HT9B95 RAM Mapping 39×8 / 43×4 LCD Driver

HT9B95
RAM Mapping 39×8 / 43×4 LCD Driver
Feature
Selection Table
• Logic Operating Voltage: 2.4V~5.5V
Part No.
COM
SEG
• Integrated oscillator circuitry
HT9B95A
8
35
8
39
4
43
8
39
4
43
• Bias: 1/3 or 1/4
HT9B95B
• Internal LCD bias generation with voltage-follower
buffers
HT9B95G
• External VLCD pin to supply LCD operating voltage
Package
48TSSOP, 52LQFP
52LQFP
COG
• Support I2C-bus serial interface
• Integrated voltage adjustment function for LCD
driving voltage
Applications
• Leisure products
• Up to 39×8 bits RAM for display data storage
• Telephone display
• Display patterns
• Household appliance
HT9B95A: 35×8 patterns - 35 segments and 8 commons
♦♦ HT9B95B: 39×8 patterns - 39 segments and 8 commons
43×4 patterns - 43 segments and 4 commons
♦♦ HT9B95G: 39×8 patterns - 39 segments and 8 commons
43×4 patterns - 43 segments and 4 commons
♦♦
• Consumer electronics
General Description
The HT9B95 is a memory mappling and multifunction LCD controller driver. The maximum display
segments of the device are 312 patterns (39 segments
and 8 commons) or 280 patterns (35 segments and 8
commons) display depending upon which device is
selected. The software configuration feature of the
HT9B95 device makes it suitable for multiple LCD
applications including LCD modules and display
subsystems. The HT9B95 device communicates with
most microprocessors / microcontrollers via a two-wire
bidirectional I2C-bus interface.
• Support Power Save Mode for low power consumption
• Package Type
HT9B95A: 48-pin TSSOP, 52-pin LQFP
HT9B95B: 52-pin LQFP
♦♦ HT9B95G: COG
♦♦
♦♦
Rev. 1.00
1
May 28, 2015
HT9B95
Block Diagram
Power ON
Reset
SCL
SDA
SEG0
SEG1
SEG2
I2C
Controller
Display
RAM
Internal
Oscillator
Timing
Generator
Segment
driver
output
VDD
SEG38
VLCD
_
OP
+
_
OP
Common
/Segment
driver
output
COM0/SEG39
COM1/SEG40
COM2/SEG41
COM3/SEG42
Common
driver
output
COM4/COM0
COM5/COM1
COM6/COM2
COM7/COM3
+
_
OP
+
LCD
Voltage
Selector
_
OP
+
VSS
LCD Bias Generator
Rev. 1.00
2
May 28, 2015
HT9B95
Pin Assignment
47
3
46
4
45
5
44
6
43
7
42
8
41
9
40
10
39
11
38
12
37
13
36
14
35
15
34
16
33
17
32
18
31
19
30
20
29
21
28
22
27
23
26
24
25
HT9B95A
48 TSSOP-A
SDA
SCL
SEG21
SEG22
SEG23
SEG24
SEG25
SEG26
SEG27
SEG28
SEG29
SEG30
SEG31
SEG32
SEG33
SEG34
COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7
SEG5
SEG4
SEG3
SEG2
SEG1
SEG0
COM7
COM6
COM5
COM4
COM3
COM2
COM1
39 38 37 36 35 34 33 32 31 30 29 28 27
26
40
25
41
24
42
23
43
22
44
21
45
HT9B95A
20
46
52 LQFP-A
47
19
18
48
17
49
16
50
51
15
14
52
1 2 3 4 5 6 7 8 9 10 11 12 13
SEG4
SEG3
SEG2
SEG1
SEG0
COM7/COM3
COM6/COM2
COM5/COM1
COM4/COM0
COM3/SEG42
COM2/SEG41
COM1/SEG40
COM0/SEG39
39 38 37 36 35 34 33 32 31 30 29 28 27
26
40
25
41
42
24
23
43
22
44
21
45
HT9B95B
20
46
52 LQFP-A
19
47
18
48
17
49
16
50
51
15
14
52
1 2 3 4 5 6 7 8 9 10 11 12 13
SEG18
SEG19
SEG20
VSS
VLCD
VDD
SDA
SCL
SEG21
SEG22
SEG23
SEG24
SEG25
SEG17
SEG16
SEG15
SEG14
SEG13
SEG12
SEG11
SEG10
SEG9
SEG8
SEG7
SEG6
SEG5
48
2
NC
NC
SEG26
SEG27
SEG28
SEG29
SEG30
SEG31
SEG32
SEG33
SEG34
COM0
NC
1
SEG17
NC
SEG16
SEG15
SEG14
SEG13
SEG12
SEG11
SEG10
SEG9
SEG8
SEG7
SEG6
VDD
VLCD
VSS
SEG20
SEG19
SEG18
SEG17
SEG16
SEG15
SEG14
SEG13
SEG12
SEG11
SEG10
SEG9
SEG8
SEG7
SEG6
SEG5
SEG4
SEG3
SEG2
SEG1
SEG0
SEG18
SEG19
SEG20
VSS
VLCD
VDD
SDA
SCL
SEG21
SEG22
SEG23
SEG24
SEG25
SEG26
SEG27
SEG28
SEG29
SEG30
SEG31
SEG32
SEG33
SEG34
SEG35
SEG36
SEG37
SEG38
Rev. 1.00
3
May 28, 2015
HT9B95
Pad Assignment for COG − HT9B95G
3
DUMMY
2
DUMMY
COM7 / COM3
COM6 / COM2
COM5 / COM1
COM4 / COM0
DUMMY
COM3 / SEG42
COM2 / SEG41
COM1 / SEG40
COM0 / SEG39
SEG38
SEG37
SEG36
SEG35
SEG34
SEG33
SEG32
SEG31
SEG30
SEG29
SEG28
SEG27
SEG26
SEG25
SEG24
SEG23
SEG22
SEG21
SEG20
SEG19
SEG18
SEG17
SEG16
SEG15
SEG14
SEG13
SEG12
SEG11
SEG10
SEG9
SEG8
SEG7
SEG6
SEG5
SEG4
SEG3
SEG2
SEG1
SEG0
DUMMY
1
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
27 DUMMY
Y
26 DUMMY
X
DUMMY
4
DUMMY
5
24 DUMMY
DUMMY
6
23 DUMMY
DUMMY
7
22 DUMMY
ALIGN_A
8
21 ALIGN_B
(0,0)
15
16
17
18
VDD
VLCD
DUMMY
VSS
19
20
DUMMY
14
DUMMY
13
SDA
DUMMY
12
SCL
DUMMY
11
TEST
10
DUMMY
9
25 DUMMY
Pad Dimensions for COG
Item
Size
Pad Number
X
Y
Chip size
─
Chip thickness
─
508
μm
1, 28~75
60
μm
2~7, 22~27
80
μm
9~20
>80
μm
Pad pitch
Bump size
Bump height
Rev. 1.00
3108
1132
Unit
µm
1, 28~75
40
60
μm
2~7, 22~27
40
60
μm
9~20
67
67
μm
All pad
18±3
4
μm
May 28, 2015
HT9B95
Alignment Mark Dimensions for COG
Item
Number
Size
Unit
ALIGN_A
8
μm
ALIGN_B
21
μm
Pad Coordinates for COG
Unit: μm
No.
