SSD1325 OLED driver

SOLOMON SYSTECH
SEMICONDUCTOR TECHNICAL DATA
SSD1325
Advance Information
128 x 80, 16 Gray Scale Dot Matrix
OLED/PLED Segment/Common Driver with Controller
This document contains information on a new product. Specifications and information herein are subject to
change without notice.
http://www.solomon-systech.com
SSD1325
Rev 2.3
P 1/63
Jul 2010
Copyright © 2010 Solomon Systech Limited
Appendix: IC Revision history of SSD1325 Specification
Version
1.0
1.
2.
3.
Change Items
Changed to Advance Info
Added information of SSD1325T3R1 and SSD1325UR1
Revised the cutline tolerance of SSD1325T3R1 and SSD1325UR1
1.1
1.
Added information of SSD1325U2
03-Jan-05
1.2
1.
Added information of SSD1325T1R1 and SSD1325T6R1
03-Oct-05
1.3
1.
2.
3.
Added application example of SSD1325T1R1
Revised commands B1h, B3h, BCh, BEh
Revised command descriptions: “Set Row Period” and “Set Display
Clock Divide Ratio”
Revised SSD1325U2 pin assignment
Corrected the SCLK(D0) waveform in the figure of Serial Interface
Characteristic:
Original:
06-Feb-06
4.
5.
Effective Date
11-Aug-04
Now:
1.4
1.
2.
3.
4.
5.
6.
7.
Added Graphic Acceleration Commands (23h, 24h, 25h, 26h, 2Eh, 2Fh)
Revised commands AEh, AFh, B8h in command table
Revise SSD1325 die drawing and pad coordinate
Added a note on capacitor value on application example
Added a note in B1 command ( 0 DCLK is invalid in Phase 1&2)
Revised D/C#, CL pin description
Revised MCU interface section
04-Sep-06
1.5
1.
2.
Added power on / off sequence
Add RESET timing in the AC Characteristics Table
05-Oct-06
1.6
1.
2.
3.
Revised hex code of AEh in command table
Revised the figure of Segment Current vs Contrast Setting
Revised command description of Set Contrast Control Register
24-Oct-06
1.7
1.
2.
Added commands B0h and B4h on the command table
Added note in command ADh (Set Master Configuration) in command
table
03-Jul-07
1.8
1.
2.
Revised pin description of VSL and VSLCAP pin
Removed SSD1325UR1, SSD1325T3R1, SSD1325U2 and
SSD1325T1R1 dwgs
Revised application example from SSD1325T1R1 to SSD1325T6R1
Added light sensitivity note under Table 22 - Maximum Ratings
Added commands BFh in command table, VSL pin description &
application example
08-Aug-07
Added a Remark column in the Ordering Information table
Removed the internal DC-DC block from the SSD1325 Block Diagram
Amended the die size
Updated the Pin Description table and added pin descriptions for FR and
DOF#
16-Oct-07
3.
4.
5.
1.9
1.
2.
3.
4.
Solomon Systech
Jul 2010
P 2/63
Rev 2.3
SSD1325
Version
Change Items
Removed the internal DC-DC voltage converter and its corresponding
information
6. Added details on section 8.2 (Segment drivers / Common drivers)
7. Added details on section 8.6 (Current Control and Voltage Control)
8. Revised sections 10.1.6 (Set Display Start Line (A1h)) & 10.1.7 (Set
Display Offset (A2h)) by adding examples
9. Revised section 10.1.10 (Set Master Configuration (ADh))
10. Added Remark on section 15.1 SSD1325Z Die Tray Information
11. Added application example of SSD1325Z SPI serial interface
12. Revise the adjacent pin uniformity limit to +/-1.5%
Effective Date
5.
2.0
1.
2.
Amended the die size
Revised the die tray information
19-Dec-07
2.1
1.
2.
Revised the default values of commands BCh and BEh in command table
Removed the below figures:
Figure 30 : VCOMH vs Bit Value
Figure 31 : VP vs Bit Value
Added and revised Power on / off Sequence notes (2~5)
15-May-08
3.
2.2
1.
Deleted the statement “OLED driving output voltage, 14V maximum” in
the Features list (section 2)
11-Aug-08
2.3
1.
