Commercial Off-The-Shelf (COTS) for Higher Reliability

Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
Commercial Off-The-Shelf (COTS) for Higher Reliability
Applications, C0G Dielectric, 10 – 250 VDC
Overview
KEMET’s COTS program is an extension of KEMET knowledge
of high reliability test regimes and requirements. KEMET regularly
supplies “up-screened” products by working with customer drawings
and imposing specified design and test requirements. The COTS
program offers the same high quality and high reliability components
as up-screened products, but at a lower cost to the customer. This is
accomplished by eliminating the need for customer-specific drawings
to achieve the reliability level required for customer applications. A
series of tests and inspections have been selected to provide the
accelerated conditioning and 100% screening necessary to eliminate
infant mortal failures from the population.
Test Level A
Test Level B
Test Level C
Voltage Conditioning
DWV
[email protected]°C
CAP
DF
Voltage Conditioning
DWV
[email protected]°C
CAP
DF
Voltage Conditioning
DWV
[email protected]°C
CAP
DF
PDA 8%
PDA 8%
PDA 8%
C of C
DPA
DPA
C of C
85/85
C of C
KEMET’s C0G dielectric features a 125°C maximum operating
temperature and is considered “stable.” The Electronics Components,
Assemblies & Materials Association (EIA) characterizes C0G
dielectric as a Class I material. Components of this classification
are temperature compensating and are suited for resonant
circuit applications or those where Q and stability of capacitance
characteristics are required. C0G exhibits no change in capacitance
with respect to time and voltage and boasts a negligible change in
capacitance with reference to ambient temperature. Capacitance
change is limited to ±30 ppm/ºC from -55°C to +125°C.
All COTS testing includes voltage conditioning and post-electrical
testing as per MIL–PRF–55681. For enhanced reliability, KEMET also
provides the following test level options and conformance certifications:
Click image above for interactive 3D content
Open PDF in Adobe Reader for full functionality
Ordering Information
C
Ceramic
1206
T
Case Size Specification/
(L" x W")
Series
0402
0603
0805
1206
1210
1812
2220
T = COTS
104
K
5
G
A
C
TU
Capacitance
Code (pF)
Capacitance
Tolerance1
Voltage
Dielectric
Failure Rate/Design
Termination
Finish2
Packaging/Grade
(C-Spec)3
2 significant digits
+ number of zeros
Use 9 for
1.0 – 9.9 pF
Use 8 for
0.5 – .99 pF
ex. 2.2 pF = 229
ex. 0.5 pF = 508
B = ±0.10 pF
C = ±0.25 pF
D = ±0.5 pF
F = ± 1%
G = ±2%
J = ±5%
K = ±10%
M = ±20%
8 = 10 V
G = C0G
4 = 16 V
3 = 25 V
6 = 35 V
5 = 50 V
1 = 100 V
2 = 200 V
A = 250 V
A = Testing per MIL–PRF–
55681 PDA 8%
B= Testing per MIL–PRF–
55681 PDA 8%, DPA per
EIA–469
C = Testing per MIL–
PRF–55681 PDA 8%, DPA
per EIA–469, Humidity per
MIL–STD–202, Method 103,
Condition A
Additional capacitance tolerance offerings may be available. Contact KEMET for details.
Additional termination finish options may be available. Contact KEMET for details.
3
Additional reeling or packaging options may be available. Contact KEMET for details.
C = 100%
Matte Sn
L = SnPb (5%
minimum)
Blank = Bulk
TU = 7" Reel
1
2
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com
One world. One KEMET
C1026_C0G_COTS_SMD • 12/15/2014
1
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
Commercial Off-The-Shelf (COTS) for Higher Reliability Applications, C0G Dielectric, 10 – 250 VDC
Dimensions – Millimeters (Inches)
L
W
B
T
S
EIA
Size
Code
Metric
Size
Code
B
Bandwidth
S
Separation
Minimum
Mounting
Technique
0402
1005
1.00 (.040) ± 0.05 (.002) 0.50 (.020) ± 0.05 (.002)
0.30 (.012) ± 0.10 (.004)
0.30 (.012)
Solder Reflow Only
0603
1608
1.60 (.063) ± 0.15 (.006) 0.80 (.032) ± 0.15 (.006)
0.35 (.014) ± 0.15 (.006)
0.70 (.028)
0805
2012
2.00 (.079) ± 0.20 (.008) 1.25 (.049) ± 0.20 (.008)
0.50 (0.02) ± 0.25 (.010)
0.75 (.030)
1206
3216
1210
3225
See Table 2 for
0.50 (0.02) ± 0.25 (.010)
Thickness
3.20 (.126) ± 0.20 (.008) 2.50 (.098) ± 0.20 (.008)
0.50 (0.02) ± 0.25 (.010)
1812
4532
4.50 (.177) ± 0.30 (.012)
3.20 (.126) ± 0.30 (.012)
0.60 (.024) ± 0.35 (.014)
2220
5650
5.70 (.224) ± 0.40 (.016) 5.00 (.197) ± 0.40 (.016)
0.60 (.024) ± 0.35 (.014)
L
Length
W
Width
T
Thickness
Solder Wave or
Solder Reflow
3.20 (.126) ± 0.20 (.008) 1.60 (.063) ± 0.20 (.008)
N/A
Solder Reflow Only
Benefits
• -55°C to +125°C operating temperature range
• Lead (Pb)-Free, RoHS and REACH compliant
• Voltage conditioning and post-electrical testing per MIL–PRF–
55681, Paragraph 4.8.3.1, Standard Voltage Conditioning
• Destructive Physical Analysis (DPA) per EIA–469
• Humidity, steady state, low voltage (85/85) per MIL–STD–202,
Method 103, Condition A
• Certificate of compliance
• RoHS Compliant (excluding SnPb end metallization option)
• EIA 0402, 0603, 0805, 1206, 1210, 1812, and 2220 case sizes
• DC voltage ratings of 10 V, 16 V, 25 V, 50 V, 100 V, 200 V and
250 V
• Capacitance offerings ranging from 0.5 pF up to 0.47 μF
• Available capacitance tolerances of ±0.10 pF, ±0.25 pF, ±0.5 pF,
±1%, ±2%, ±5%, ±10%, and ±20%
• No piezoelectric noise
• Extremely low ESR and ESL
• High thermal stability
• High ripple current capability
• Preferred capacitance solution at line frequencies and into the
MHz range
• No capacitance change with respect to applied rated DC voltage
• Negligible capacitance change with respect to temperature
• No capacitance decay with time
• Non-polar device, minimizing installation concerns
• SnPb end metallization option available upon request
(5% minimum)
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com
C1026_C0G_COTS_SMD • 12/15/2014
2
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
Commercial Off-The-Shelf (COTS) for Higher Reliability Applications, C0G Dielectric, 10 – 250 VDC
Applications
Typical applications include military, space quality and high reliability electronics.