Name
X
Y
No.
Name
X
Y
1
DUMMY
-1470.500
472.500
39
SEG36
762.700
472.500
2
DUMMY
-1470.500
136.340
40
SEG35
702.700
472.500
3
DUMMY
-1470.500
56.340
41
SEG34
642.700
472.500
4
DUMMY
-1470.500
-23.660
42
SEG33
582.700
472.500
5
DUMMY
-1470.500
-103.660
43
SEG32
522.700
472.500
6
DUMMY
-1470.500
-183.660
44
SEG31
462.700
472.500
7
DUMMY
-1470.500
-263.660
45
SEG30
402.700
472.500
8
ALIGN_A
-1477.000
-330.000
46
SEG29
342.700
472.500
9
DUMMY
-1457.000
-469.000
47
SEG28
282.700
472.500
10
DUMMY
-923.150
-469.000
48
SEG27
222.700
472.500
11
DUMMY
-552.600
-469.000
49
SEG26
162.700
472.500
12
TEST
-187.900
-469.000
50
SEG25
102.700
472.500
13
SCL
4.100
-468.000
51
SEG24
42.700
472.500
14
SDA
89.100
-468.000
52
SEG23
-17.300
472.500
15
VDD
182.900
-468.000
53
SEG22
-77.300
472.500
16
VLCD
270.950
-469.000
54
SEG21
-137.300
472.500
17
DUMMY
406.900
-469.000
55
SEG20
-197.300
472.500
18
VSS
490.950
-469.000
56
SEG19
-257.300
472.500
19
DUMMY
963.600
-469.000
57
SEG18
-317.300
472.500
20
DUMMY
1457.000
-469.000
58
SEG17
-377.300
472.500
21
ALIGN_B
1458.000
-330.000
59
SEG16
-437.300
472.500
22
DUMMY
1470.500
-260.810
60
SEG15
-497.300
472.500
23
DUMMY
1470.500
-180.810
61
SEG14
-557.300
472.500
Rev. 1.00
5
May 28, 2015
HT9B95
No.
Name
X
Y
No.
Name
X
Y
24
DUMMY
1470.500
-100.810
62
SEG13
-617.300
472.500
25
DUMMY
1470.500
-20.810
63
SEG12
-677.300
472.500
26
DUMMY
1470.500
59.190
64
SEG11
-737.300
472.500
27
DUMMY
1470.500
139.190
65
SEG10
-797.300
472.500
28
DUMMY
1470.500
472.500
66
SEG9
-857.300
472.500
29
COM7/COM3
1396.300
472.500
67
SEG8
-917.300
472.500
30
COM6/COM2
1336.300
472.500
68
SEG7
-977.300
472.500
31
COM5/COM1
1276.300
472.500
69
SEG6
-1037.300
472.500
32
COM4/COM0
1216.300
472.500
70
SEG5
-1097.300
472.500
33
COM3/SEG42
1147.700
472.500
71
SEG4
-1157.300
472.500
34
COM2/SEG41
1087.700
472.500
72
SEG3
-1217.300
472.500
35
COM1/SEG40
1027.700
472.500
73
SEG2
-1277.300
472.500
36
COM0/SEG39
967.700
472.500
74
SEG1
-1337.300
472.500
37
SEG38
882.700
472.500
75
SEG0
-1397.300
472.500
38
SEG37
822.700
472.500
Pin Description
HT9B95A
Pin Name
Type
Description
SDA
I/O
Serial Data Input/Output pin
Serial Data (SDA) Input/Output for 2-wire I2C interface is an NMOS open drain structure.
SCL
I
Serial Clock Input pin
Serial Data (SCL) is a clock input for 2-wire I2C interface.
COM0~COM7
O
LCD Common outputs.
SEG0~SEG34
O
LCD Segment outputs.
VDD
—
Positive power supply.
VSS
—
Negative power supply, ground.
VLCD
—
LCD power supply pin
HT9B95B/HT9B95G
Pin Name
Type
Description
SDA
I/O
Serial Data Input/Output pin
Serial Data (SDA) Input/Output for 2-wire I2C interface is an NMOS open drain structure.
SCL
I
Serial Clock Input pin
Serial Data (SCL) is a clock input for 2-wire I2C interface.
COM0/SEG39
~ COM3/SEG42
O
LCD common or segment outputs
These pins are set to COM0 ~ COM3 when 1/8 duty is set
These pins are set to SEG39 ~ SEG42 when 1/4 duty is set
COM4/COM0
~ COM7/COM3
O
LCD Common outputs.
These pins are set to COM4 ~ COM7 when 1/8 duty is set
These pins are set to COM0 ~ COM3 when 1/4 duty is set
SEG0~SEG38
O
LCD Segment outputs.
VDD
—
Positive power supply.
VSS
—
Negative power supply, ground.
VLCD
—
LCD power supply pin
TEST
—
TEST pin in HT9B95G, keep floating. Only available in HT9B95G.
DUMMY
—
Dummy pin, keep floating. Only available in HT9B95G.
Rev. 1.00
6
May 28, 2015
HT9B95
Approximate Internal Connections
SCL, SDA (for Schmitt trigger type)
COM0/SEG39 ~ COM3/SEG42
COM4/COM0 ~ COM7/COM3
SEG0 ~ SEG38
VDD
VLCD
VSS
VLCD
VSS
VSS
Absolute Maximum Ratings
Supply Voltage ����������������������������������������������������������������������������������������������������������������������������VSS-0.3V ~ VSS+6.5V
Input Voltage ����������������������������������������������������������������������������������������������������������������������������� VSS-0.3V ~ VDD+0.3V
Storage Temperature ���������������������������������������������������������������������������������������������������������������������������� -55°C ~ 150°C
Operating Temperature �������������������������������������������������������������������������������������������������������������������������� -40°C ~ 85°C
Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings"
may cause substantial damage to these devices. Functional operation of these devices at other conditions
beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may
affect devices reliability.
Timing Diagrams
I2C Timing
SDA
tBUF
tSU:DAT
tf
tLOW
tHD:STA
tr
tSP
SCL
tHD:SDA
S
tHD:DAT
tHIGH
tSU:STA
tAA
tSU:STO
Sr
P
S
SDA
OUT
Rev. 1.00
7
May 28, 2015
HT9B95
Power On Reset Timing
Note: 1. If the conditions of Reset timing are not satisfied in power ON/OFF sequence, the internal Power on
Reset (POR) circuit will not operate normally.
2. If it is difficult to meet power on reset timing conditions, please execute software reset command after
Power on.
D.C. Characteristics
Symbol
Parameter
VSS = 0V; VDD =2.4V to 5.5V; Ta = -40°C to +85°C
Test condition
VDD
Condition
Min.
Typ.
Max.