Replace SSD1325Z by SSD1325Z2 and add SSD1325Z2 into section 3
ordering information (P.8)
Revise die thickness tolerance from ±25um to ±15um in section 5 (P.10)
Added +/- 50um tolerance for Die Size section 5 (P.10 )
Revise typo in AEh / AFh command (P.33)
Revise typo in B3h command (p.34)
Revise disclaimer (P.63)
13-Jul-10
2.
3.
8.
4.
5.
Solomon Systech
Jul 2010
P 3/63
Rev 2.3
SSD1325
TABLE OF CONTENTS
1
GENERAL DESCRIPTION ............................................................................................................................... 8
2
FEATURES .......................................................................................................................................................... 8
3
ORDERING INFORMATION........................................................................................................................... 8
4
BLOCK DIAGRAM ............................................................................................................................................ 9
5
DIE PAD FLOOR PLAN .................................................................................................................................. 10
6
PIN ARRANGEMENT ..................................................................................................................................... 13
7
PIN DESCRIPTION.......................................................................................................................................... 15
8
FUNCTIONAL BLOCK DESCRIPTIONS .................................................................................................... 18
8.1
MCU INTERFACE SELECTION........................................................................................................................ 18
8.1.1
MCU Parallel 6800-series Interface.................................................................................................... 18
8.1.2
MCU Parallel 8080-series Interface.................................................................................................... 19
8.1.3
MCU Serial Interface........................................................................................................................... 21
8.2
SEGMENT DRIVERS/COMMON DRIVERS........................................................................................................ 22
8.3
OSCILLATOR CIRCUIT AND DISPLAY TIME GENERATOR ............................................................................... 25
8.4
COMMAND DECODER AND COMMAND INTERFACE ....................................................................................... 25
8.5
RESET CIRCUIT ............................................................................................................................................. 26
8.6
CURRENT CONTROL AND VOLTAGE CONTROL ............................................................................................. 26
8.7
GRAPHIC DISPLAY DATA RAM (GDDRAM)............................................................................................... 26
8.8
GRAY SCALE DECODER ................................................................................................................................ 29
8.9
POWER ON AND OFF SEQUENCE .................................................................................................................. 31
9
COMMAND TABLE......................................................................................................................................... 32
9.1
10
Data Read / Write .................................................................................................................................... 37
COMMAND DESCRIPTIONS .................................................................................................................... 38
10.1 FUNDAMENTAL COMMAND DESCRIPTION ..................................................................................................... 38
10.1.1 Set Column Address (15h).................................................................................................................... 38
10.1.2 Set Row Address (75h) ......................................................................................................................... 38
10.1.3 Set Contrast Current (81h) .................................................................................................................. 39
10.1.4 Set Current Range (84h, 85h, 87h) ...................................................................................................... 39
10.1.5 Set Re-map (A0h) ................................................................................................................................. 39
10.1.6 Set Display Start Line (A1h) ................................................................................................................ 42
10.1.7 Set Display Offset (A2h)....................................................................................................................... 43
10.1.8 Set Display Mode (A4h ~ A7h)............................................................................................................. 44
10.1.9 Set Multiplex Ratio (A8h)..................................................................................................................... 45
10.1.10
Set Master Configuration (ADh)...................................................................................................... 45
10.1.11
Set Display ON/OFF (AEh / AFh) ................................................................................................... 45
10.1.12
Set VCOMH Voltage (BEh) .................................................................................................................. 45
10.1.13
Set Precharge Voltage (BCh)........................................................................................................... 46
10.1.14
Set Phase Length (B1h).................................................................................................................... 46
10.1.15
Set Row Period (B2h)....................................................................................................................... 46
10.1.16
Set Display Clock Divide Ratio (B3h).............................................................................................. 46
10.1.17
Set Gray Scale Table........................................................................................................................ 46
