
E H
tD
tD
S
D B 0
E L
H R
V a lid D a ta
D B 7
tC
Y C E
Parallel Mode (M68 Output)
R S
R , W
tA
tA
S
H
C S
P W
P W
E H
E L
E
tD
tD
D
D B 0
V a lid D a ta
D B 7
Note:
H
tC
Y C E
The input signal rising time and falling time (tf, tr) is specified at 15ns or less.
All timing is specified using 20% and 80% of VDD as the reference.
PWEH is specified as the overlap between CS being L and E.
Rev. 1.10
15
July 5, 2011
HT16528
Timing Conditions 2 for i80-Type, Parallel Mode
Symbol
tRH8
Parameter
Ta=25°C
Test Conditions
VDD
Conditions
4.5V~5.5V
RS Hold Time
4.5V~5.5V
CS Hold Time
4.5V~5.5V
RS, CS Setup Time
4.5V~5.5V
System Cycle Time
2.7V~4.5V
tCCLW
tCCLR
tCCHW
tCCHR
tDS8
Control ²L² Pulse Width (WR)
Control ²L² Pulse Width (RD)
Control ²H² Pulse Width (WR)
Control ²H² Pulse Width (RD)
¾
4.5V~5.5V
2.7V~4.5V
4.5V~5.5V
2.7V~4.5V
4.5V~5.5V
2.7V~4.5V
4.5V~5.5V
2.7V~4.5V
4.5V~5.5V
Data Setup Time
20
¾
¾
ns
20
¾
¾
ns
40
¾
¾
ns
10
¾
¾
ns
30
¾
¾
ns
200
¾
¾
ns
600
¾
¾
ns
30
¾
¾
ns
50
¾
¾
ns
70
¾
¾
ns
200
¾
¾
ns
100
¾
¾
ns
200
¾
¾
ns
100
¾
¾
ns
200
¾
¾
ns
30
¾
¾
ns
60
¾
¾
ns
10
¾
¾
ns
20
¾
¾
ns
¾
¾
70
ns
¾
¾
140
ns
5
¾
¾
ns
5
¾
¾
ns
500
¾
¾
ns
500
¾
¾
ns
DB0~DB7
4.5V~5.5V
Data Hold Time
DB0~DB7
4.5V~5.5V
RD Access Time
4.5V~5.5V
Output Disable Time
4.5V~5.5V
Reset Pulse Width
2.7V~4.5V
Rev. 1.10
ns
RD
DB0~DB7, CL=100pF
DB0~DB7, CL=100pF
2.7V~4.5V
tWRE
¾
WR
2.7V~4.5V
tOH8
¾
RD
2.7V~4.5V
tACC8
10
WR
2.7V~4.5V
tDH8
Unit
RS, CS
2.7V~4.5V
tCYC8
Max.
CS
2.7V~4.5V
tRS8
Typ.
RS
2.7V~4.5V
tCH8
Min.
¾
16
July 5, 2011
HT16528
Parallel Mode (i80)
R S
tr
tf
tR
H 8
C S
tR
tC
S 8
tC
C L R
, tC
Y C 8
C L W
W R , R D
tC
tf
tD
tD
S 8
C H R
, tC
C H W
H 8
D B 0 ~ D B 7
( W r ite )
tA
tO
C C 8
H 8
D B 0 ~ D B 7
(R e a d )
Note:
The input signal rising time and falling time (tf, tr) is specified at 15ns or less.
All timing is specified using 20% and 80% of VDD as the reference.
tCCLW and tCCLR are specified as the overlap between CS as L and WR and RD at the L level.
Timing Conditions 3 for Serial Mode
Symbol
Parameter
Ta=25°C
Test Conditions
VDD
4.5V~5.5V
Conditions
tCYK
Shift Clock Cycle
tWHK
High-level Shift Clock Pulse 4.5V~5.5V
SCK
Width
2.7V~4.5V
tWLK
Low-level Shift Clock Pulse 4.5V~5.5V
SCK
Width
2.7V~4.5V
tHSTBK
tDS
tDK
tDKSTB
tWSTB
tWAIT
tODO
Rev. 1.10
Shift Clock Hold Time
Data Setup Time
Data Hold Time
ST Hold Time
ST Pulse Width
Wait Time
Output Data Delay Time
2.7V~4.5V
4.5V~5.5V
2.7V~4.5V
4.5V~5.5V
2.7V~4.5V
4.5V~5.5V
2.7V~4.5V
4.5V~5.5V
2.7V~4.5V
SCK
STD¯ ® SCK¯
Data ® SCK­
SCK­ ® Data
SCK­ ® ST­
4.5V~5.5V
¾
2.7V~4.5V
4.5V~5.5V
2.7V~4.5V
4.5V~5.5V
2.7V~4.5V
8th CLK­ ® 1st CLK¯
ST¯ ® Data
17
Min.
Typ.
Max.
Unit
500
¾
¾
ns
1000
¾
¾
ns
200
¾
¾
ns
300
¾
¾
ns
200
¾
¾
ns
300
¾
¾
ns
100
¾
¾
ns
150
¾
¾
ns
100
¾
¾
ns
150
¾
¾
ns
100
¾
¾
ns
150
¾
¾
ns
500
¾
¾
ns
750
¾
¾
ns
500
¾
¾
ns
750
¾
¾
ns
1
¾
¾
ms
1
¾
¾
ms
¾
¾
150
ns
¾
¾
300
ns
July 5, 2011
HT16528
Symbol
Test Conditions
Parameter
VDD
tODH
Output Data Hold Time
tWRE
Reset Pulse Width
Conditions
4.5V~5.5V
2.7V~4.5V
SCK­ ® Data
4.5V~5.5V
¾
2.7V~4.5V
Min.