Unit
VDD
Operating Voltage
—
—
2.4
—
5.5
V
VLCD
LCD Operating Voltage
—
—
2.5
—
5.5
V
VIH
Input High Voltage
—
SCL, SDA
0.7VDD
—
VDD
V
VIL
Input Low Voltage
—
SCL, SDA
0
—
0.3VDD
V
IIL
Input Leakage Current
—
VIN=VSS or VDD
-1
—
1
μA
IOL
Low Level Output Current
IDD
ILCD
ISTB
IOL1
IOH1
Operating Current
Operating Current
Standby Current
LCD Common Sink Current
LCD Common Source Current
3.3V
5.0V
VOL=0.4V for SDA pin
VLCD=VDD, No load, Ta=25°C,
3.3V LCD display on, f =80Hz,
LCD
1/4 bias, 1/8 duty, B type inversion,
5.0V Power save mode = Low Current2
mode
VLCD=VDD, No load, Ta=25°C,
3.3V LCD display on, f =80Hz,
LCD
1/4 bias, 1/8 duty, B type inversion,
5.0V Power save mode = Low Current2
mode
VLCD=VDD, No load, Ta=25°C,
3.3V LCD display off, f =80Hz,
LCD
1/4 bias, 1/8 duty, B type inversion,
5.0V Power save mode = Low Current2
mode
—
—
IOL2
LCD Segment Sink Current
—
IOH2
LCD Segment Source Current
—
—
—
mA
—
—
mA
—
3
10
μA
—
5
20
μA
—
5
20
μA
—
6
30
μA
—
—
1
μA
—
—
2
μA
VLCD=3.3V, VOL=0.33V
250
400
—
μA
VLCD=5V, VOL=0.5V
500
800
—
μA
VLCD=3.3V, VOH=2.97V
-140
-230
—
μA
VLCD=5V, VOH=4.5V
-300
-500
—
μA
VLCD=3.3V, VOL=0.33V
250
400
—
μA
VLCD=5V, VOL=0.5V
500
800
—
μA
VLCD=3.3V, VOH=2.97V
-140
-230
—
μA
VLCD=5V, VOH=4.5V
-300
-500
—
μA
A.C. Characteristics
Rev. 1.00
6
9
VSS = 0V; VDD =2.4V to 5.5V; Ta= -40°C to +85 °C
8
May 28, 2015
HT9B95
Symbol
fLCD1
fLCD2
Parameter
LCD Frame Frequency
LCD Frame Frequency
Test condition
Min.
Typ.
Max.
Ta=25°C, internal oscillator is used,
LCD frame frequency = 80 Hz
72
80
88
Ta=25°C, internal oscillator is used,
LCD frame frequency = 71 Hz
63.9
71
78.1
Ta=25°C, internal oscillator is used,
LCD frame frequency = 64 Hz
57.6
64
70.4
Ta=25°C, internal oscillator is used,
LCD frame frequency = 50Hz
45
50
55
Ta=-40 to 85°C, internal oscillator is used,
LCD frame frequency = 80 Hz
56
80
104
Ta=-40 to 85°C, internal oscillator is used,
49.7
LCD frame frequency = 71 Hz
71
92.3
Ta=-40 to 85°C, internal oscillator is used,
44.8
LCD frame frequency = 64 Hz
64
83.2
Ta=-40 to 85°C, internal oscillator is used,
35.2
LCD frame frequency = 50Hz
50
65
condition
VDD
3.3V
2.4~
5.5V
Unit
Hz
Hz
VPOR
VDD Start Voltage to
ensure Poewr-on Reset
—
—
—
—
100
mV
RRVDD
VDD Rise Rate to ensure
Power-on Reset
—
—
0.05
—
—
V/ms
tPOR
Minimum Time for VDD to
remain at VPOR to ensure
Power-on Reset
—
—
10
—
—
ms
I2C Interface Characteristics
Unless otherwise specified, VSS = 0 V; VDD = 2.4V to 5.5V; Ta=-40 to +85°C
Symbol
Parameter
Condition
Min.
Max.
Unit
—
—
400
kHZ
fSCL
Clock frequency
tBUF
bus free time
Time in which the bus must be free before a
new transmission can start
1.3
—
μs
tHD: STA
Start condition hold time
After this period, the first clock pulse is
generated.
0.6
—
μs
tLOW
SCL Low time
—
1.3
—
μs
tHIGH
SCL High time
—
0.6
—
μs
tSU: STA
Start condition setup time
Only relevant for repeated START condition.
0.6
—
μs
tHD: DAT
Data hold time
—
0
—
ns
tSU: DAT
Data setup time
—
100
—
ns
tR
SDA and SCL rise time
Note
—
0.3
μs
tF
SDA and SCL fall time
Note
—
0.3
μs
tSU: STO
Stop condition set-up time
—
0.6
—
μs
tAA
Output Valid from Clock
—
—
0.9
μs
tSP
Input Filter Time Constant
(SDA and SCL Pins)
Noise suppression time
—
50
ns
Note: These parameters are periodically sampled but not 100% tested.
Rev. 1.00
9
May 28, 2015
HT9B95
Functional Description
Power-On Reset
Column Driver Outputs
When the power is applied, the device is initialized
by an internal power-on reset circuit. The status of the
internal circuits after initialization is as follows:
The LCD drive section includes up to 8 column
outputs COM0~COM7 which should be connected
directly to the LCD panel. The column output signals
are generated in accordance with the selected LCD
drive mode. The unused column outputs should be
left open-circuit if less than 8 column outputs are
required.
• All common outputs are set to VSS.
• All segment outputs are set to VSS.
• LCD Driver Output Waveform: B-type inversion.
• Internal oscillator is selected.
Address Pointer
• The 1/3 bias drive mode is selected.
The addressing mechanism for the display RAM is
implemented using the address pointer. This allows
the loading of an individual display data byte, or a
series of display data bytes, into any location of the
display RAM. The sequence commences with the initialization of the address pointer by the Display Data
Input command.
• LCD bias generator is in an off state.
• LCD Display and internal oscillator are in off
states.
• Power save mode is set to normal current.
• Frame Frequency is set to 80Hz.
• Blinking function is switched off
Data transfers on the I2C-bus should be avoided for
1 ms following power-on to allow completion of the
reset action.
Display Memory – RAM Structure
The display RAM is static 39x8 bits RAM which
stores the LCD data. Logic “1” in the RAM bit-map
indicates the “on” state of the corresponding LCD
segment; similarly, logic 0 indicates the ‘off’ state.
System Oscillator
The timing for the internal logic and the LCD drive
signals are generated by the internal oscillator. The
System Clock frequency (fSYS) determines the LCD
frame frequency. During initial system power on the
System Oscillator will be in the stop state.
The contents of the RAM data are directly mapped
to the LCD data. The first RAM column corresponds
to the segments operated with respect to COM0.
In multiplexed LCD applications the segment data
from 2nd to 7th column of the display RAM are timemultiplexed with COM1 to COM7 respectively. The
following diagram is a data transfer format for I2C
interface.