Qualification/Certification
Commercial Grade products are subject to internal qualification. Details regarding test methods and conditions are referenced in
Table 4, Performance & Reliability.
Environmental Compliance
Lead (Pb)-Free, RoHS, and REACH compliant without exemptions (excluding SnPb termination finish option).
Electrical Parameters/Characteristics
Item
Parameters/Characteristics
Operating Temperature Range
Capacitance Change with Reference to +25°C and 0 VDC Applied (TCC)
Aging Rate (Maximum % Capacitance Loss/Decade Hour)
Dielectric Withstanding Voltage (DWV)
Dissipation Factor (DF) Maximum Limit @ 25ºC
Insulation Resistance (IR) Limit @ 25°C
-55°C to +125°C
±30 ppm/ºC
0%
250% of rated voltage
(5 ±1 seconds and charge/discharge not exceeding 50 mA)
0.1%
1,000 megohm microfarads or 100 GΩ
(Rated voltage applied for 120 ±5 seconds @ 25°C)
To obtain IR limit, divide MΩ-µF value by the capacitance and compare to GΩ limit. Select the lower of the two limits.
Capacitance and dissipation factor (DF) measured under the following conditions:
1 MHz ±100 kHz and 1.0 Vrms ±0.2 V if capacitance ≤ 1,000 pF
1 kHz ±50 Hz and 1.0 Vrms ±0.2 V if capacitance > 1,000 pF
Note: When measuring capacitance it is important to ensure the set voltage level is held constant. The HP4284 and Agilent E4980 have a feature known as
Automatic Level Control (ALC). The ALC feature should be switched to "ON."
Post Environmental Limits
High Temperature Life, Biased Humidity, Moisture Resistance
Dielectric
Rated DC
Voltage
Capacitance
Value
Dissipation Factor
(Maximum %)
C0G
All
All
0.5
Capacitance
Shift
Insulation
Resistance
0.3% or ±0.25 pF 10% of Initial Limit
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com
C1026_C0G_COTS_SMD • 12/15/2014
3
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
Commercial Off-The-Shelf (COTS) for Higher Reliability Applications, C0G Dielectric, 10 – 250 VDC
Table 1A – Capacitance Range/Selection Waterfall (0402 – 0805 Case Sizes)
A
25
50
100
200
250
10
16
250
2
200
1
100
5
50
3
25
4
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DP
DP
DP
DP
DN
DN
DN
DN
DP
DP
DP
DE
DE
DE
DE
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DP
DF
DG
DG
DG
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DP
DP
DP
DP
DN
DN
DN
DN
DP
DP
DP
DE
DE
DE
DE
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DP
DF
DG
DG
DG
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DP
DP
DP
DP
DN
DN
DN
DN
DP
DP
DP
DE
DE
DE
DE
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DP
DF
DG
DG
DG
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DP
DP
DP
DP
DN
DN
DN
DN
DP
DP
DP
DE
DE
DE
DE
DN
DN
DN
DN
DN
DN
DN
DN
DP
DP
DF
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DP
DP
DN
DN
DP
DP
DP
DP
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DP
DE
DG
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DP
DN
DP
DP
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DP
DP
DP
DP
DP
DP
DG
DG
DG
DG
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DP
DP
DP
DP
DP
DP
DG
DG
DG
DG
Product Availability and Chip Thickness Codes
See Table 2 for Chip Thickness Dimensions
50
100
200
250
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CH
CH
CH
CH
CH
CH
CH
CH
BB
BB
BB
BD
BD
25
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CH
CH
CH
CH
CH
CH
CH
CH
16
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
10
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
250
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
200
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
5
1
2
A
8
4
3
5
1
2
A
8
4
3
5
1
2
A
C0402C
BB
BB
BB
BD
BD
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
100
3
Case Size/Series
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
8
50
4
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
A
25
8
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
2
16
Voltage Code
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
1
10
Rated Voltage (VDC)
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
5
250
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
3
200
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
4
16
100
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
8
100
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
A
10
50
B C D
B C D
2
250
1
C0805C
200
5
C0603C
50
Cap
Code
3
25
Capacitance
4
25
508 & 758
109 - 919*
100 - 910*
101
111 -181*
201 - 271*
301
331
361
391
431
471
511 - 821*
911
102
112
122
132
152
162
182
202
222
242
272
302
332
362
392
432
472
512
562
622
682
752
822
912
103
123
153
183
223
273
333
393
473
8
16
0.50 & 0.75 pF
1.0 - 9.1 pF*
10 - 91 pF*
100 pF
110 - 180 pF*
200 - 270 pF*
300 pF
330 pF
360 pF
390 pF
430 pF
470 pF
510 - 820 pF*
910 pF
1,000 pF
1,100 pF
1,200 pF
1,300 pF
1,500 pF
1,600 pF
1,800 pF
2,000 pF
2,200 pF
2,400 pF
2,700 pF
3,000 pF
3,300 pF
3,600 pF
3,900 pF
4,300 pF
4,700 pF
5,100 pF
5,600 pF
6,200 pF
6,800 pF
7,500 pF
8,200 pF
9,100 pF
10,000 pF
12,000 pF
15,000 pF
18,000 pF
22,000 pF
27,000 pF
33,000 pF
39,000 pF
47,000 pF
Voltage Code
Rated Voltage (VDC)
Capacitance
Tolerance
16
Cap
Code
10
Capacitance
C0402C
10
Case Size/Series
C0603C
C0805C
*Capacitance range Includes E24 decade values only. (i.e., 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82 and 91)
KEMET reserves the right to substitute product with an improved temperature characteristic, tighter capacitance tolerance and/or higher voltage capability within
the same form factor (configuration and dimensions).