Typ.
Max.
Unit
5
¾
¾
ns
5
¾
¾
ns
500
¾
¾
ns
500
¾
¾
ns
Serial Mode (Input)
tW
S T B
tW
S T B
S T
tH
tC
S T B K
tW
tD
Y K
H K
tW
S
tD
K S T B
L K
S C K
tD
H
S I
Note:
The input rise time and fall time (tR, tF) is specified at 15ns or less.
All timing is specified using 20% and 80% of VDD as the reference.
Serial Mode (Output)
S T
tH
tC
S T B K
tW
tD
Y K
tW
H K
K S T B
L K
S C K
tO
tO
D O
D H
S O
AC Measurement Point
V
In p u t
V
O u tp u t
IH
O H
V
V
IL
O L
R e s e t
R E S E T
tW
Rev. 1.10
R E
18
July 5, 2011
HT16528
Timing Condition for interface: M68, i80 and Serial Power On Reset
Symbol
Parameter
Ta=25°C
VDD
Min.
Typ.
Max.
Unit
tRES
Resetting Time
2.7V~5.5V
100
¾
¾
ms
ttrDD
VDD Rising Time
2.7V~5.5V
1
¾
¾
ms
tOFF1
VDD OFF Width
2.7V~5.5V
1
¾
¾
ms
tOFF2
VDD OFF Width
2.7V~5.5V
500
¾
¾
ns
V
D D
0 .2 V
t trD
tR
D
E S
tO
F F 2
4 .5 V
tO
F F 1
In te rn a l
R e s e t
T im e
RESET Timing
Symbol
Parameter
VDD
Min.
Typ.
Max.
Unit
ms
tRSTD
Delay Time After Reset
2.7V~5.5V
100
¾
¾
tR
Reset Rising Time
2.7V~5.5V
1
¾
¾
ms
tRST1
RST/Pulse Width Low
2.7V~5.5V
1
¾
¾
ms
tRST2
RST/Pulse Width Low
2.7V~5.5V
500
¾
¾
ns
R E S E T
0 .2 V
tR
S T 2
tR
S T 1
4 .5 V
tR
S T D
tR
R S , S T B
Power Supply Connection Sequence
· Connect the PGND and LGND externally to have an
V o lta g e
equal potential voltage
· To avoid faulty connection, turn on the driver power
supply (VH) after turning on the logic power supply
(VDD). Then turn off the logic power supply (VDD) after
turning off the driver power supply (VH).
V
V
· If the power connection sequence recommended by
D D
T im e
Holtek is not followed, there¢s a possibility that the internal logic transistors may be damaged.
Rev. 1.10
H
19
July 5, 2011
HT16528
Functional Description
CPU Interface
HT16528 have 4 or 8-bit parallel interface or serial interface. These modes are selected by IM pin.
· IM=²0²: Serial mode
· IM=²1²: Parallel mode
CPU Interface Table
IM
CS
RS, ST
E (RD), SCK
R, W (WR)
MPU
SI, SO
DB0~DB7
0
CS
ST
SCK
Note
Note
SI, SO
Note
1
CS
RS
E (RD)
R, W (WR)
MPU
Note
DB0~DB7
Note: Keep this pin Hi or Lo.
Registers (IR, DR)
The HT16528 has two 8-bit registers, namely, an instruction register (IR) and a data register (DR). The IR register
stores instruction code such as display clear and cursor shift. It also contains address information for display data RAM
(DDRAM) and character generator RAM (CGRAM). The IR can only be written from the MPU. The DR temporarily
stores data to be written into or read from the DDRAM or CGRAM. Data written into the DR from the MPU is automatically written into the DDRAM or CGRAM by internal operation. The DR is also used for data storage when reading data
from the DDRAM or CGRAM. When the address information is written into the IR, data is read and then stored into the
DR from the DDRAM or CGRAM by internal operation. Data transfer between the MPU is completed when the MPU
reads the DR. After the read, data in DDRAM or CGRAM at the next address is sent to the DR for the next read from the
MPU. These two registers can be selected by the register selector (RS) signal, (Refer to CPU Interface table).
Registers (IR, DR) Table
Common
M68
RS
R, W
RD
i80
WR
0
0
1
0
Write IR data during internal operation (display clear, etc.)
0
1
0
1
Read data to be busy flag (DB7) and address counter (DB6~DB0)
1
0
1
0
Write DR data (DR®DDRAM, CGRAM)
1
1
0
1
Read DR data (DDRAM, CGRAM®DR)
Register Selection
Busy Flag (Read BF Flag)
Busy flag data (DB7) is always output as ²0².
Address Counter (AC)
The Address counter (AC) assigns address to both DDRAM and CGRAM. When an instruction address is written into
the IR, the address information is sent from the IR to the AC.
Selection of either DDRAM or CGRAM is also determined concurrently by the instruction. After writing into (or read
from) the DDRAM or CGRAM, the AC is automatically incremented by 1 (or decremented by 1). The cursor position are
then output to DB0~DB6 when RS=0 and R, W=1 (Refer to Registers (IR, DR) Table).