10.1.18
NOP (E3h) ....................................................................................................................................... 47
10.1.19
Status register Read ......................................................................................................................... 47
10.2 GRAPHIC ACCELERATION COMMAND SET DESCRIPTION .............................................................................. 48
10.2.1 Graphic Acceleration Command Options (23h) .................................................................................. 48
10.2.2 Draw Rectangle (24h).......................................................................................................................... 48
10.2.3 Copy (25h) ........................................................................................................................................... 49
10.2.4 Horizontal Scroll (26h) ........................................................................................................................ 49
Solomon Systech
Jul 2010
P 4/63
Rev 2.3
SSD1325
10.2.5
10.2.6
Stop Moving (2Eh) ............................................................................................................................... 50
Start Moving (2Fh) .............................................................................................................................. 50
11
MAXIMUM RATINGS................................................................................................................................. 51
12
DC CHARACTERISTICS............................................................................................................................ 52
13
AC CHARACTERISTICS............................................................................................................................ 53
14
APPLICATION EXAMPLES ...................................................................................................................... 57
15
PACKAGE INFORMATION....................................................................................................................... 59
15.1
15.2
SSD1325Z2 DIE TRAY INFORMATION .......................................................................................................... 59
SSD1325T6R1 DETAIL DIMENSION ............................................................................................................. 61
Solomon Systech
Jul 2010
P 5/63
Rev 2.3
SSD1325
LIST OF FIGURES
FIGURE 1 : SSD1325 BLOCK DIAGRAM .......................................................................................................................... 9
FIGURE 2 : SSD1325Z2 DIE DRAWING ......................................................................................................................... 10
FIGURE 3 : SSD1325Z2 ALIGNMENT MARK DIMENSIONS ............................................................................................ 11
FIGURE 4 : SSD1325T6R1 PIN ASSIGNMENT ............................................................................................................... 13
FIGURE 5 : DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ .................................................................... 19
FIGURE 6 : EXAMPLE OF WRITE PROCEDURE IN 8080 PARALLEL INTERFACE MODE ...................................................... 19
FIGURE 7 : EXAMPLE OF READ PROCEDURE IN 8080 PARALLEL INTERFACE MODE ....................................................... 19
FIGURE 8: DISPLAY DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ ....................................................... 20
FIGURE 9: DISPLAY DATA WRITE PROCEDURE IN SPI MODE.......................................................................................... 21
FIGURE 10 : SEGMENT AND COMMON DRIVER BLOCK DIAGRAM ................................................................................. 22
FIGURE 11 : SEGMENT AND COMMON DRIVER SIGNAL WAVEFORM............................................................................. 23
FIGURE 12 : GRAY SCALE CONTROL BY PWM IN SEGMENT ......................................................................................... 24
FIGURE 13 : OSCILLATOR CIRCUIT ............................................................................................................................... 25
FIGURE 14: IREF CURRENT SETTING BY RESISTOR VALUE ............................................................................................ 26
FIGURE 15 : GRAY SCALE PULSE WIDTH SET DIAGRAM ................................................................................................. 30
FIGURE 16 : THE POWER ON SEQUENCE ....................................................................................................................... 31
FIGURE 17 : THE POWER OFF SEQUENCE ..................................................................................................................... 31
FIGURE 18 : EXAMPLE OF COLUMN AND ROW ADDRESS POINTER MOVEMENT............................................................ 38
FIGURE 19 : SEGMENT CURRENT VS CONTRAST SETTING .............................................................................................. 39
FIGURE 20 : ADDRESS POINTER MOVEMENT OF HORIZONTAL ADDRESS INCREMENT MODE ....................................... 40
FIGURE 21: ADDRESS POINTER MOVEMENT OF VERTICAL ADDRESS INCREMENT MODE ............................................. 40
FIGURE 22: OUTPUT PIN ASSIGNMENT WHEN COMMAND A0H BIT A[6]=0.................................................................... 41
FIGURE 23 : OUTPUT PIN ASSIGNMENT WHEN COMMAND A0H BIT A[6]=1. .................................................................. 41
FIGURE 24: EXAMPLE OF SET DISPLAY START LINE WITH NO REMAPPING ................................................................... 42
FIGURE 25: EXAMPLE OF SET DISPLAY OFFSET WITH NO REMAPPING.......................................................................... 43
FIGURE 26: EXAMPLE OF NORMAL DISPLAY ................................................................................................................ 44
FIGURE 27: EXAMPLE OF ENTIRE DISPLAY ON ............................................................................................................ 44
FIGURE 28 : EXAMPLE OF ENTIRE DISPLAY OFF .......................................................................................................... 44