These products are protected under US Patents 7,172,985 & 7,670,981, other patents pending, and any foreign counterparts.
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com
C1026_C0G_COTS_SMD • 12/15/2014
4
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
Commercial Off-The-Shelf (COTS) for Higher Reliability Applications, C0G Dielectric, 10 – 250 VDC
Table 1B – Capacitance Range/Selection Waterfall (1210 – 2225 Case Sizes)
100
200
250
50
100
200
250
200
50
JB
GB
JE
JE
JB
GB
GB
GB
GB
GB
GB
GB
GB
GD
GD
GK
GM
GM
GB
GB
GB
GB
GB
GB
GB
GB
GD
GD
GK
GM
GM
JE
JE
JE
JE
JE
JE
JB
JB
JB
JB
JB
JB
JB
JB
JB
JB
JB
JB
JD
JG
JG
JE
JE
JE
JE
JB
JB
JB
JB
JB
JB
JB
JB
JB
JB
JB
JD
JD
JF
JG
JB
JB
JB
JB
JB
JB
JB
JB
JB
JB
JB
JB
JD
JD
JG
JG
JL
200
25
100
16
JE
1
2
A
5
1
2
Product Availability and Chip Thickness Codes
See Table 2 for Chip Thickness Dimensions
EB
EB
EB
EB
EE
EB
EB
EC
EC
ED
ED
ED
ED
EC
EC
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EC
EC
EC
ED
EF
EH
EH
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EC
EC
EC
ED
EF
EH
EH
1
2
C1206C
JE
100
2
50
1
50
5
250
5
A
200
3
2
100
4
1
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FF
FB
FB
FB
FB
FC
FC
FE
FF
FG
FG
FB
FB
FB
FB
FB
FB
FB
FB
FC
FE
FG
FH
FJ
FK
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FF
FB
FB
FB
FB
FC
FC
FE
FF
FG
FG
FB
FB
FB
FB
FB
FB
FB
FB
FC
FE
FG
FH
FJ
FK
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FF
FB
FB
FB
FB
FC
FC
FE
FF
FG
FG
FB
FB
FB
FB
FB
FB
FB
FB
FC
FE
FG
FH
FJ
FK
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FF
FB
FB
FB
FB
FC
FC
FE
FF
FG
FG
FB
FB
FB
FB
FB
FB
FB
FC
FF
FG
FH
FM
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FC
FC
FC
FC
FC
FF
FF
FF
FF
FG
FG
FG
FG
FG
FC
FC
FE
FF
FB
FB
FB
FB
FB
FB
FE
FE
FF
FG
FH
FM
FB
FB
FB
FB
FB
FB
FB
FC
FE
FE
FE
FE
FG
FC
FC
FF
FF
FF
FF
FF
FG
FG
FG
FB
FB
FB
FB
FB
FB
FB
FC
FC
FF
FG
FH
FH
FJ
FB
FB
FB
FB
FB
FB
FB
FC
FC
FF
FG
FH
FH
FJ
50
8
5
250
Voltage Code
Case Size/Series
A
200
Rated Voltage (VDC)
2
100
EB
EB
EB
EB
EB
EB
EB
EC
ED
ED
ED
ED
EE
EC
EC
EC
EE
EE
EF
EC
EC
ED
ED
EB
EB
EB
EB
EB
EB
EB
EB
EB
EC
EE
EE
EH
EH
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
1
50
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EC
EC
EC
EC
EC
EC
ED
ED
EB
EB
EB
EC
EC
ED
EB
EB
EB
EB
EB
EB
EE
EE
EF
EH
EH
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
5
25
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EC
EC
EC
EC
EC
EC
ED
ED
EB
EB
EB
EC
EC
ED
EB
EB
EB
EB
EB
EB
EC
EC
ED
EF
EH
EH
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
3
16
100
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EC
EC
EC
EC
EC
EC
ED
ED
EB
EB
EB
EC
EC
ED
EB
EB
EB
EB
EB
EB
EC
EC
ED
EF
EH
EH
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
4
10
50
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EC
EC
EC
EC
EC
EC
ED
ED
EB
EB
EB
EC
EC
ED
EB
EB
EB
EB
EB
EB
EC
EC
ED
EF
EH
EH
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
8
10
25
B C D
A
250
16
Capacitance
Tolerance
C2220C
2
250
1
C1812C
200
5
200
Cap
Code
3
C1210C
100
Capacitance
4
50
109 - 919*
100 - 910*
101 - 431*
471 - 911*
102
112
122
132
152
162
182
202
222
242
272
302
332
362
392
432
472
512
562
622
682
752
822
912
103
123
153
183
223
273
333
393
473
563
683
823
104
124
154
184
224
274
334
394
474
8
25
1.0 - 9.1 pF*
10 - 91 pF*
100 - 430 pF*
470 - 910 pF*
1,000 pF
1,100 pF
1,200 pF
1,300 pF
1,500 pF
1,600 pF
1,800 pF
2,000 pF
2,200 pF
2,400 pF
2,700 pF
3,000 pF
3,300 pF
3,600 pF
3,900 pF
4,300 pF
4,700 pF
5,100 pF
5,600 pF
6,200 pF
6,800 pF
7,500 pF
8,200 pF
9,100 pF
10,000 pF
12,000 pF
15,000 pF
18,000 pF
22,000 pF
27,000 pF
33,000 pF
39,000 pF
47,000 pF
56,000 pF
68,000 pF
82,000 pF
0.10 µF
0.12 µF
0.15 µF
0.18 µF
0.22 µF
0.27 µF
0.33 µF
0.39 µF
0.47 µF
Voltage Code
Rated Voltage (VDC)
16
Cap
Code
10
Capacitance
C1206C
10
Case Size/Series
A
8
4
3
5
1
2
A
5
C1210C
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GD
GB
GB
GH
GB
GB
GJ
GB
GH
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GD
GH
GK
GH
GG
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GD
GH
GN
C1812C
C2220C
*Capacitance range Includes E24 decade values only. (i.e., 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82 and 91)
KEMET reserves the right to substitute product with an improved temperature characteristic, tighter capacitance tolerance and/or higher voltage capability within
the same form factor (configuration and dimensions).