Rev. 1.10
20
July 5, 2011
HT16528
Display Data RAM (DDRAM)
The Display data RAM (DDRAM) stores display data represented in 8-bit character codes. Its extended capacity is
80´8 bits or 80 characters. The area in the DDRAM that is not used for display can be used as general data RAM. Refer
to DDRAM address table for the relationships between DDRAM address and positions on the VFD.
The DDRAM address (ADD) is set in the address counter (AC) as hexadecimal.
DDRAM Address Table
High Order Bits
AC6
AC5
Low Order Bits
AC4
AC3
AC2
Hexadecimal
AC1
AC0
Hexadecimal
Example: DDRAM address ²3FH²
0
1
1
1
1
3
1
1
F
· 1-line display (N=0)
Display Position
(Digit)
1
2
3
4
5
6
79
80
DDRAM Address
00
01
02
03
04
05
4E
4F
(Hexadecimal)
When there are fewer than 80 display characters, the display begins at the head position. For example, if using only
one HT16528, 24 characters are displayed. When display shift operation is performed, the DDRAMaddress shifts as
shown in the following table.
Example: 1-line by 24-character Display Table
Display Position
(Digit)
1
2
3
4
5
6
23
24
DDRAM Address
00
01
02
03
04
05
16
17
For Shift Left
01
02
03
04
05
06
17
18
For Shift Right
4F
00
01
02
03
04
15
16
(Hexadecimal)
Rev. 1.10
21
July 5, 2011
HT16528
· 2-line display (N=1)
Display Position
(Digit)
1
2
3
4
5
6
39
40
DDRAM Address
00
01
02
03
04
05
26
27
(Hexadecimal)
40
41
42
43
44
45
66
67
When the number of display character is less than 40´2 lines, the 2 lines are displayed from the head. The first line
end address and the second line start address are not consecutive.
For example, if using only one HT16528, 24 characters ´ 2 lines are displayed. When display shift operation is performed, the DDRAM address shifts as shown in the following table.
Example: 2-line by 24-character Display Table
Display Position
(Digit)
1
2
3
4
5
6
23
24
DDRAM Address
00
01
02
03
04
05
16
17
(Hexadecimal)
40
41
42
43
44
45
56
57
01
02
03
04
05
06
17
18
41
42
43
44
45
46
57
58
27
00
01
02
03
04
15
16
67
40
41
42
43
44
55
56
For Shift Left
For Shift Right
· 40 Characters´2 line display
The DDRAM stores the character code of each character being displayed on the VFD. Valid DDRAMaddresses are
00H to 27H and 40H to 67H. The DDRAMnot used for display characters can be used as general purpose RAM. The
tables below show the relationship between the DDRAMaddress and the character position on the VFD display shift
as shown in the following table.
Example: 2-line by 40-character Display Table
Display Position
(Digit)
1
2
3
4
23
24
25
39
40
DDRAM Address
00
01
02
03
16
17
18
26
27
(Hexadecimal)
40
41
42
43
56
57
58
66
67
01
02
03
04
17
18
19
27
00
41
42
43
44
57
58
59
67
40
For Shift Left
For Shift Right
27
00
01
02
15
16
17
25
26
67
40
41
42
55
56
57
65
66
HT16528 Display
Rev. 1.10
22
Extension Driver Display
July 5, 2011
HT16528
· Character Generator ROM (CGROM)
¨
CGROM for generating character patterns of 5´8 dots from 8-bit character codes, generates 240 type of character
patterns.
The character codes are shown on the following page.
Character codes 00H to 0FH are allocated to the CGRAM
¨
¨
MSB
LSB
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
RAM0
0000
0
(CGRAM)
0001
1
(CGRAM)
0010
2
(CGRAM)
0011
3
(CGRAM)
0100
4
(CGRAM)
0101
5
(CGRAM)
0110
6
(CGRAM)
0111
7
(CGRAM)
1000
8
(CGRAM)
1001
9
(CGRAM)
1010
A
(CGRAM)
1011
B
(CGRAM)
1100
C
(CGRAM)
1101
D
(CGRAM)
1110
E
(CGRAM)
1111
F
(CGRAM)
RAM1
RAM2
RAM3
RAM4
RAM5
RAM6
RAM7
RAM8
RAM9
RAMA
RAMB
RAMC
RAMD
RAME
RAMF
Character Code Table 1 (ROM Code: 001)
Rev. 1.10
23
July 5, 2011
HT16528
LSB
MSB 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
RAM0
0000
(CGRAM)
0001
(CGRAM)
0010
(CGRAM)
0011
(CGRAM)
0100
(CGRAM)
0101
(CGRAM)
0110
(CGRAM)
0111
(CGRAM)
RAM1
RAM2
RAM3
RAM4
RAM5
RAM6
RAM7
RAM8
1000
(CGRAM)
1001
(CGRAM)
1010
(CGRAM)
1011
(CGRAM)
1100
(CGRAM)
1101
(CGRAM)
1110
(CGRAM)
1111
(CGRAM)
RAM9
RAMA
RAMB
RAMC
RAMD
RAME
RAMF
Character Code Table 2 (ROM Code: 002)
Rev. 1.10
24
July 5, 2011
HT16528
LSB
MSB
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
RAM0
0000
0
(CGRAM)
0001
1
(CGRAM)
0010
2
(CGRAM)
0011
3
(CGRAM)
0100
4
(CGRAM)
0101
5
(CGRAM)
0110
6
(CGRAM)
0111
7
(CGRAM)
1000
8
(CGRAM)
1001
9
(CGRAM)
1010
A
(CGRAM)
1011
B
(CGRAM)
1100
C
(CGRAM)
1101
D
(CGRAM)
1110
E
(CGRAM)
1111
F
(CGRAM)
RAM1
RAM2
RAM3
RAM4
RAM5
RAM6
RAM7
RAM8
RAM9
RAMA
RAMB
RAMC
RAMD
RAME
RAMF
Character Code Table 3 (ROM code: 003)
Rev. 1.10
25
July 5, 2011
HT16528
Character Generator RAM (CGRAM)
The CGRAM stores the pixel information (1=pixel on, 0=pixel off) for the eight user-define 5´8 characters. Valid
CGRAM addresses are 00H to 3FH. CGRAM not used to defined characters can be used as general purpose RAM.