Segment Driver Outputs
The LCD drive section includes up to 43 segment
outputs SEG0 ~ SEG42 which should be connected
directly to the LCD panel. The segment output signals
are generated in accordance with the multiplexed
common signals and with the data resident in the display
latch. The unused segment outputs should be left
open-circuit.
Rev. 1.00
MSB
SDA Data
Bit 7
LSB
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
LCD Display Output Data Transfer Format for I2C Bus
10
May 28, 2015
HT9B95
When the HT9B95A device is selected, the LCD RAM map is implemented as the following table shown.
Address
COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7
Output
00H
SEG0
01H
SEG1
02H
SEG2
03H
SEG3
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
1FH
SEG31
20H
SEG32
21H
SEG33
22H
RAM Data
SEG34
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
RAM Mapping of 35x8 Display Mode
When the HT9B95B/HT9B95G device is selected with 1/8 duty, the LCD RAM map is implemented as the
following table shown.
Address
COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7
Output
00H
SEG0
01H
SEG1
02H
SEG2
03H
SEG3
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
23H
SEG35
24H
SEG36
25H
SEG37
26H
SEG38
RAM Data
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
RAM Mapping of 39x8 Display Mode
When the HT9B95B/HT9B95G device is selected with 1/4 duty, the LCD RAM map is implemented as the
following table shown.
Address
COM0
COM1
COM2
COM3
Output
COM0
COM1
COM2
COM3
Output
00H
SEG0
SEG1
01H
SEG2
SEG3
02H
SEG4
SEG5
03H
SEG6
SEG7
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
12H
SEG36
SEG37
13H
SEG38
SEG39
14H
SEG40
15H
SEG42
RAM
Data
Bit 7
Bit 6
Bit 5
Bit 4
SEG41
—
—
—
—
Bit 3
Bit 2
Bit 1
Bit 0
—
RAM Mapping of 43x4 Display Mode
Rev. 1.00
11
May 28, 2015
HT9B95
LCD Bias Generator
The max voltage level of the LCD driving voltage named as V0 can be adjusted through the LVA command
setting. The full-scale LCD voltage, VOP, is obtained from (V0-VSS).
Fractional LCD biasing voltages, known as 1/3 or 1/4 bias voltage, are obtained from an internal voltage divider
several of series resistors connected between VLCD and VSS. C��������������������������������������������������������
ertain �������������������������������������������������
resistor�����������������������������������������
s����������������������������������������
can be���������������������������������
��������������������������������
switched out of circuit���������
s��������
to provide a 1/3 or 1/4 bias voltage level configuration.
LCD Drive Mode Waveforms
• When the LCD drive mode is selected as 1/4 duty and 1/3 bias, the waveform and LCD display is shown as
follows:
AAType
Typeinversion
inversion
BBType
Typeinversion
inversion
tLCD
tLCD
V0
V0
COM0
COM0
2Vop/3
2Vop/3
Vop/3
Vop/3
V0
V0
COM0
COM0
VSS
VSS
COM1
COM1
Vop/3
Vop/3
V0
V0
COM1
COM1
Vop/3
Vop/3
COM2
COM2
Vop/3
Vop/3
COM3
COM3
Vop/3
Vop/3
SEG n
SEG n
Vop/3
Vop/3
SEG n+1
SEG n+1
Vop/3
Vop/3
SEG n+2
SEG n+2
Vop/3
Vop/3
2Vop/3
2Vop/3
Vop/3
Vop/3
V0
V0
V0
V0
SEG n+3
SEG n+3
Vop/3
Vop/3
VSS
VSS
VSS
VSS
2Vop/3
2Vop/3
2Vop/3
2Vop/3
V0
V0
V0
V0
SEG n+2
SEG n+2
Vop/3
Vop/3
VSS
VSS
VSS
VSS
2Vop/3
2Vop/3
2Vop/3
2Vop/3
V0
V0
V0
V0
SEG n+1
SEG n+1
Vop/3
Vop/3
VSS
VSS
VSS
VSS
2Vop/3
2Vop/3
2Vop/3
2Vop/3
V0
V0
V0
V0
SEG n
SEG n
Vop/3
Vop/3
VSS
VSS
VSS
VSS
2Vop/3
2Vop/3
2Vop/3
2Vop/3
V0
V0
V0
V0
COM3
COM3
State2
State2
(off)
(off)
VSS
VSS
VSS
VSS
2Vop/3
2Vop/3
Vop/3
Vop/3
State1
State1
(on)
(on)
V0
V0
V0
V0
COM2
COM2
2Vop/3
2Vop/3
VSS
VSS
VSS
VSS
2Vop/3
2Vop/3
Vop/3
Vop/3
VSS
VSS
V0
V0
2Vop/3
2Vop/3
LCD
LCDstatus
status
2Vop/3
2Vop/3
SEG n+3
SEG n+3
2Vop/3
2Vop/3
Vop/3
Vop/3
VSS
VSS
VSS
VSS
Waveforms for 1/4 duty drive mode with 1/3 bias (VOP=V0-VSS)
Note: tLCD=1/fLCD
Rev. 1.00
12
May 28, 2015
HT9B95
• When the LCD drive mode is selected as 1/8 duty and 1/4 bias, the waveform and LCD display is shown as
follows:
COM0
V0
V0-VOP/4
V0-2VOP/4
V0-3VOP/4
VSS
COM1
V0
V0-VOP/4
V0-2VOP/4
V0-3VOP/4
VSS
COM2
V0
V0-VOP/4
V0-2VOP/4
V0-3VOP/4
VSS
COM3
tLCD
COM0
V0
V0-VOP/4
V0-2VOP/4
V0-3VOP/4
VSS
COM1
V0
V0-VOP/4
V0-2VOP/4
V0-3VOP/4
VSS
COM2
V0
V0-VOP/4
V0-2VOP/4
V0-3VOP/4
VSS
V0
V0-VOP/4
V0-2VOP/4
V0-3VOP/4
VSS
COM3
V0
V0-VOP/4
V0-2VOP/4
V0-3VOP/4
VSS
COM4
V0
V0-VOP/4
V0-2VOP/4
V0-3VOP/4
VSS
COM4
V0
V0-VOP/4
V0-2VOP/4
V0-3VOP/4
VSS
COM5
V0
V0-VOP/4
V0-2VOP/4
V0-3VOP/4
VSS
COM5
V0
V0-VOP/4
V0-2VOP/4
V0-3VOP/4
VSS
COM6
V0
V0-VOP/4
V0-2VOP/4
V0-3VOP/4
VSS
COM6
V0
V0-VOP/4
V0-2VOP/4
V0-3VOP/4
VSS
COM7
V0
V0-VOP/4
V0-2VOP/4
V0-3VOP/4
VSS
COM7
V0
V0-VOP/4
V0-2VOP/4
V0-3VOP/4
VSS
SEGn
V0
V0-VOP/4
V0-2VOP/4
V0-3VOP/4
VSS
SEGn
V0
V0-VOP/4
V0-2VOP/4
V0-3VOP/4
VSS
SEGn+1
V0
V0-VOP/4
V0-2VOP/4
V0-3VOP/4
VSS
SEGn+1
V0
V0-VOP/4
V0-2VOP/4
V0-3VOP/4
VSS
SEGn+2
V0
V0-VOP/4
V0-2VOP/4
V0-3VOP/4
VSS
SEGn+2
V0
V0-VOP/4
V0-2VOP/4
V0-3VOP/4
VSS
SEGn+3
V0
V0-VOP/4
V0-2VOP/4
V0-3VOP/4
VSS
SEGn+3
V0
V0-VOP/4
V0-2VOP/4
V0-3VOP/4
VSS
tLCD
LCD
LCDstatus
status
State1
State1
(on)
(on)
State2
State2
(off)
(off)
Waveforms for 1/8 duty drive mode with1/4 bias (VOP= V0-VSS)
Note: tLCD=1/fLCD
Rev. 1.00
13
May 28, 2015
HT9B95
I2C Serial Interface
I2C Operation
2
Acknowledge
• Each bytes of eight bits is followed by one
acknowledge bit. This Acknowledge bit is a low
level placed on the bus by the receiver. The master
generates an extra acknowledge related clock
pulse.