These products are protected under US Patents 7,172,985 & 7,670,981, other patents pending, and any foreign counterparts.
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com
C1026_C0G_COTS_SMD • 12/15/2014
5
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
Commercial Off-The-Shelf (COTS) for Higher Reliability Applications, C0G Dielectric, 10 – 250 VDC
Table 2 – Chip Thickness/Packaging Quantities
Thickness
Code
Case
Size
Thickness ±
Range (mm)
BB
BD
CF
CH
DN
DP
DE
DF
DG
EB
EC
ED
EE
EF
EH
FB
FC
FE
FF
FG
FH
FM
FJ
FK
GB
GD
GH
GG
GK
GJ
GN
GM
JB
JD
JE
JF
JG
JL
402
402
603
603
805
805
0805
0805
0805
1206
1206
1206
1206
1206
1206
1210
1210
1210
1210
1210
1210
1210
1210
1210
1812
1812
1812
1812
1812
1812
1812
1812
2220
2220
2220
2220
2220
2220
0.50 ± 0.05
0.55 ± 0.05
0.80 ± 0.07*
0.85 ± 0.07
0.78 ± 0.10*
0.90 ± 0.10*
1.00 ± 0.10
1.10 ± 0.10
1.25 ± 0.15
0.78 ± 0.10
0.90 ± 0.10
1.00 ± 0.10
1.10 ± 0.10
1.20 ± 0.15
1.60 ± 0.20
0.78 ± 0.10
0.90 ± 0.10
1.00 ± 0.10
1.10 ± 0.10
1.25 ± 0.15
1.55 ± 0.15
1.70 ± 0.20
1.85 ± 0.20
2.10 ± 0.20
1.00 ± 0.10
1.25 ± 0.15
1.40 ± 0.15
1.55 ± 0.10
1.60 ± 0.20
1.70 ± 0.15
1.70 ± 0.20
2.00 ± 0.20
1.00 ± 0.15
1.30 ± 0.15
1.40 ± 0.15
1.50 ± 0.15
1.70 ± 0.15
2.00 ± 0.20
Thickness
Code
Case
Size
Thickness ±
Range (mm)
Paper Quantity
Plastic Quantity
7" Reel
13" Reel
7" Reel
13" Reel
7" Reel
13" Reel
7" Reel
13" Reel
10000
10000
4000
4000
4000
4000
0
0
0
4,000
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
50000
50000
15000
10000
15000
15000
0
0
0
10,000
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Paper Quantity
0
0
0
0
0
0
2,500
2,500
2,500
4,000
4,000
2,500
2,500
2,500
2,000
4,000
4,000
2,500
2,500
2,500
2,000
2,000
2,000
2,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
500
1,000
1,000
1,000
1,000
1,000
500
0
0
0
0
0
0
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
8,000
10,000
10,000
10,000
10,000
10,000
8,000
8,000
8,000
8,000
4,000
4,000
4,000
4,000
4,000
4,000
4,000
2,000
4,000
4,000
4,000
4,000
4,000
2,000
Plastic Quantity
Package quantity based on finished chip thickness specifications.
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com
C1026_C0G_COTS_SMD • 12/15/2014
6
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
Commercial Off-The-Shelf (COTS) for Higher Reliability Applications, C0G Dielectric, 10 – 250 VDC
Table 3 – Chip Capacitor Land Pattern Design Recommendations per IPC–7351
EIA
Size
Code
Metric
Size
Code
0402
Density Level A:
Maximum (Most)
Land Protrusion (mm)
Density Level B:
Median (Nominal)
Land Protrusion (mm)
Density Level C:
Minimum (Least)
Land Protrusion (mm)
C
Y
X
V1
V2
C
Y
X
V1
V2
C
Y
X
V1
V2
1005
0.50
0.72
0.72
2.20
1.20
0.45
0.62
0.62
1.90
1.00
0.40
0.52
0.52
1.60
0.80
0603
1608
0.90
1.15
1.10
4.00
2.10
0.80
0.95
1.00
3.10
1.50
0.60
0.75
0.90
2.40
1.20
0805
2012
1.00
1.35
1.55
4.40
2.60
0.90
1.15
1.45
3.50
2.00
0.75
0.95
1.35
2.80
1.70
1206
3216
1.60
1.35
1.90
5.60
2.90
1.50
1.15
1.80
4.70
2.30
1.40
0.95
1.70
4.00
2.00
1210
3225
1.60
1.35
2.80
5.65
3.80
1.50
1.15
2.70
4.70
3.20
1.40
0.95
2.60
4.00
2.90
12101
3225
1.50
1.60
2.90
5.60
3.90
1.40
1.40
2.80
4.70
3.30
1.30
1.20
2.70
4.00
3.00
1812
4532
2.15
1.60
3.60
6.90
4.60
2.05
1.40
3.50
6.00
4.00
1.95
1.20
3.40
5.30
3.70
2220
5650
2.75
1.70
5.50
8.20
6.50
2.65
1.50
5.40
7.30
5.90
2.55
1.30
5.30
6.60
5.60
Only for capacitance values ≥ 22 µF
Density Level A: For low-density product applications. Recommended for wave solder applications and provides a wider process window for reflow solder
processes. KEMET only recommends wave soldering of EIA 0603, 0805, and 1206 case sizes.