Character codes 00H~07H (or 08H~0FH) are assigned to the user-defined characters (see section 5.0 character font
tables). The table below shows the relationship between the character codes, CGRAM addresses, and CGRAM data
for each user-defined character.
Relationship between CGRAM address and character code (DDRAM) and 5´7 (with cursor) dot character patterns
(CGRAM)
C h a ra c te r C o d e (R A M
H ig h O r d e r B it
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X
0
0
0
X
1
0
0
0
0
1
1
0
0
1
1
1
1
X
1
0
0
1
1
1
0
0
0
X
X
X
1
0
0
0
0
0
0
0
X
1
1
1
1
1
1
0
1
0
X
X
X
1
0
1
0
0
0
0
0
0
0
0
0
0
X
0
0
0
0
0
1
1
1
X
X
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
1
X
0
1
X
0
1
X
X
1
X
X
X
1
1
0
0
1
0
C h a ra c te r
P a tte rn (8 )
0
0
0
1
X
0
1
0
1
0
X
X
C u r s o r P o s itio n
0
1
0
1
X
1
1
X
X
0
1
X
0
0
X
X
0
1
X
1
1
1
X
1
1
1
1
0
1
1
0
1
1
1
X
0
1
1
0
0
1
1
0
0
0
X
0
1
1
0
0
0
1
1
0
0
1
1
1
0
1
0
1
1
C h a ra c te r
P a tte rn (2 )
0
0
1
X
X
0
0
0
0
0
1
0
0
1
0
0
0
C u r s o r P o s itio n
0
1
0
0
0
X
1
0
0
0
1
1
0
X
1
0
0
X
C h a ra c te r
P a tte rn (1 )
1
1
0
X
X
1
0
X
X
1
1
0
0
X
1
0
0
X
X
0
0
0
0
X
0
1
0
0
0
X
1
1
0
0
1
0
0
0
1
X
X
0
0
X
X
X
0
1
X
0
X
X
0
1
1
X
X
X
0
1
0
X
1
1
X
X
1
1
0
0
X
1
1
X
X
0
1
1
X
X
1
1
0
0
0
1
0
0
0
X
X
O r d e r B it
0
1
X
X
1
0
1
0
0
0
0
0
0
1
0
X
1
1
1
X
0
1
0
X
X
0
0
0
Note:
0
0
0
X
1
1
1
1
0
0
0
0
X
X
X
0
1
1
0
1
0
X
X
0
0
X
L o w
X
1
1
0
0
1
0
0
0
0
X
0
0
H ig h O r d e r B it
X
1
0
0
1
D a ta
D 7 D 6 D 5 D 4 D 3 D 2 D 1 D 0
1
0
0
0
0
0
0
0
0
0
0
0
O r d e r B it
0
0
0
L o w
0
0
0
1
0
0
1
0
X
0
1
0
0
0
0
0
X
0
0
0
0
0
0
0
0
0
X
0
0
X
0
0
0
0
X
0
0
0
0
0
0
0
0
0
0
0
0
X
0
H ig h O r d e r B it
0
0
C G R A M
A 2 A 1 A 0
0
0
X
0
0
0
A d d re s s
A 5 A 4 A 3
0
0
0
0
0
X
0
0
0
0
0
0
0
0
X
0
0
0
X
0
0
0
X
0
0
O r d e r B it
0
0
0
0
X
0
0
0
L o w
0
C G R A M
D a ta )
D 7 D 6 D 5 D 4 D 3 D 2 D 1 D 0
0
1
1
0
0
1
1
1
C u r s o r P o s itio n
²X² means don¢t care
Character code bits 0~2 correspond to CGRAM address bits 3~5 (3 bits: 8 types)
CGRAM address bits 0~2 designate character pattern line position. The 8th line is the cursor position and its
display is formed by a logical OR with the cursor. Maintain the 8th line data, corresponding to the cursor display
position at 0 as the cursor display. If the 8th line data is 1, 1 bit will light up the 8th line regardless of the cursor
presence.
Character pattern row position corresponds to CGRAM data bits 0~4 (bit 4 being at the left).
CGRAM character patterns are selected when character code bits 4~7 are all 0. However, since character
code bit 3 has no effect, the ²H² display example above can be selected by either character code 00H or 08H.
1 for CGRAM data corresponds to display selection and 0 to non selection.
Timing Generation Circuit
Timing generation circuit generates timing signals for the operation of internal circuit such as DDRAM, CGRAM and
CGROM. The RAM reads the timing for display and the internal operation timing by MPU access are generated separately to avoid interfering with each other. Therefore, when writing data to DDRAM, for example, there will be no undesirable interference, such as flickering, in areas other than the display area.
Rev. 1.10
26
July 5, 2011
HT16528
VFD Driver Circuit
VFD driver circuit consists of 24 grid signal drivers and 80 segment signal drivers. When the character font and number
of digits are selected by hardware (DS0, DS1) at power on, the required grid signal drivers automatically output drive
waveforms, while the other grid signal driver continue to output non-selection waveforms.