FIGURE 29: EXAMPLE OF INVERSE DISPLAY ................................................................................................................. 44
FIGURE 30 : EXAMPLE OF GAMMA CORRECTION BY GRAY SCALE TABLE SETTING ........................................................ 46
FIGURE 31 : EXAMPLE OF DRAW RECTANGLE COMMAND.............................................................................................. 48
FIGURE 32: EXAMPLE OF COPY COMMAND ................................................................................................................... 49
FIGURE 33: SCROLLING EXAMPLES ............................................................................................................................... 49
FIGURE 34 : 6800-SERIES MCU PARALLEL INTERFACE CHARACTERISTICS .................................................................. 54
FIGURE 35 : 8080-SERIES PARALLEL INTERFACE CHARACTERISTICS (FORM 1) ............................................................. 55
FIGURE 36 : 8080-SERIES PARALLEL INTERFACE CHARACTERISTICS (FORM 2) ............................................................. 55
FIGURE 37 : SERIAL INTERFACE CHARACTERISTICS ..................................................................................................... 56
FIGURE 38 : APPLICATION EXAMPLE FOR SSD1325Z2 SPI SERIAL INTERFACE MODE .................................................. 57
FIGURE 39: APPLICATION EXAMPLE FOR SSD1325T6R1............................................................................................. 58
FIGURE 40 : SSD1325Z2 DIE TRAY DRAWING ............................................................................................................. 59
FIGURE 41 : SSD1325T6R1 DETAIL DIMENSION ......................................................................................................... 61
Solomon Systech
Jul 2010
P 6/63
Rev 2.3
SSD1325
LIST OF TABLES
TABLE 1 : ORDERING INFORMATION ............................................................................................................................... 8
TABLE 2 : SSD1325Z2 BUMP DIE PAD COORDINATES ................................................................................................. 12
TABLE 3: SSD1325T6R1 TAB PIN ASSIGNMENT TABLE .............................................................................................. 14
TABLE 4: PIN DESCRIPTIONS ........................................................................................................................................ 15
TABLE 5 : BUS INTERFACE SELECTION .......................................................................................................................... 15
TABLE 6 : MCU INTERFACE ASSIGNMENT UNDER DIFFERENT BUS INTERFACE MODE ................................................... 18
TABLE 7: CONTROL PINS OF 6800 INTERFACE ............................................................................................................... 18
TABLE 8: CONTROL PINS OF 8080 INTERFACE (FORM 1) ............................................................................................... 20
TABLE 9: CONTROL PINS OF 8080 INTERFACE (FORM 2) ............................................................................................... 20
TABLE 10: CONTROL PINS OF SERIAL INTERFACE ......................................................................................................... 21
TABLE 11 : GDDRAM ADDRESS MAP 1........................................................................................................................ 27
TABLE 12 : GDDRAM ADDRESS MAP 2........................................................................................................................ 27
TABLE 13 : GDDRAM ADDRESS MAP 3........................................................................................................................ 28
TABLE 14 : GDDRAM ADDRESS MAP 4........................................................................................................................ 28
TABLE 15 : GDDRAM ADDRESS MAP 5........................................................................................................................ 29
TABLE16 : GRAY SCALE PULSE WIDTH SET TABLE ........................................................................................................ 29
TABLE 17 : GRAY SCALE PULSE WIDTH DEFAULT VALUES ............................................................................................ 30
TABLE 18: COMMAND TABLE ....................................................................................................................................... 32
TABLE 19: GRAPHIC ACCELERATION COMMAND .......................................................................................................... 35
TABLE 20: READ COMMAND TABLE ............................................................................................................................. 36
TABLE 21: ADDRESS INCREMENT TABLE (AUTOMATIC)............................................................................................... 37
TABLE 22 : MAXIMUM RATINGS (VOLTAGE REFERENCE TO VSS)................................................................................. 51
TABLE 23 : DC CHARACTERISTICS ............................................................................................................................... 52
TABLE 24 : AC CHARACTERISTICS ............................................................................................................................... 53
TABLE 25 : 6800-SERIES MCU PARALLEL INTERFACE TIMING CHARACTERISTICS ...................................................... 54
TABLE 26 : 8080-SERIES MCU PARALLEL INTERFACE TIMING CHARACTERISTICS ...................................................... 55
TABLE 27 : SERIAL INTERFACE TIMING CHARACTERISTICS .......................................................................................... 56
TABLE 28 : SSD1325Z2 DIE TRAY DIMENSIONS .......................................................................................................... 60
Solomon Systech
Jul 2010
P 7/63
Rev 2.3
SSD1325
1
GENERAL DESCRIPTION
SSD1325 is a single-chip CMOS OLED/PLED driver with controller for organic/polymer light emitting
diode dot-matrix graphic display system. It consists of 208 high voltage/current driving output pins for
driving 128 segments and 80 commons. This IC is designed for Common Cathode type OLED/PLED
panel.