Density Level B: For products with a moderate level of component density. Provides a robust solder attachment condition for reflow solder processes.
Density Level C: For high component density product applications. Before adapting the minimum land pattern variations the user should perform qualification
testing based on the conditions outlined in IPC Standard 7351 (IPC–7351).
1
Image below based on Density Level B for an EIA 1210 case size.
V1
Y
Y
X
X
C
C
V2
Grid Placement Courtyard
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com
C1026_C0G_COTS_SMD • 12/15/2014
7
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
Commercial Off-The-Shelf (COTS) for Higher Reliability Applications, C0G Dielectric, 10 – 250 VDC
Soldering Process
Recommended Soldering Technique:
• Solder wave or solder reflow for EIA case sizes 0603, 0805 and 1206
• All other EIA case sizes are limited to solder reflow only
Recommended Reflow Soldering Profile:
KEMET’s families of surface mount multilayer ceramic capacitors (SMD MLCCs) are compatible with wave (single or dual), convection,
IR or vapor phase reflow techniques. Preheating of these components is recommended to avoid extreme thermal stress. KEMET’s
recommended profile conditions for convection and IR reflow reflect the profile conditions of the IPC/J-STD-020 standard for moisture
sensitivity testing. These devices can safely withstand a maximum of three reflow passes at these conditions.
Preheat/Soak
Temperature Minimum (TSmin)
Temperature Maximum (TSmax)
Time (tS) from TSmin to TSmax
Ramp-Up Rate (TL to TP)
Termination Finish
SnPb
100°C
150°C
60 – 120 seconds
100% Matte Sn
150°C
200°C
60 – 120 seconds
183°C
217°C
Time Above Liquidous (tL)
60 – 150 seconds
60 – 150 seconds
Peak Temperature (TP)
235°C
260°C
Time Within 5°C of Maximum
Peak Temperature (tP)
20 seconds maximum
30 seconds maximum
Time 25°C to Peak
Temperature
tP
Maximum Ramp Up Rate = 3°C/sec
Maximum Ramp Down Rate = 6°C/sec
TL
tL
Tsmax
Tsmin
tS
3°C/second maximum 3°C/second maximum
Liquidous Temperature (TL)
Ramp-Down Rate (TP to TL)
TP
Temperature
Profile Feature
25
25° C to Peak
Time
6°C/second maximum 6°C/second maximum
6 minutes maximum
8 minutes maximum
Note 1: All temperatures refer to the center of the package, measured on the
capacitor body surface that is facing up during assembly reflow.
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com
C1026_C0G_COTS_SMD • 12/15/2014
8
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
Commercial Off-The-Shelf (COTS) for Higher Reliability Applications, C0G Dielectric, 10 – 250 VDC
Table 4 – Performance & Reliability: Test Methods and Conditions
Stress
Reference
Test or Inspection Method
Terminal Strength
JIS–C–6429
Appendix 1, Note: Force of 1.8 kg for 60 seconds.
Board Flex
JIS–C–6429
Appendix 2, Note: Standard termination system – 2.0 mm (minimum) for all except 3 mm for C0G.
Flexible termination system – 3.0 mm (minimum).
Magnification 50 X. Conditions:
Solderability
J–STD–002
a) Method B, 4 hours @ 155°C, dry heat @ 235°C
b) Method B @ 215°C category 3
c) Method D, category 3 @ 260°C
Temperature Cycling
JESD22 Method JA–104
1,000 Cycles (-55°C to +125°C). Measurement at 24 hours +/- 2 hours after test conclusion.
Load Humidity: 1,000 hours 85°C/85% RH and rated voltage. Add 100 K ohm resistor. Measurement
at 24 hours +/- 2 hours after test conclusion.
Low Volt Humidity: 1,000 hours 85°C/85% RH and 1.5 V. Add 100 K ohm resistor.
Measurement at 24 hours +/- 2 hours after test conclusion.
t = 24 hours/cycle. Steps 7a and 7b not required. Unpowered.
Measurement at 24 hours +/- 2 hours after test conclusion.
-55°C/+125°C. Note: Number of cycles required – 300, maximum transfer time – 20 seconds, dwell
time – 15 minutes. Air – Air.
Biased Humidity
MIL–STD–202 Method 103
Moisture Resistance
MIL–STD–202 Method 106
Thermal Shock
MIL–STD–202 Method 107
High Temperature Life
MIL–STD–202 Method 108
/EIA–198
Storage Life
MIL–STD–202 Method 108
150°C, 0 VDC for 1,000 hours.
Vibration
MIL–STD–202 Method 204
5 g's for 20 min., 12 cycles each of 3 orientations. Note: Use 8" X 5" PCB 0.031" thick 7 secure
points on one long side and 2 secure points at corners of opposite sides. Parts mounted within 2"
from any secure point. Test from 10 – 2,000 Hz
Mechanical Shock
MIL–STD–202 Method 213
Figure 1 of Method 213, Condition F.