2
The device supports I C serial interface. The I C bus
is for bidirectional, two-line communication between
different ICs or modules. The two lines are a serial
data line, SDA, and a serial clock line, SCL. Both
lines are connected to the positive supply via pull-up
resistors with a typical value of 4.7kΩ. When the bus
is free, both lines are high. Devices connected to the
bus must have open-drain or open-collector outputs
to implement a wired-or function. Data transfer is
initiated only when the bus is not busy.
• A slave receiver which is addressed must generate
an Acknowledge, ACK, after the reception of each
byte.
• The device that acknowledges must pull down the
SDA line during the acknowledge clock pulse so
that it remains stable low during the high period of
this clock pulse.
Data Validity
The data on the SDA line must be stable during the
high period of the serial clock. The high or low state
of the data line can only change when the clock signal
on the SCL line is Low as shown in the diagram.
• A master receiver must signal an end of data to the
slave by generating a not-acknowledge, NACK,
bit on the last byte that has been clocked out of
the slave. In this case, the master receiver must
leave the data line high during the 9th pulse to not
acknowledge. The master will generate a STOP or
repeated START condition.
Data Output
by Transmitter
not acknowledge
START and STOP Conditions
• A high to low transition on the SDA line while SCL
is high defines a START condition.
Data Outptu
by Receiver
acknowledge
SCL From
Master
• A low to high transition on the SDA line while SCL
is high defines a STOP condition.
SDA
SCL
S
8
9
clock pulse for
acknowledgement
• The HT9B95 device address bits are “0111110”.
When an address byte is sent, the device compares
the first seven bits after the START condition. If
they match, the device outputs an Acknowledge on
the SDA line.
P
START condition
7
Slave Addressing
• The slave address byte is the first byte received
following the START condition form the master
device. The first seven bits of the first byte make
up the slave address. The eighth bit defines a read
or write operation to be performed. When the R/W
bit is “1”, a read operation is selected. When the R/
W bit is “0”, a write operation is selected.
• The bus stays busy if a repeated START (Sr) is
generated instead of a STOP condition. In some
respects, the START(S) and repeated START (Sr)
conditions are functionally identical.
SCL
2
START
condition
• START and STOP conditions are always generated
by the master. The bus is considered to be busy after
the START condition. The bus is considered to be
free again a certain time after the STOP condition.
SDA
1
S
STOP condition
Byte Format
Every byte put on the SDA line must be 8-bit long.
The number of bytes that can be transmitted per
transfer is unrestricted. Each byte has to be followed
by an acknowledge bit. Data is transferred with the
most significant bit, MSB, first.
Slave Address
MSB
0
1
1
1
1
1
LSB
0
R/W
P
SDA
Sr
SCL
S
or
Sr
Rev. 1.00
1
2
7
8
9
ACK
1
2
3-8
9
ACK
P
or
Sr
14
May 28, 2015
HT9B95
I2C Interface Write Operation
Slave Address
S
Write Operation
A Write operation requires a START condition, a
slave address byte with a R/W bit, a command byte, a
command byte or display RAM data byte and a STOP
condition.
Slave Address
1
1
1
1
Command byte
1
1
0
0
0
0
R/ W
C
Bit6
Bit5
ACK
st
1
• Display RAM Single Data Byte
A display RAM data byte write operation requires
a START condition, a slave address with a R/W bit,
a valid Register Address byte, a Data byte and a
STOP condition.
The start address can only be set from 00H to
the maximum available address, 22H, 15H or
26H, depending upon which device is used with
different duty configurations. It is recommended
that the start address should not be greater than the
maximum available address.
Bit4
Bit3
Bit2
Command byte
Bit1
Bit0
C bit ="1", the next byte is command
ACK
P
Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
C bit
ACK
Command byte
1
1
• Compound Command Type
A Compound Command write operation requires a
START condition, a slave address with a R/W bit
followed by multiple command bytes and finally a
STOP condition for a compound command write
operation.
• Single Command Type
A Single Command write operation requires a
START condition, a slave address with a R/W bit,
a command byte and a STOP condition for a single
command write operation.
1
1
I2C Single Command Type Write Operation
Once it enters display RAM data write mode, it can
not be written any command. To write a command
byte, it is necessary to generate a START condition
again.
0
1
R/ W
The MSB of the command byte is defined as “C” bit,
the C bit is the command/data selection bit. When the
C bit is set to “1”, the next byte is a command byte.
When the C bit is set to “0”, the next byte is display
RAM data. The data transfer format is shown in the
accompanying diagram.
S
0
C
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
P
Bit0
ACK
ACK
2
I C Command Type Write Operation
Slave Address
S
0
1
1
1
1
RAM Data byte
RAM Address byte
1
0
0
R/ W
C
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
C bit ="0", the next byte is display RAM data ACK
ACK
P
Bit0
ACK
I2C Display RAM Data Write Operation
Slave Address
S
0
1
1
1
1
Command byte
1
0
0
1
Bit6
C bit
R/ W
ACK
Bit5
Bit4
Bit3
Bit2
Command byte
Bit1
Bit0
1
Bit6
C bit
1st Command
Bit5
Bit4
Bit3
Bit2
Command byte
Bit1
Bit0
1
Bit6
C bit
2nd Command
ACK
Bit5
Bit4
Bit3
Bit2
Bit1
nth Command
P
Bit0
ACK
ACK
2
I C Compound Command Type Write Operation
Slave Address
S
0
1
1
1
1
RAM Address byte
1
0
0
R/ W
0
ACK
0
A5
A4
A3
C bit
A2
RAM Data byte
A1
D7
A0
D6
ACK
D5
D4
D3
D2
D1
P
D0
ACK
I2C Display RAM Single Data Byte Write Operation
Rev. 1.00
15
May 28, 2015
HT9B95
• Display RAM Page Write Operation
After a START condition the slave address with
a R/W bit is placed on the bus followed with
the specified display RAM Register Address of
which the contents are written into the internal
address pointer. The data to be written into the
memory will be transmitted next. The internal
address pointer will be incremented by 1 after
a 8-bit data is shifted in. Then the acknowledge
clock pulse will be received after an 8-bit data is
shifted. After the internal address point reaches the
maximum available address, 22H, 15H or 26H, the
address pointer will be reset to 00H. It is strongly
recommended to write the display RAM data from
address 00H to maximum available address using
the Display RAM Page Write Operation.