SSD1325 displays data directly from its internal 128x80x4 bits Graphic Display Data RAM (GDDRAM).
Data/Commands are sent from general MCU through the hardware selectable 6800-/8080-series
compatible Parallel Interface or Serial Peripheral Interface.
It has a 128-step contrast control and a 16 gray level control. The embedded on-chip oscillator and DCDC voltage converter reduce the number of external components.
2
FEATURES
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
3
Support max. 128 x 80 matrix panel
Power supply: VDD =2.4V - 3.5V
VCC =8.0V - 16.0V
For matrix display:
o Can output maximum segment source current: 300uA
o Common maximum sink current: 40mA
Embedded 128 x 80 x 4 bit SRAM display memory
128 step contrast current control on monochrome passive OLED panel
16 gray scale
Internal Oscillator
Programmable Frame Rate
8-bit 6800-series Parallel Interface, 8080-series Parallel Interface, Serial Peripheral Interface.
Row re-mapping and Column re-mapping
Low power consumption (<5.0uA @sleep mode)
Wide range of operating temperature: -40 to 85 °C
ORDERING INFORMATION
Table 1 : Ordering Information
Ordering Part
Number
SEG
COM
Package
Form
Reference
Remarks
SSD1325Z2
128
80
COG
Page 10, 59
• Min SEG pad pitch: 52.2um
• Min COM pad pitch: 51.8um
SSD1325T6R1
Solomon Systech
128
80
TAB
Page 60
•
•
•
•
8-bit 80 / 68 / SPI interface
Output lead pitch: 0.12mm x 0.998 = 0.11976mm
4 SPH, 35m film
Full resolution 128 x 80
Jul 2010
P 8/63
Rev 2.3
SSD1325
BLOCK DIAGRAM
Figure 1 : SSD1325 Block Diagram
.
.
.
.
.
.
.
.
.
.
.
Common Drivers
GDDRAM
Grey Scale Decorder
.
.
.
.
.
.
.
.
.
.
.
Segment Drivers
D7
D6
D5
D4
D3
D2
D1
D0
MCU
Interface
RES#
CS#
D/C#
E (RD#)
R/W#(WR#)
BS2
BS1
BS0
Solomon Systech
.
.
.
.
.
.
.
.
.
.
.
Jul 2010
P 9/63
COM39
COM38
|
COM1
COM0
SEG0
|
SEG127
COM40
COM41
|
COM78
COM79
VSLCAP
VSL
Common Drivers
Current Control
Voltage Control
Display
Timing
Generator
BGGND
VDDB
VSSB
GDR
FB
RESE
VBREF
VCC
VCOMH
VREF
IREF
M\S#
CL
CLS
Oscillator
VDD
VSS
Command
Decoder
4
Rev 2.3
SSD1325
5
DIE PAD FLOOR PLAN
Figure 2 : SSD1325Z2 Die Drawing
PIN 1
Note
1
+ represents the centre of the alignment mark
Alignment Mark
X-pos (μm)
Y-pos (μm)
4934.100
-557.675
-4934.100
-557.675
+ shape
5014.100
-52.200
T shape
-5014.100
-52.200
o Shape
SSD1325Z2
Die Size
Die Thickness
I/O pad pitch
SEG pad pitch
COM pad pitch
Bump Height
10942um +/- 50um x
1508um +/- 50um
457 +/- 15um
76.2um
52.2um
51.8um
Nominal 12um
Bump size
Pad 1-7,123-331
Pad 8-122
X (um)
34
54
Y (um)
84
84
y
SSD1325Z2
x
Pad 1, 2, 3...