Resistance to Solvents
MIL–STD–202 Method 215
Add aqueous wash chemical, OKEM Clean or equivalent.
1,000 hours at 125°C (85°C for X5R, Z5U and Y5V) with 2 X rated voltage applied.
Storage and Handling
Ceramic chip capacitors should be stored in normal working environments. While the chips themselves are quite robust in other
environments, solderability will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long term
storage. In addition, packaging materials will be degraded by high temperature– reels may soften or warp and tape peel force may
increase. KEMET recommends that maximum storage temperature not exceed 40ºC and maximum storage humidity not exceed 70%
relative humidity. Temperature fluctuations should be minimized to avoid condensation on the parts and atmospheres should be free of
chlorine and sulfur bearing compounds. For optimized solderability chip stock should be used promptly, preferably within 1.5 years of
receipt.
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com
C1026_C0G_COTS_SMD • 12/15/2014
9
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
Commercial Off-The-Shelf (COTS) for Higher Reliability Applications, C0G Dielectric, 10 – 250 VDC
Construction
Detailed Cross Section
Dielectric Material
(CaZrO3)
Dielectric Material
Barrier Layer
(CaZrO3)
(Ni)
Termination Finish
(100% Matte Sn /
Base Metal
SnPb - 5% min)
(Cu)
Inner Electrodes
(Ni)
Base Metal
(Cu)
Inner Electrodes
(Ni)
Barrier Layer
(Ni)
Termination Finish
(100% Matte Sn /
SnPb - 5% min)
Capacitor Marking (Optional):
Laser marking option is not available on:
•
•
•
•
C0G, Ultra Stable X8R and Y5V dielectric devices
EIA 0402 case size devices
EIA 0603 case size devices with Flexible Termination option.
KPS Commercial and Automotive grade stacked devices.
These capacitors are supplied unmarked only.
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com
C1026_C0G_COTS_SMD • 12/15/2014
10
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
Commercial Off-The-Shelf (COTS) for Higher Reliability Applications, C0G Dielectric, 10 – 250 VDC
Tape & Reel Packaging Information
KEMET offers multilayer ceramic chip capacitors packaged in 8, 12 and 16 mm tape on 7" and 13" reels in accordance with EIA
Standard 481. This packaging system is compatible with all tape-fed automatic pick and place systems. See Table 2 for details on
reeling quantities for commercial chips.
Bar Code Label
Anti-Static Reel
®
Embossed Plastic* or
Punched Paper Carrier.
ET
KEM
Chip and KPS Orientation in Pocket
(except 1825 Commercial, and 1825 and 2225 Military)
Sprocket Holes
Embossment or Punched Cavity
8 mm, 12 mm
or 16 mm Carrier Tape
178 mm (7.00")
or
330 mm (13.00")
Anti-Static Cover Tape
(.10 mm (.004") Maximum Thickness)
*EIA 01005, 0201, 0402 and 0603 case sizes available on punched paper carrier only.
Table 5 – Carrier Tape Configuration, Embossed Plastic & Punched Paper (mm)
Embossed Plastic
EIA Case Size
Tape size (W)*
7" Reel
13" Reel
Punched Paper
7" Reel
Pitch (P1)*
13" Reel
Pitch (P1)*
01005 – 0402
8
2
2
0603
8
4
4
0805
8
4
4
4
4
1206 – 1210
8
4
4
4
4
1805 – 1808
12
4
4
≥ 1812
12
8
8
KPS 1210
12
8
8
KPS 1812 & 2220
16
12
12
Array 0508 & 0612
8
4
4
*Refer to Figures 1 & 2 for W and P1 carrier tape reference locations.
*Refer to Tables 6 & 7 for tolerance specifications.
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com
C1026_C0G_COTS_SMD • 12/15/2014
11
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
Commercial Off-The-Shelf (COTS) for Higher Reliability Applications, C0G Dielectric, 10 – 250 VDC
Figure 1 – Embossed (Plastic) Carrier Tape Dimensions
P2
T
T2
ØDo
[10 pitches cumulative
tolerance on tape ± 0.2 mm]
Po
E1
Ao
F
Ko
B1
E2
Bo
S1
W
P1
T1
Center Lines of Cavity
ØD 1
Cover Tape
B 1 is for tape feeder reference only,
including draft concentric about B o.
Embossment
For cavity size,
see Note 1 Table 4
User Direction of Unreeling
Table 6 – Embossed (Plastic) Carrier Tape Dimensions
Metric will govern
Constant Dimensions — Millimeters (Inches)
Tape Size
D0
8 mm
12 mm
1.5 +0.10/-0.0
(0.059 +0.004/-0.0)
16 mm
D1 Minimum
Note 1
1.0
(0.039)
1.5
(0.059)
E1
P0
1.75 ±0.10
(0.069 ±0.004)
4.0 ±0.10
(0.157 ±0.004)
R Reference S1 Minimum
Note 2
Note 3
25.0
(0.984)
2.0 ±0.05
0.600
(0.079 ±0.002)
(0.024)
30
(1.181)
P2
T
Maximum
T1
Maximum
0.600
(0.024)
0.100
(0.004)
Variable Dimensions — Millimeters (Inches)
Tape Size
Pitch
8 mm
Single (4 mm)
12 mm
Single (4 mm) &
Double (8 mm)
16 mm
Triple (12 mm)
B1 Maximum
Note 4
4.35
(0.171)
8.2
(0.323)
12.1
(0.476)
E2
Minimum
6.25
(0.246)
10.25
(0.404)
14.25
(0.561)
F
P1
3.5 ±0.05
(0.138 ±0.002)
5.5 ±0.05
(0.217 ±0.002)
7.5 ±0.05
(0.138 ±0.002)
4.0 ±0.10
(0.157 ±0.004)
8.0 ±0.10
(0.315 ±0.004)
12.0 ±0.10
(0.157 ±0.004)
T2
Maximum
2.5
(0.098)
4.6
(0.181)
4.6
(0.181)
W
Maximum
8.3
(0.327)
12.3
(0.484)
16.3
(0.642)
A0,B0 & K0
Note 5
1. The embossment hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of embossment location and
hole location shall be applied independent of each other.