Sending serial data is latched when the display data character pattern corresponds to the last address of the display
data RAM (DDRAM).
Since serial data is latched when the display data character pattern corresponds to the starting address enters the internal shift register, the HT16528 drives from the head display.
Cursor/Blink Control Circuit
Cursor/blink control circuit generates the cursor or character blinking. The cursor or the blinking will appear with the
digit located at the display data RAM (DDRAM) address set in the address counter (AC).
For example, when the address counter is 08H, the cursor position is displayed at DDRAM address 08H.
Cursor/Blink Control Table
1-line Display
2-line Display
Note:
The cursor or blinking appears when the address counter (AC) selects the character generator RAM
(CGRAM). However, the cursor and blinking become meaningless when the cursor or blinking is displayed in
the meaningless position when AC is a CGRAM address.
Interface With CPU Mode
· Parallel Data Transfer M68 (IM=1, MPU=1)
This IC can interface (data transfer) with the CPU in 4 or 8 bits in M68 interface.
However, the internal registers consist of 8 bits. Using the DB4 to DB7 twice must perform data transfer in 4 bits.
When using 4-bit parallel data transfer, DB0 to DB3 pins remain Hi or Low. The transfer order is initially from the
higher 4 bits (D4 to D7) then followed by the lower 4 bits (D0 to D3).
BF checks are performed before transferring the higher 4 bits. BF checks are not required before transferring the
lower 4 bits.
Rev. 1.10
27
July 5, 2011
HT16528
¨
4-bit data transfer (M68)
R S
R , W
E
D B 7
IR 7
IR 3
IR 7
IR 3
B F = "0 "
IR 3
D 7
D 3
D B 6
IR 6
IR 2
IR 6
IR 2
IR 6
IR 2
D 6
D 2
D B 5
IR 5
IR 1
IR 5
IR 1
IR 5
IR 1
D 5
D 1
D B 4
IR 4
IR 0
IR 4
IR 0
IR 4
IR 0
D 4
D 0
W r ite
In s tr u c tio n
¨
W r ite
In s tr u c tio n
R e a d
In s tr u c tio n
W r ite
D a ta
8-bit data transfer (M68)
R S
R , W
E
D B 7
IR 7
IR 7
B F = "0 "
D 7
D B 6
IR 6
IR 6
IR 6
D 6
D B 0
IR 0
IR 0
IR 0
D 0
W r ite
In s tr u c tio n
W r ite
In s tr u c tio n
R e a d
In s tr u c tio n
W r ite
D a ta
Rev. 1.10
28
July 5, 2011
HT16528
Parallel mode for i80 (IM=1, MPU=0)
When setting ²IM=1, MPU=0², i80 is selected. In the HT16528, each time data is sent from the MPU, a type of pipeline
process between LSIs is performed through the bus holder attached to internal data bus.
8-bit or 4-bit mode can be selected for i80 interface. However, the internal registers consist of 8 bits. DB4 to DB7 must
be used twice for performing data transfer in 4-bit mode. When using 4-bit parallel data transfer, DB0 to DB3 pins remain Hi or Low. The transfer order is started from the higher 4 bits (D4 to D7) then followed by the lower 4 bits (D0 to
D3).
There is a certain restriction in the read sequence of this display data RAM. Please be advised that data of the specified
address is not generated by the read instruction issued immediately after the address setup. This data is generated in
data read for the second time. Thus, a dummy read is required whenever the address setup or write cycle operation is
selected. This relationship is shown in the following figure.
· 4-bit data transfer (i80)
· 8-bit data transfer (i80)
RS
WR
RD
DB7
IR7
IR7
BF=0
D7
D7
D7
DB6
IR6
IR6
IR6
D6
D6
D6
DB1
IR1
IR1
IR1
D1
D1
D1
DB0
Rev. 1.10
IR0
IR0
IR0
D0
D0
D0
Write
Instruction
Write
Instruction
Read
Instruction
Read
Dummy data
Read
Data
Write
Data
29
July 5, 2011
HT16528
Serial Mode
In the synchronous serial interface mode, instructions and data are sent between the host and the module using 8-bit
bytes. Two bytes are required per read/write cycle and are transmitted MSB first. The start byte contains 5 high bits, the
Read/Write (R/W) control bit, the Register Select (RS) control bit, and a low bit. The subsequent byte contains the instruction/data bits. The R/W bit determines whether the cycle is a read (high) or a write (low) cycle. The RS bit is used to
identify the second byte as an instruction (low) or data (high).
This mode uses the strobe (ST) control signal, Serial Clock (SCK) input, and Serial I/O (SI/SO) line to transfer information. In a write cycle, bits are clocked into the module on the rising edge of SCK. In a read cycle, bits in the start byte are
clocked into the module on the rising edge of SCK. After a minimum wait time, each bit in the instruction/data byte can
be read from the module after each falling edge of SCK. Each read/write cycle begins on the falling edge of ST and
ends on the rising edge. To be a valid read/write cycle, the ST must go high at the end of the cycle.