Part No.
Read Operation
• Display RAM Read Operation
The master reads the display RAM data after
setting the slave address. Following the R/W
bit (=”0”) is an acknowledge bit and the register
address byte which is written to the internal address
pointer. After the start address of the read operation
has been configured, another START condition and
the slave address transferred on the bus followed
by the R/W bit (=”1”). Then the MSB of the data
which was addressed is transmitted first on the
I2C bus. The address pointer is only incremented
by 1 after the reception of an acknowledge clock.
After reaching the maximum available address, the
address pointer will be reset to 00H. The C bit in
the register address byte can be set to “1” or “0”.
This read operation will continue until the master
sends a STOP condition. The maximum available
address is summarized in the above section.
Duty Maximum Available Address
HT9B95A
1/8
22H
HT9B95B
HT9B95G
1/4
15H
1/8
26H
Display RAM Maximum Available Address
RAM Address byte
Slave Address
S
0
1
1
1
1
1
0
0
0
0
A5
A4
C bit
R/ W
D7
D6
D5
D4
n
th
A2
A1
A0
Address n
ACK
Data byte
A3
ACK
Data byte
D3
D2
D1
D0
D7
D6
D5
data
D4
( n+1)
Data byte
D3
th
D2
D1
D0
D7
D6
D5
data
D4
N
ACK
ACK
th
D3
D2
D1
P
D0
data
ACK
ACK
I2C Interface N Bytes Display RAM Data Write Operation
Slave Address
S
0
1
1
1
1
RAM Address byte
1
0
R/ W
0
Write
0
1
1
1
1
ACK
0
A5
A4
A3
A2
A1
1
0
R/ W
1
Read
D7
ACK
D6
D5
D4
D3
1st data
P
A0
C bit
ACK
Data byte
Device Address
S
C
Data byte
D2
D1
D0
D7
ACK
D6
D5
D4
D3
2nd data
Data byte
D2
D1
D0
D7
ACK
D6
D5
D4
D3
Nth data
D2
D1
D0
P
NACK
Display RAM Read Operation
Rev. 1.00
16
May 28, 2015
HT9B95
• Command Register Read Operation
The master reads the command register after setting
the slave address. Following the R/W bit (=”0”) is an
acknowledge bit and the register address byte which
is written to the internal address pointer. After the start
address of the read operation has been configured,
another START condition and the slave address
transferred on the bus followed by the R/W bit (=”1”).
Then the MSB of the data which was addressed
is transmitted first on the I2C bus. The C bit in the
register address byte can be set to “1” or “0”.
Slave Address
0
1
1
1
1
HT9B95A
23h
24h
HT9B95B
HT9B95G
27h
28h
Command Register Address
• Command Register 1
All command setting values are put together into
two command registers with the register addresses
of 23H and 24H or 27H and 28H when the
Command Register Read Operation is executed.
Each time the Command Register Read Operation
is executed, only one command register can be
read. To read all command registers, execute the
Command Register Read Operation twice with the
register address of 23H or 27H and 24H or 28H
respectively. The two command registers contents
are arranged in the following two registers and the
detailed definition are described in the “Command
Summary” section.
S
Bit
7
6
Name
—
DB
0
R/ W
0
Write ACK
C
0
C bit
A5
A4
A3
A2
A1
5
4
2
1
0
SR LV4 LV3 LV2 LV1 LV0
DB: Duty and Bias setting
Bit 5
SR: Software Reset Operation
Bit 4~0
LV4~LV0: LCD Voltage Adjustment
setting
• Command Register 2
Bit
7
6
5
4
Name FR1 FR0 PS1 PS0
3
2
W
D
1
0
AP1 AP0
Bit 7~6
FR1~FR0: Frame Frequency setting
Bit 5~4
PS1~PS0: Power Save Mode setting
Bit 3
W: LCD Drive Waveform setting
Bit 2
D: Display On/Off setting
Bit 1~0
AP1~AP0: All pixels On/Off setting
Device Address
S
P
A0
3
Bit 6
Command Register Address
1
Command
Command
Register 1 Address Register 2 Address
Part No.
0
1
1
1
1
Command Data byte
1
0
R/ W
ACK
1
Read
D7
ACK
D6
D5
D4
D3
1st data
D2
D1
D0
P
NACK
Command Register Read Operation
Rev. 1.00
17
May 28, 2015
HT9B95
Command Summary
The overall commands are summarized in this section.
Note that the bit 7 denoted as “C” in the individual
command here is the selection bit which is used to
determine that the next byte is the display RAM data
or command byte.
C bit
Description
0
Next byte is Display RAM data
1
Next byte is command
(MSB)
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
(LSB)
Bit0
Display RAM
Address setting
C
0
A5
A4
A3
A2
A1
A0
The display RAM address and
command register setting.
LCD driving Voltage
Adjustment (LVA)
C
1
0
LV4
LV3
LV2
LV1
LV0
Adjust the maximum voltage
level of LCD driving voltage.
Display control
C
1
1
0
FR1
FR0
PS1
PS0
Frame frequency setting and
power save mode setting
Drive mode setting
and software reset
C
1
1
1
0
W
SR
D
LCD drive waveform select,
display ON/OFF setting and
software reset
All pixel control
setting
C
1
1
1
1
0
AP1
AP0
All pixel control setting
Duty and Bias
setting
C
1
1
1
1
1
0
DB
Duty and bias setting
Command
Function description
Note: The “Duty and Bias setting” command is available in the HT9B95B and HT9B95G device.
Display RAM Address Setting Command
This command is used to define the accessed address of the display RAM or command register.
Function
(MSB)
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
(LSB)
Bit0
Note
Address Pointer
C
0
A5
A4
A3
A2
A1
A0
Display RAM memory start address
or Command register address.
Note:
• The display RAM address range is dependent upon the selected device with different duty setting.
Part No.
Duty
Maximum Available Address
HT9B95A
1/8
22H
HT9B95B
HT9B95G
1/4
15H
1/8
26H
• The command register address is dependent upon the selected device.
Part No.
Command Register 1 Address
Command Register 2 Address
HT9B95A
23H
24H
HT9B95B
HT9B95G
27H
28H
• Power on status: the address will be set to 00H
• If the programmed command is not defined, the function will not be affected.
Rev. 1.00
18
May 28, 2015
HT9B95
LCD Driving Voltage Adjustment Command – LVA
This command is used to adjust the maximum voltage level of the LCD driving voltage, V0.
Function
(MSB)
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
(LSB)
Bit0
Note
LCD driving Voltage Adjustment (LVA)
C
1
0
LV4
LV3
LV2
LV1
LV0
—
Note: V0: The maximum voltage level of the LCD driving voltage.
The relationship between V0 and LVA setting is summarized as the following table shown.