Gold Bumps face up
Solomon Systech
Jul 2010
P 10/63
Rev 2.3
SSD1325
Figure 3 : SSD1325Z2 Alignment Mark Dimensions
Solomon Systech
Jul 2010
P 11/63
Rev 2.3
SSD1325
Table 2 : SSD1325Z2 Bump Die Pad Coordinates
Pad# Signal
1
DUMMY
2
DUMMY
3
COM75
4
COM76
COM77
5
6
COM78
COM79
7
8
DUMMY
9
DUMMY
10
DUMMY
11
DUMMY
12
DUMMY
13
DUMMY
14
DUMMY
15
DUMMY
16
DUMMY
17
DUMMY
18
DUMMY
19
DUMMY
20
DUMMY
21
VCL
22
VCL
23
VCL
24
VSS
25
VSSB
26
VSSB
27
VSL
28
VSLCAP
29
VSLCAP
30
VDD
31
VCC
32
VCC
33
VCOMH
34
VCOMH
35
TR8
36
TR7
37
TR6
38
TR5
39
TR4
40
TR3
41
TR2
42
TR1
43
TR0
44
VSS
45
VSSB
46
GDR
47
GDR
48
GDR
49
GDR
50
VDDB
51
VDDB
52
VDD
53
VDD
54
FB
55
RESE
56
VBREF
57
BGGND
VSS
58
VCC
59
60
GPIO0
61
GPIO1
62
VDD
63
BS0
64
VSS
65
BS1
66
VDD
67
BS2
68
VSS
69
FR
CL
70
71
DOF#
VSS
72
CS#
73
74
RES#
D/C#
75
VSS
76
77 R/W#(WR#)
E(RD#)
78
VDD
79
80
D0
81
D1
82
D2
83
D3
84
D4
85
D5
86
D6
87
D7
88
VSS
89
M/S#
90
CLS
X-pos
-5414.000
-5361.800
-5309.600
-5257.800
-5206.000
-5154.200
-5102.400
-4767.075
-4690.875
-4614.675
-4538.475
-4462.275
-4386.075
-4309.875
-4233.675
-4157.475
-4081.275
-4005.075
-3928.875
-3852.675
-3471.675
-3395.475
-3319.275
-3243.075
-3166.875
-3090.675
-3014.475
-2938.275
-2862.075
-2785.875
-2709.675
-2633.475
-2557.275
-2481.075
-2404.875
-2328.675
-2252.475
-2176.275
-2100.075
-2023.875
-1947.675
-1871.475
-1795.275
-1719.075
-1642.875
-1338.075
-1261.875
-1185.675
-1109.475
-728.475
-652.275
-576.075
-499.875
-423.675
-347.475
-271.275
-195.075
-118.875
-42.675
33.525
109.725
185.925
262.125
338.325
414.525
490.725
566.925
643.125
719.325
795.525
871.725
947.925
1024.125
1100.325
1176.525
1252.725
1328.925
1405.125
1481.325
1557.525
1633.725
1709.925
1786.125
1862.325
1938.525
2014.725
2090.925
2167.125
2243.325
2319.525
Solomon Systech
Y-pos
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
Pad#
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
Signal
VDD
ICAS
IREF
VCOMH
VCOMH
VREF
VCC
VCC
VDD
VSL
VSS
VCL
VCL
VCL
DUMMY
DUMMY
DUMMY
DUMMY
DUMMY
DUMMY
DUMMY
DUMMY
DUMMY
DUMMY
DUMMY
DUMMY
DUMMY
DUMMY
DUMMY
DUMMY
DUMMY
DUMMY
COM39
COM38
COM37
COM36
COM35
DUMMY
DUMMY
DUMMY
DUMMY
COM34
COM33
COM32
COM31
COM30
COM29
COM28
COM27
COM26
COM25
COM24
COM23
COM22
COM21
COM20
COM19
COM18
COM17
COM16
COM15
COM14
COM13
COM12
COM11
COM10
COM9
COM8
COM7
COM6
COM5
COM4
COM3
COM2
COM1
COM0
SEG0
SEG1
SEG2
SEG3
SEG4
SEG5
SEG6
SEG7
SEG8
SEG9
SEG10
SEG11
SEG12
SEG13
X-pos
2395.725
2471.925
2548.125
2624.325
2700.525
2776.725
2852.925
2929.125
3005.325
3081.525
3157.725
3233.925
3310.125
3386.325
3462.525
3538.725
3614.925
3691.125
3767.325
3843.525
3919.725
3995.925
4072.125
4148.325
4224.525
4300.725
4376.925
4453.125
4529.325
4605.525
4681.725
4757.925
5102.400
5154.200
5206.000
5257.800
5309.600
5361.800
5414.000
5414.000
5361.800
5309.600
5257.800
5206.000
5154.200
5102.400
5050.600
4998.800
4947.000
4895.200
4843.400
4791.600
4739.800
4688.000
4636.200
4584.400