D a ta W r ite
S T
1
2
"1 "
"1 "
3
4
5
6
7
8
9
1 0
1 1
1 2
1 3
1 4
1 5
R , W
R S
"0 "
D 7
D 6
D 5
D 4
D 3
D 2
D 1
6
7
1 6
1 7
S C K
S I
"1 "
"1 "
"1 "
D 0
S y n c h r o n o u s B its
S ta rt B y te
In s tr u c tio n /D a ta
D a ta R e a d
S T
1
2
"1 "
"1 "
3
4
5
6
7
W a it T im e : tW
1 m s
8
A IT
1
2
3
4
5
8
9
S C K
S I, S O
"1 "
"1 "
S y n c h r o n o u s B its
"1 " R , W
R S
"0 "
S ta rt B y te
Rev. 1.10
B F
"0 "
IR 6
IR 5
IR 4
IR 3
IR 2
IR 1
IR 0
R e a d D a ta
30
July 5, 2011
HT16528
Commands
Instruction
Clear display
Cursor home
Entry mode set
RS
0
0
0
R, W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
I/D
Description
1
Clear all display, and
sets the DDRAM address at 00H.
x
Sets the DDRAM address at 00H. Also returns the display shifted
to the original position.
The DDRAM contents
remain unchanged.
S
Sets the cursor direction
and specifies the display
shift. These operations
are performed during
writing/reading data.
Display On/Off
0
0
0
0
0
0
1
D
C
B
Sets all display
ON/OFF(D), cursor
ON/OFF(C), cursor
blink of character
position (B).
Cursor or display shift
0
0
0
0
0
1
S/C
R/L
x
x
Shifts display or cursor,
while keeping the
DDRAM contents.
Function
0
0
0
0
1
DL
N
x
BR1
CGRAM address set
0
0
0
DDRAM address set
0
0
1
1
ACG
Sets data length
BR0 (in parallel data transfer)
and Number of line
Sets the address of the
CGRAM. After that, data
of the DDRAM is transferred.
ADD
Sets the address of the
DDRAM. After that, data
of the DDRAM is transferred.
ACC
Reads the busy flag (BF)
and the address counter.
BF is output as ²0² always.
Read busy flag &
address
0
1
Write data to CGRAM
or DDRAM
1
0
Write data
Writes data into the
CGRAM of the DDRAM.
Read data from
CGRAM or DDRAM
1
1
Read DR data
Reads data from the
CGRAM or DDRAM.
Note:
BF=0
I/D=1: Increment, I/D=0: Decrement
S=1: Display shift enable, S=0: Cursor shift enable
S/C=1: Display shift, S/C=0: Cursor shift
R/L=1: Right shift, R/L=0: Left shift
DL=1: 8bit, DL=0: 4bit
BR1, BR0= (00: 100%) , (01: 75%) , (10: 50% ) , (11: 25%)
²X²: Don¢t care
ACG: CGRAM address
ADD: DDRAM address
ACC: Address counter
DDRAM: Display Data RAM
CGRAM: Character Generator RAM
Rev. 1.10
31
July 5, 2011
HT16528
Clear Display
RS
R, W
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
0
0
0
0
0
0
0
1
Code
The instruction:
· Fills all locations in the display data RAM (DDRAM) with 20H (Blank character).
· Clears the contents of the address counter (ACC) to 00H.
· Sets display for zero character shifts (returns to original position).
· Sets the address counter to point to the display data RAM (DDRAM).
· If cursor is displayed, move cursor to the left most character in the top line (upper line).
· Sets address counter (ACC) to increment on each access to DDRAM or CGRAM.
When resetting
Cursor Home
RS
R, W
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
0
0
0
0
0
0
1
X
Code
Note: ²x² don¢t care
The instruction:
· Clears the contents of the address counter (ACC) to 00H.
· Sets the address counter to point to the display data RAM (DDRAM).
· Sets display for zero character shifts (returns to original position).
· If cursor is displayed, move cursor to the left most character in the top line (upper line).
Entry Mode
RS
R, W
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
0
0
0
0
0
1
I/D
S
Code
This instruction selects whether the cursor position increments or decrements after each DDRAM or CGRAM access
and determines the direction the information on the display shifts after each DDRAM write. The instruction also enables
or disables display shifts after each DDRAM write (information on the display does not shift after a DDRAM read or
CGRAM access). The DDRAM, CGRAM, and cursor position are not affected by this instruction.
I/D=0: The AC decrements after each DDRAM or CGRAM access.
If S=1, the information on the display shifts to the right by one character position after each DDRAM write.
I/D=1: The AC increments after each DDRAM or CGRAM access.
If S=1, the information on the display shifts to the left by one character position after each DDRAM write.
S=0:
The display shift function is disabled.
S=1:
The display shift function is enabled.
Cursor Move and Display Shift by the Entry Mode Set
I/D
S
After Writing DDRAM Data
0
0
Cursor moves one character to the left.
Cursor moves one character to the right.
After Reading DDRAM Data
1
0
Cursor moves one character to the right.
Cursor moves one character to the right.
0
1
Display shifts one character to the right without cursor movements. Cursor moves one character to the left.
1
1
Display shifts one character to the left without cursor movements. Cursor moves one character to the right.
When resetting
Rev. 1.10
32
July 5, 2011
HT16528
Display ON/OFF
RS
R, W
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
0
0
0
0
1
D
C
B
Code
This instruction selects whether the display and cursor are on or off and selects whether or not the character at the current cursor position blinks. The DDRAM, CGRAM, and cursor position are not affected by this instruction.
·
·
·
·
·
·
D=0: The display is off (display blank).
D=1: The display is on (contents of the DDRAM is displayed).
C=0: The cursor is off.
C=1: The cursor is on (8th rows of pixels).
B=0: The blinking character function is disabled.