LV4~LV0
Voltage ratio
VLCD =5.5V
VLCD =5V
VLCD =3.5V
VLCD =3V
VLCD =2.5V
00000
VLCD
V0=5.500V
V0=5.000V
V0=3.500V
V0=3.000V
V0=2.500V
00001
0.967 * VLCD
V0=5.319V
V0=4.835V
V0=3.385V
V0=2.901V
V0=2.418V
00010
0.937 * VLCD
V0=5.154V
V0=4.685V
V0=3.280V
V0=2.811V
V0=2.343V
00011
0.909 * VLCD
V0=5.000V
V0=4.545V
V0=3.182V
V0=2.727V
V0=2.273V
00100
0.882 * VLCD
V0=4.851V
V0=4.410V
V0=3.087V
V0=2.646V
V0=2.205V
00101
0.857 * VLCD
V0=4.714V
V0=4.285V
V0=3.000V
V0=2.571V
V0=2.143V
00110
0.833 * VLCD
V0=4.582V
V0=4.165V
V0=2.916V
V0=2.499V
V0=2.083V
00111
0.810 * VLCD
V0=4.455V
V0=4.050V
V0=2.835V
V0=2.430V
V0=2.025V
01000
0.789 * VLCD
V0=4.340V
V0=3.945V
V0=2.762V
V0=2.367V
V0=1.973V
01001
0.769 * VLCD
V0=4.230V
V0=3.845V
V0=2.692V
V0=2.307V
V0=1.923V
01010
0.750 * VLCD
V0=4.125V
V0=3.750V
V0=2.625V
V0=2.250V
V0=1.875V
01011
0.731 * VLCD
V0=4.021V
V0=3.655V
V0=2.559V
V0=2.193V
V0=1.828V
01100
0.714 * VLCD
V0=3.927V
V0=3.570V
V0=2.499V
V0=2.142V
V0=1.785V
01101
0.697 * VLCD
V0=3.834V
V0=3.485V
V0=2.440V
V0=2.091V
V0=1.743V
01110
0.681 * VLCD
V0=3.746V
V0=3.405V
V0=2.384V
V0=2.043V
V0=1.703V
01111
0.666 * VLCD
V0=3.663V
V0=3.330V
V0=2.331V
V0=1.998V
V0=1.665V
10000
0.652 * VLCD
V0=3.586V
V0=3.260V
V0=2.282V
V0=1.956V
V0=1.630V
10001
0.638 * VLCD
V0=3.509V
V0=3.190V
V0=2.233V
V0=1.914V
V0=1.595V
10010
0.625 * VLCD
V0=3.438V
V0=3.125V
V0=2.188V
V0=1.875V
V0=1.563V
10011
0.612 * VLCD
V0=3.366V
V0=3.060V
V0=2.142V
V0=1.836V
V0=1.530V
10100
0.600 * VLCD
V0=3.300V
V0=3.000V
V0=2.100V
V0=1.800V
V0=1.500V
10101
0.588 * VLCD
V0=3.234V
V0=2.940V
V0=2.058V
V0=1.764V
V0=1.470V
10110
0.576 * VLCD
V0=3.168V
V0=2.880V
V0=2.016V
V0=1.728V
V0=1.440V
10111
0.566 * VLCD
V0=3.113V
V0=2.830V
V0=1.981V
V0=1.698V
V0=1.415V
11000
0.555 * VLCD
V0=3.053V
V0=2.775V
V0=1.943V
V0=1.665V
V0=1.388V
11001
0.545 * VLCD
V0=2.998V
V0=2.725V
V0=1.908V
V0=1.635V
V0=1.363V
11010
0.535 * VLCD
V0=2.943V
V0=2.675V
V0=1.873V
V0=1.605V
V0=1.338V
11011
0.526 * VLCD
V0=2.893V
V0=2.630V
V0=1.841V
V0=1.578V
V0=1.315V
11100
0.517 * VLCD
V0=2.844V
V0=2.585V
V0=1.810V
V0=1.551V
V0=1.293V
11101
0.508 * VLCD
V0=2.794V
V0=2.540V
V0=1.778V
V0=1.524V
V0=1.270V
11110
0.500 * VLCD
V0=2.750V
V0=2.500V
V0=1.750V
V0=1.500V
V0=1.250V
11111
0.491 * VLCD
V0=2.701V
V0=2.455V
V0=1.719V
V0=1.473V
V0=1.228V
Prohibit setting
• It is prohibited to set V0 voltage less than 2.5V and the condition “VLCD-V0>0.6V” must be met. If the
voltage of (VLCD-V0) is equal to or less than 0.6V, the output voltage will be unstable.
• Power on status: V0=VLCD.
• If the programmed command is not defined, the function will not be affected.
Rev. 1.00
19
May 28, 2015
HT9B95
Display Control Command
This command is used to select the current mode according to the characteristics of the LCD panel for achieving
high display quality and frame frequency.
Function
(MSB)
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
(LSB)
Bit0
Note
Display Control Setting
C
1
1
0
FR1
FR0
PS1
PS0
—
PS [1:0]
Power Save Mode
Current Consumption
00
Low Current2 Mode
x 0.5
01
Low Current1 Mode
x 0.67
10
Normal Current Mode
x 1 (default)
11
High Current Mode
x 1.8
FR [1:0]
Frame Frequency @VDD=3.3V (Hz)
00
80 (default)
01
71
10
64
11
50
Note:
• The setting of the frame frequency, LCD output waveform and current mode will influence the display image
qualities. Please select a proper display setting suitable for the current consumption and display image quality
with LCD panel.
Mode
Flicker
Frame Frequency
○
LCD Driver Output Waveform
○
Image Quality/Contrast
○
Power Save Mode
○
• Power on status: Normal current mode and Frame frequency is set to 80Hz.
• If the programmed command is not defined, the function will not be affected.
Rev. 1.00
20
May 28, 2015
HT9B95
Drive Mode Setting and Software Reset Command
This command is used to control the LCD display On/Off, drive waveform and software reset.
Function
(MSB)
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
(LSB)
Bit0
Note
Drive Mode setting and
Software reset setting
C
1
1
1
0
W
SR
D
—
W
LCD drive output waveform
0
A type inversion
1
B type inversion (default)
SR
Software reset
0
No operation (default)
1
Software reset executed
D
Display On/Off
0
Display Off (default)
1
Display On
Note:
When the software reset is executed, the device is initialized by an internal power-on reset circuit. The status
of the internal circuits after initialization is as follows:
• All common and segment outputs are set to VSS.
• Display RAM address pointer is set to 00H.
• The maximum voltage level of the LCD driving voltage V0 is set to VLCD.
• Frame Frequency is set to 80Hz.
• Power save mode is set to normal current.
• LCD Driver Output Waveform: B-type inversion.
• LCD Display is in the off state.
• LCD bias generator is off state.
• All pixel control is set to normal display.
If the programmed command is not defined, the function will not be affected.
Rev. 1.00
21
May 28, 2015
HT9B95
All Pixels On/Off Setting Command
This command controls that all pixels are switched on or off when the LCD normally displays.