2. The tape with or without components shall pass around R without damage (see Figure 6).
3. If S1 < 1.0 mm, there may not be enough area for cover tape to be properly applied (see EIA Standard 481 paragraph 4.3 section b).
4. B1 dimension is a reference dimension for tape feeder clearance only.
5. The cavity defined by A0, B0 and K0 shall surround the component with sufficient clearance that:
(a) the component does not protrude above the top surface of the carrier tape.
(b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.
(c) rotation of the component is limited to 20° maximum for 8 and 12 mm tapes and 10° maximum for 16 mm tapes (see Figure 3).
(d) lateral movement of the component is restricted to 0.5 mm maximum for 8 and 12 mm wide tape and to 1.0 mm maximum for 16 mm tape (see Figure 4).
(e) for KPS Series product, A0 and B0 are measured on a plane 0.3 mm above the bottom of the pocket.
(f) see Addendum in EIA Standard 481 for standards relating to more precise taping requirements.
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com
C1026_C0G_COTS_SMD • 12/15/2014
12
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
Commercial Off-The-Shelf (COTS) for Higher Reliability Applications, C0G Dielectric, 10 – 250 VDC
Figure 2 – Punched (Paper) Carrier Tape Dimensions
P2
T
Po
ØDo
[10 pitches cumulative
tolerance on tape ± 0.2 mm]
A0
F
P1
T1
T1
Top Cover Tape
W
E2
B0
Bottom Cover Tape
E1
G
Cavity Size,
See
Note 1, Table 7
Center Lines of Cavity
Bottom Cover Tape
User Direction of Unreeling
Table 7 – Punched (Paper) Carrier Tape Dimensions
Metric will govern
Constant Dimensions — Millimeters (Inches)
Tape Size
D0
E1
P0
P2
T1 Maximum
G Minimum
8 mm
1.5 +0.10 -0.0
(0.059 +0.004 -0.0)
1.75 ±0.10
(0.069 ±0.004)
4.0 ±0.10
(0.157 ±0.004)
2.0 ±0.05
(0.079 ±0.002)
0.10
(0.004) Maximum
0.75
(0.030)
R Reference
Note 2
25
(0.984)
T Maximum
W Maximum
A0 B 0
1.1
(0.098)
8.3
(0.327)
8.3
(0.327)
Variable Dimensions — Millimeters (Inches)
Tape Size
Pitch
8 mm
Half (2 mm)
8 mm
Single (4 mm)
E2 Minimum
6.25
(0.246)
F
3.5 ±0.05
(0.138 ±0.002)
P1
2.0 ±0.05
(0.079 ±0.002)
4.0 ±0.10
(0.157 ±0.004)
Note 1
1. The cavity defined by A0, B0 and T shall surround the component with sufficient clearance that:
a) the component does not protrude beyond either surface of the carrier tape.
b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.
c) rotation of the component is limited to 20° maximum (see Figure 3).
d) lateral movement of the component is restricted to 0.5 mm maximum (see Figure 4).
e) see Addendum in EIA Standard 481 for standards relating to more precise taping requirements.
2. The tape with or without components shall pass around R without damage (see Figure 6).
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com
C1026_C0G_COTS_SMD • 12/15/2014
13
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
Commercial Off-The-Shelf (COTS) for Higher Reliability Applications, C0G Dielectric, 10 – 250 VDC
Packaging Information Performance Notes
1. Cover Tape Break Force: 1.0 Kg minimum.
2. Cover Tape Peel Strength: The total peel strength of the cover tape from the carrier tape shall be:
Tape Width
Peel Strength
8 mm
0.1 to 1.0 Newton (10 to 100 gf)
12 and 16 mm
0.1 to 1.3 Newton (10 to 130 gf)
The direction of the pull shall be opposite the direction of the carrier tape travel. The pull angle of the carrier tape shall be 165° to 180°
from the plane of the carrier tape. During peeling, the carrier and/or cover tape shall be pulled at a velocity of 300 ±10 mm/minute.
3. Labeling: Bar code labeling (standard or custom) shall be on the side of the reel opposite the sprocket holes. Refer to EIA
Standards 556 and 624.
Figure 3 – Maximum Component Rotation
°
T
Maximum Component Rotation
Top View
Maximum Component Rotation
Side View
Typical Pocket Centerline
Tape
Width (mm)
8,12
16 – 200
Bo
Maximum
Rotation (
20
10
°
T)
Typical Component Centerline
Ao
Figure 4 – Maximum Lateral Movement
8 mm & 12 mm Tape
0.5 mm maximum
0.5 mm maximum
16 mm Tape
°
s
Tape
Maximum
Width (mm) Rotation (
8,12
20
16 – 56
10
72 – 200
5
°
S)
Figure 5 – Bending Radius
Embossed
Carrier
Punched
Carrier
1.0 mm maximum
1.0 mm maximum
R
Bending
Radius
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com
R
C1026_C0G_COTS_SMD • 12/15/2014
14
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
Commercial Off-The-Shelf (COTS) for Higher Reliability Applications, C0G Dielectric, 10 – 250 VDC
Figure 6 – Reel Dimensions
Full Radius,
See Note
W3 (Includes
Access Hole at
Slot Location
(Ø 40 mm minimum)
flange distortion
at outer edge)
W2 (Measured at hub)
D
A
(See Note)
N
C
(Arbor hole
diameter)
B
(see Note)
W1 (Measured at hub)
If present,
tape slot in core
for tape start:
2.5 mm minimum width x
10.0 mm minimum depth
Note: Drive spokes optional; if used, dimensions B and D shall apply.