B=1: The blinking character function is enabled
Note: A character with all pixels on will alternate with the character displayed at the current cursor position at a 1Hz
rate with a 50% duty cycle.
When resetting
Cursor or Display Shift
Code
RS
R, W
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
0
0
0
1
S/C
R/L
X
X
Note: ²x² don¢t care
This instruction shifts the display and/or moves the cursor to the left or right, without reading or writing to the DDRAM.
²S/C² bit selects movement of the cursor or movement of both cursor and display.
· S/C=1: Shift both cursor and display.
· S/C=0: Shift only the cursor.
²R/L² bit selects whether moving the direction to the left or right of the display and/or cursor.
· R/L=1: Shift one character right.
· R/L=0: Shift one character left.
Cursor or Display Shift
S/C
R/L
Cursor Position
Information on the Display
0
0
Decrements by one (left)
No change
0
1
Increments by one (right)
No change
1
0
Decrements by one (left)
Shifts on character position to the left
1
1
Increments by one (right)
Shifts on character position to the right
Function Set
Code
RS
R, W
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
0
0
1
DL
N
X
BR1
BR0
Note: ²x² don¢t care
This instruction sets the width of the data bus for the parallel interface modes, the number of display lines, and the luminance level (brightness) of the VFD. DDRAM, CGRAM, and cursor position are not affected by this instruction.
· DL=0: Sets the data bus width for the parallel interface modes to 4-bit (DB7~DB4).
· DL=1: Sets the data bus width for the parallel interface modes to 8-bit (DB7~DB0).
· N=0: Sets the number of display lines to 1 (this setting is not recommended, using segment output S1~S40,
S41~S80 fixed to Low level).
· N=1: Sets the number of display lines to 2 (using segment output S1~S80).
Rev. 1.10
33
July 5, 2011
HT16528
BR1, BR0 flag is brightness control for the VFD to modulate the pulse width of the segment output as follows.
tDSP@200ms, tBLK@10ms
BR1
BR0
Brightness
tP
0
0
100%
tDSP´1.00
0
1
75%
tDSP´0.75
1
0
50%
tDSP´0.50
1
1
25%
tDSP´0.25
Note: ²n² means number of grid, T=nx (tDSP+tBLK)
When resetting
CGRAM Address Set
This instruction places the 6-bit CGRAM address specified by DB5~DB0 into the cursor position. Subsequent data
writes (reads) will be to (from) the CGRAM. The DDRAM and CGRAM contents are not affected by this instruction.
When resetting: Don¢t care.
Rev. 1.10
34
July 5, 2011
HT16528
DDRAM Address Set
This instruction places the 7-bit DDRAM address specified by DB6~DB0 into the cursor position. Subsequent data
writes (reads) will be to (from) the DDRAM. The DDRAM and CGRAM contents are not affected by this instruction.
Valid DDRAM Address Ranges
Number of Character
Address Range
1st line
40
00H~27H
2nd line
40
40H~67H
When resetting: Don¢t care.
Read Busy Flag and Address
This instruction reads the Busy Flag (BF)* and the value of address counter in binary ²AAAAAAA². This address counter is used by the CGRAM and DDRAM addresses, its value is determined by the previous instruction. The address
counter contents are the same as for instructions ²CGRAM address set² and ²DDRAM address set².
Note: ²*² means the Busy Flag (BF) always outputs a ²0².
Write Data to the CGRAM or DDRAM
This instruction writes the 8-bit data byte on DB7~DB0 into the DDRAM or CGRAM location addressed by the cursor
position. The most recent DDRAM or CGRAM Address Set instruction determines whether the write is to the DDRAM
or CGRAM. This instruction also increments or decrements the cursor position and shifts the display according to the
I/D and S bits set by the Entry Mode Set instruction.
Read Data from CGRAM or DDRAM
This instruction reads the 8-bit data byte from the DDRAM or CGRAM location addressed by the cursor position on
DB7~DB0. The most recent DDRAM or CGRAM Address Set instruction determines whether the read is from the
DDRAM or CGRAM. This instruction also increments or decrements the cursor position and shifts the display according to the I/D and S bits set by the Entry Mode Set instruction. Before sending this instruction, a DDRAM or CGRAM Address Set instruction should be executed to set the cursor position to the desired DDRAM or CGRAM address to be
read.
After reading one data, the value of the address is automatically increased or decreased by 1 according to the selection
by ²Entry mode².
Note:
The Address counter is automatically increased or decreased by 1 after a data write instruction to the CGRAM
or DDRAM are executed. But at this moment the data to be pointed to by the address counter cannot be read if
a data read instruction is executed. Therefore, to read data correctly, executing an address set instruction or
cursor shift instruction (the only case of a DDRAM data read) just before reading, or reading the second data in
case of reading data continuously by executing a read data instruction.
Rev. 1.10
35
July 5, 2011
HT16528
Power ON Reset
After a power-on reset, the module is initialize to the following conditions:
· All DDRAM locations are set to 20H (character code for a space).
· The cursor position is set to DDRAM address 00H
· The relationship between DDRAM addresses and character positions on the VFD is set to the non-shifted position.
· Entry Mode Set instruction bits:
I/D=1: The cursor position increments after each DDRAM or CGRAM access.
If S=1, the information on the display shifts to the left by one character position after each DDRAM write.
S=0:
The display shift function is disabled.
· Display On/Off Control instruction bits:
D=0:
The display is off (display blank).
C=0:
The cursor is off.
B=0:
The blinking character function is disabled.