Function
(MSB)
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
(LSB)
Bit0
Note
All Pixels Display setting
C
1
1
1
1
0
AP1
AP0
—
AP [1:0]
Display output status
00
Normal Display (default)
01
All Pixels Off
10
All Pixels On
11
All Pixels Off
Note:
• This command is only available when the LCD normally displays.
• The contents of the display RAM will not be affected in this duration.
• Power on status: Normal display.
• If the programmed command is not defined, the function will not be affected.
Duty and Bias Setting Command
This command controls the duty and bias setting and is available in the HT9B95B and HT9B95G device.
Function
(MSB)
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
(LSB)
Bit0
Note
Duty and bias setting
C
1
1
1
1
1
0
DB
—
DB
Duty and Bias setting
0
1/8 duty, 1/4 bias (default)
1
1/4 duty, 1/3 bias
Note:
• This command is available in the HT9B95B and HT9B95G device.
• Power on status: 1/8 duty, 1/4 bias.
• If the programmed command is not defined, the function will not be affected.
Rev. 1.00
22
May 28, 2015
HT9B95
Operation Flow Chart
Access procedures are illustrated below using flowcharts.
Initialization
Power On
Software Reset Setting
Duty and bias Setting
LCD driving voltage adjustment
LCD Current Mode Setting
LCD Frame Frequency Setting
LCD Output Waveform Setting
Next processing
Rev. 1.00
23
May 28, 2015
HT9B95
Display Data Write (Address Setting)
Start
Address setting
Display data RAM write
Display on
Next processing
Rev. 1.00
24
May 28, 2015
HT9B95
Display Quality or Operating Current (Power Save Mode) Setting
Start
Reduce operating
current or enhance
display quality.
Display
quality
1. Please select Frame rate from 80, 71, 64, 50Hz
according to LCD panel characteristic.
2. A type inversion
3. High current mode
Operating
current
1. Operating current decreases in order of
80Hz à 71Hz à64Hz à 50Hz
2. B type inversion
3. Low Current 2 mode
Screen Flicker?
No
1. Please select Frame rate from 80, 71, 64, 50Hz
according to LCD panel characteristic.
2. B type inversion
3. Low Current 2 mode
YES
1. Operating current decreases in order of
80Hz à 71Hz à64Hz à 50Hz
2. B type inversion
3. Low Current 1 mode
Screen Flicker?
No
1. Please select Frame rate from 80, 71, 64, 50Hz
according to LCD panel characteristic.
2. B type inversion
3. Low Current 1 mode
YES
1. Operating current decreases in order of
80Hz à 71Hz à64Hz à 50Hz
2. B type inversion
3. Normal Current mode
Screen Flicker?
No
1. Please select Frame rate from 80, 71, 64, 50Hz
according to LCD panel characteristic.
2. B type inversion
3. Normal Current mode
YES
1. Operating current decreases in order of
80Hz à 71Hz à64Hz à 50Hz
2. B type inversion
3. High Current mode
Rev. 1.00
25
May 28, 2015
HT9B95
Application Circuit
HT9B95A – 1/8 Duty and 1/4 Bias
VLCD
VLCD
VDD
COM
VDD
8
0.1uF
4.7kΩ
4.7kΩ
HT9B95A
VDD
LCD panel
SCL
MCU
SDA
SEG
VSS
VSS
35
VSS
HT9B95B/HT9B95G – 1/8 Duty and 1/4 Bias
VLCD
VLCD
VDD
COM
VDD
8
0.1uF
4.7kΩ
VDD
MCU
HT9B95B
HT9B95G
4.7kΩ
SCL
SDA
SEG
VSS
VSS
Rev. 1.00
LCD panel
39
VSS
26
May 28, 2015
HT9B95
HT9B95B/HT9B95G – 1/4 Duty and 1/3 Bias
VLCD
VLCD
VDD
COM
VDD
4
0.1uF
4.7kΩ
VDD
MCU
4.7kΩ
HT9B95B
HT9B95G
SCL
LCD panel
SDA
SEG
VSS
43
VSS
VSS
Rev. 1.00
27
May 28, 2015
HT9B95
Package Information
Note that the package information provided here is for consultation purposes only. As this information may be
updated at regular intervals users are reminded to consult the Holtek website for the latest version of the package
information.
Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be
transferred to the relevant website page.
• Further Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
• Packing Meterials Information
• Carton information
Rev. 1.00
28
May 28, 2015
HT9B95
48-pin TSSOP Outline Dimensions
Symbol
Dimensions in inch
Min.
Nom.
Max.
A
—
—
0.047
A1
0.002
—
0.006
A2
0.031
0.039
0.041
b
0.007
—
0.011
c
0.004
—
0.008
D
0.488
0.492
0.496
E
—
0.319 BSC
—
E1
0.236
0.240
0.244
e
—
0.020 BSC
—
0.030
L
0.018
0.024
L1
—
0.039 BSC
—
y
—
0.004
—
θ
0°
—
8°
Symbol
Rev. 1.00
Dimensions in mm
Min.
Nom.
Max.
A
—
—
1.20
A1
0.05
—
0.15
A2
0.80
1
1.05
b
0.17
—
0.27
c
0.09
—
0.20
D
12.40
12.50
12.60
E
—
8.10 BSC
—
E1
6.00
6.10
6.20
e
—
0.50 BSC
—
L
0.45
0.60
0.75
L1
—
1.0 BSC
—
y
—
0.10
—
θ
0°
—
8°
29
May 28, 2015
HT9B95
52-pin LQFP (14mm×14mm) Outline Dimensions
Symbol
Dimensions in inch
Min.
Nom.
Max.
A
0.622
0.630
0.638
B
0.547
0.551
0.555
C
0.622
0.630
0.638
D
0.547
0.551
0.555
E
—
0.039 BSC
—
F
0.015
—
0.019
G
0.053
0.055
0.057
H
—
—
0.063
I
0.002
—
0.008
J
0.018
—
0.030
K
0.005
—
0.007
α
0°
—
7°
Symbol
Rev. 1.00
Dimensions in mm
Min.
Nom.
Max.
A
15.80
16.00
16.20
B
13.90
14.00
14.10
C
15.80
16.00
16.20
D
13.90
14.00
14.10
E
—
1.00 BSC
—
F
0.39
—
0.48
G
1.35
1.40
1.45
H
—
—
1.60
I
0.05
—
0.20
J
0.45
—
0.75
K
0.13
—
0.18
α
0°
—
7°
30
May 28, 2015
HT9B95
Copyright© 2015 by HOLTEK SEMICONDUCTOR INC.
The information appearing in this Data Sheet is believed to be accurate at the time
of publication. However, Holtek assumes no responsibility arising from the use of
the specifications described. The applications mentioned herein are used solely
for the purpose of illustration and Holtek makes no warranty or representation that
such applications will be suitable without further modification, nor recommends
the use of its products for application that may present a risk to human life due to
malfunction or otherwise. Holtek's products are not authorized for use as critical
components in life support devices or systems. Holtek reserves the right to alter
its products without prior notification. For the most up-to-date information, please
visit our web site at http://www.holtek.com.tw.
Rev. 1.00
31
May 28, 2015