Table 8 – Reel Dimensions
Metric will govern
Constant Dimensions — Millimeters (Inches)
Tape Size
A
B Minimum
C
D Minimum
8 mm
178 ±0.20
(7.008 ±0.008)
or
330 ±0.20
(13.000 ±0.008)
1.5
(0.059)
13.0 +0.5/-0.2
(0.521 +0.02/-0.008)
20.2
(0.795)
12 mm
16 mm
Variable Dimensions — Millimeters (Inches)
Tape Size
N Minimum
W1
W2 Maximum
W3
50
(1.969)
8.4 +1.5/-0.0
(0.331 +0.059/-0.0)
12.4 +2.0/-0.0
(0.488 +0.078/-0.0)
16.4 +2.0/-0.0
(0.646 +0.078/-0.0)
14.4
(0.567)
18.4
(0.724)
22.4
(0.882)
Shall accommodate tape width
without interference
8 mm
12 mm
16 mm
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com
C1026_C0G_COTS_SMD • 12/15/2014
15
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
Commercial Off-The-Shelf (COTS) for Higher Reliability Applications, C0G Dielectric, 10 – 250 VDC
Figure 7 – Tape Leader & Trailer Dimensions
Embossed Carrier
Carrier Tape
Punched Carrier
8 mm & 12 mm only
END
Round Sprocket Holes
START
Top Cover Tape
Elongated Sprocket Holes
(32 mm tape and wider)
Trailer
160 mm Minimum
100 mm
Minimum Leader
400 mm Minimum
Components
Top Cover Tape
Figure 8 – Maximum Camber
Elongated sprocket holes
(32 mm & wider tapes)
Carrier Tape
Round Sprocket Holes
1 mm Maximum, either direction
Straight Edge
250 mm
Bulk Cassette Packaging (Ceramic Chips Only)
Meets Dimensional Requirements IEC–286 and EIAJ 7201
6 8 ± 0.1
8 8 ± 0.1
12.0 ± 0.1
Unit mm *Reference
19.0*
36 ± 00.2
31.5 ± 0.2
0
53 3*
10*
1.5 ±
2.0 ±
3.0 ±
0.1
0
0
0.1
0.2
0
5 0*
110 ± 0.7
Capacitor Dimensions for Bulk Cassette
Cassette Packaging – Millimeters
EIA Size
Code
Metric Size
Code
L Length
W Width
B Bandwidth
S Separation
Minimum
T Thickness
Number of
Pieces/Cassette
0402
1005
1.0 ±0.05
0.5 ±0.05
0.2 to 0.4
0.3
0.5 ±0.05
50,000
0603
1608
1.6 ±0.07
0.8 ±0.07
0.2 to 0.5
0.7
0.8 ±0.07
15,000
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com
C1026_C0G_COTS_SMD • 12/15/2014
16
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
Commercial Off-The-Shelf (COTS) for Higher Reliability Applications, C0G Dielectric, 10 – 250 VDC
KEMET Corporation
World Headquarters
Europe
Asia
Southern Europe
Paris, France
Tel: 33-1-4646-1006
Northeast Asia
Hong Kong
Tel: 852-2305-1168
Mailing Address:
P.O. Box 5928
Greenville, SC 29606
Sasso Marconi, Italy
Tel: 39-051-939111
Shenzhen, China
Tel: 86-755-2518-1306
www.kemet.com
Tel: 864-963-6300
Fax: 864-963-6521
Central Europe
Landsberg, Germany
Tel: 49-8191-3350800
Corporate Offices
Fort Lauderdale, FL
Tel: 954-766-2800
Kamen, Germany
Tel: 49-2307-438110
North America
Northern Europe
Bishop’s Stortford, United Kingdom
Tel: 44-1279-460122
2835 KEMET Way
Simpsonville, SC 29681
Southeast
Lake Mary, FL
Tel: 407-855-8886
Espoo, Finland
Tel: 358-9-5406-5000
Northeast
Wilmington, MA
Tel: 978-658-1663
Beijing, China
Tel: 86-10-5829-1711
Shanghai, China
Tel: 86-21-6447-0707
Taipei, Taiwan
Tel: 886-2-27528585
Southeast Asia
Singapore
Tel: 65-6586-1900
Penang, Malaysia
Tel: 60-4-6430200
Bangalore, India
Tel: 91-806-53-76817
Central
Novi, MI
Tel: 248-306-9353
West
Milpitas, CA
Tel: 408-433-9950
Mexico
Guadalajara, Jalisco
Tel: 52-33-3123-2141
Note: KEMET reserves the right to modify minor details of internal and external construction at any time in the interest of product improvement. KEMET does not
assume any responsibility for infringement that might result from the use of KEMET Capacitors in potential circuit designs. KEMET is a registered trademark of
KEMET Electronics Corporation.
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com
C1026_C0G_COTS_SMD • 12/15/2014
17
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
Commercial Off-The-Shelf (COTS) for Higher Reliability Applications, C0G Dielectric, 10 – 250 VDC
Disclaimer
All product specifications, statements, information and data (collectively, the “Information”) in this datasheet are subject to change. The customer is responsible for checking and
verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed.
All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.
Statements of suitability for certain applications are based on KEMET Electronics Corporation’s (“KEMET”) knowledge of typical operating conditions for such applications, but are
not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only
by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise
provided by KEMET with reference to the use of KEMET’s products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.
Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still
occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective
circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.
Although all product–related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not
be required.
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com
C1026_C0G_COTS_SMD • 12/15/2014
18