· Function Set instruction bits:
DL=1: Sets the data bus width for the parallel interface modes to 8 bits (DB7~DB0).
N=1:
Number of display lines is set to 2.
BR1, BR0=0,0: Sets the luminance level to 100%.
· MPU interface, duty ratio selection are based on the following table.
Relationship between Status of HT16528 and Pin Selection at Power on Reset
Pin Name
TEST
IM
DS1 DS0
Function
Remark
1
x
x
x
Self test mode
This is effective on aging.
0 or open
0
x
x
Serial interface
SI, SO, SCK, ST
0 or open
1
x
x
Parallel interface
RS, E, R, W, DB7~DB4 or DB7~DB0
0 or open
x
0
0
Duty= 1/16 (16C´1 or 2L display)
0 or open
x
0
1
Duty= 1/20 (20C´1 or 2L display)
0 or open
x
1
0
Duty= 1/24 (24C´1 or 2L display)
0 or open
x
1
1
Duty= 1/40 (40C´1 or 2L display)
Rev. 1.10
36
It¢s not necessary to use the extension driver.
The number of line is selected by instruction.
Extension driver should be used.
The number of line is selected by instruction.
July 5, 2011
HT16528
Example (8-bit Data Parallel, Data Increment Mode)
Initialization Sequence & Data Set
Initialization Programming Example & Data Set (M68 series MPU)
RS
R, W
D7
D6
D5
D4
D3
D2
D1
D0
Description
Power On
0
0
0
0
1
1
1
x
0
1
Function Set
Data length: 8 bits
Display line number: 2 lines
VFD Brightness: 75%
0
0
0
1
0
0
0
0
0
0
CGRAM address set to 00H
x
x
x
D
D
D
D
D
x
x
x
D
D
D
D
D
|
|
|
|
|
|
|
|
1
0
1
0
Rev. 1.10
0
0
x
x
x
D
D
D
D
D
1
0
0
0
0
0
0
0
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
|
|
|
|
|
|
|
|
D
D
D
D
D
D
D
D
0
0
0
0
1
1
0
0
0
0
37
Write data to CGRAM 64 bytes
(8 characters)
DDRAM address set to 00H
Write data to DDRAM 80 bytes
(80 characters)
Display ON/OFF
Display ON, cursor OFF, cursor blink
OFF
July 5, 2011
HT16528
Application Circuits
5x8 dot matrix fluorescent display tube
G25~G40
G1-24
S1~S80
VH
LE
CL
SLK
SDO
HT16528
R1
VDD
VH
LGND
OSCI
OSCI
RS,ST
E(RD),SCK
CS
R,W(WR)
SI,SO
DS0,DS1
IM
MPU
DLS
RL1,RL2
RESET
DB0~DB7
External Extension
Grid Driver
VDD
ROSC
C1
PGND
ZD
MCU
Note:
The VH value depends on the fluorescent display tube used. Adjust the value of the constants R1 and ZD to the
power supply voltage used.
ROSC=56kW for oscillator resistor.
Rev. 1.10
38
July 5, 2011
HT16528
Package Information
144-pin LQFP (20mm´20mm) Outline Dimensions
C
D
1 0 8
G
7 3
I
7 2
1 0 9
A
H
F
B
E
1 4 4
3 7
1
Symbol
a
J
Dimensions in inch
Min.
Nom.
Max.
A
0.862
¾
0.870
B
0.783
¾
0.791
C
0.862
¾
0.870
D
0.783
¾
0.791
E
¾
0.020
¾
F
¾
0.008
¾
G
0.053
¾
0.057
H
¾
¾
0.063
I
¾
0.004
¾
J
0.018
¾
0.030
K
0.004
¾
0.008
a
0°
¾
7°
Symbol
A
Rev. 1.10
3 6
K
Dimensions in mm
Min.
Nom.
Max.
21.90
¾
22.10
B
19.90
¾
20.10
C
21.90
¾
22.10
D
19.90
¾
20.10
E
¾
0.50
¾
F
¾
0.20
¾
G
1.35
¾
1.45
H
¾
¾
1.60
I
¾
0.10
¾
J
0.45
¾
0.75
K
0.10
¾
0.20
a
0°
¾
7°
39
July 5, 2011
HT16528
Holtek Semiconductor Inc. (Headquarters)
No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan
Tel: 886-3-563-1999
Fax: 886-3-563-1189
http://www.holtek.com.tw
Holtek Semiconductor Inc. (Taipei Sales Office)
4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan
Tel: 886-2-2655-7070
Fax: 886-2-2655-7373
Fax: 886-2-2655-7383 (International sales hotline)
Holtek Semiconductor Inc. (Shenzhen Sales Office)
5F, Unit A, Productivity Building, No.5 Gaoxin M 2nd Road, Nanshan District, Shenzhen, China 518057
Tel: 86-755-8616-9908, 86-755-8616-9308
Fax: 86-755-8616-9722
Holtek Semiconductor (USA), Inc. (North America Sales Office)
46729 Fremont Blvd., Fremont, CA 94538
Tel: 1-510-252-9880
Fax: 1-510-252-9885
http://www.holtek.com
Copyright Ó 2011 by HOLTEK SEMICONDUCTOR INC.
The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used
solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable
without further modification, nor recommends the use of its products for application that may present a risk to human life
due to malfunction or otherwise. Holtek¢s products are not authorized for use as critical components in life support devices
or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information,
please visit our web site at http://www.holtek.com.tw.
Rev. 1.10
40
July 5, 2011