4532.600
4480.800
4429.000
4377.200
4325.400
4273.600
4221.800
4170.000
4118.200
4066.400
4014.600
3962.800
3911.000
3859.200
3807.400
3755.600
3703.800
3652.000
3600.200
3548.400
3340.800
3288.600
3236.400
3184.200
3132.000
3079.800
3027.600
2975.400
2923.200
2871.000
2818.800
2766.600
2714.400
2662.200
Y-pos
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
-672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
Pad#
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
Signal
SEG14
SEG15
SEG16
SEG17
SEG18
SEG19
SEG20
SEG21
SEG22
SEG23
SEG24
SEG25
SEG26
SEG27
SEG28
SEG29
SEG30
SEG31
SEG32
SEG33
SEG34
SEG35
SEG36
SEG37
SEG38
SEG39
SEG40
SEG41
SEG42
SEG43
SEG44
SEG45
SEG46
SEG47
SEG48
SEG49
SEG50
SEG51
SEG52
SEG53
SEG54
SEG55
SEG56
SEG57
SEG58
SEG59
SEG60
SEG61
SEG62
SEG63
SEG64
SEG65
SEG66
SEG67
SEG68
SEG69
SEG70
SEG71
SEG72
SEG73
SEG74
SEG75
SEG76
SEG77
SEG78
SEG79
SEG80
SEG81
SEG82
SEG83
SEG84
SEG85
SEG86
SEG87
SEG88
SEG89
SEG90
SEG91
SEG92
SEG93
SEG94
SEG95
SEG96
SEG97
SEG98
SEG99
SEG100
SEG101
SEG102
SEG103
X-pos
2610.000
2557.800
2505.600
2453.400
2401.200
2349.000
2296.800
2244.600
2192.400
2140.200
2088.000
2035.800
1983.600
1931.400
1879.200
1827.000
1774.800
1722.600
1670.400
1618.200
1566.000
1513.800
1461.600
1409.400
1357.200
1305.000
1252.800
1200.600
1148.400
1096.200
1044.000
991.800
939.600
887.400
835.200
783.000
730.800
678.600
626.400
574.200
522.000
469.800
417.600
365.400
313.200
261.000
208.800
156.600
104.400
52.200
0.000
-52.200
-104.400
-156.600
-208.800
-261.000
-313.200
-365.400
-469.800
-522.000
-574.200
-626.400
-678.600
-730.800
-783.000
-835.200
-887.400
-939.600
-991.800
-1044.000
-1096.200
-1148.400
-1200.600
-1252.800
-1305.000
-1357.200
-1409.400
-1461.600
-1513.800
-1566.000
-1618.200
-1670.400
-1722.600
-1774.800
-1827.000
-1879.200
-1931.400
-1983.600
-2035.800
-2088.000
Y-pos
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
Jul 2010
Pad#
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
P 12/63
Signal
SEG104
SEG105
SEG106
SEG107
SEG108
SEG109
SEG110
SEG111
SEG112
SEG113
SEG114
SEG115
SEG116
SEG117
SEG118
SEG119
SEG120
SEG121
SEG122
SEG123
SEG124
SEG125
SEG126
SEG127
COM40
COM41
COM42
COM43
COM44
COM45
COM46
COM47
COM48
COM49
COM50
COM51
COM52
COM53
COM54
COM55
COM56
COM57
COM58
COM59
COM60
COM61
COM62
COM63
COM64
COM65
COM66
COM67
COM68
COM69
COM70
COM71
COM72
COM73
COM74
DUMMY
DUMMY
X-pos
-2140.200
-2192.400
-2244.600
-2296.800
-2349.000
-2401.200
-2453.400
-2505.600
-2557.800
-2610.000
-2662.200
-2714.400
-2766.600
-2818.800
-2871.000
-2923.200
-2975.400
-3027.600
-3079.800
-3132.000
-3184.200
-3236.400
-3288.600
-3340.800
-3548.400
-3600.200
-3652.000
-3703.800
-3755.600
-3807.400
-3859.200
-3911.000
-3962.800
-4014.600
-4066.400
-4118.200
-4170.000
-4221.800
-4273.600
-4325.400
-4377.200
-4429.000
-4480.800
-4532.600
-4584.400
-4636.200
-4688.000
-4739.800
-4791.600
-4843.400
-4895.200
-4947.000
-4998.800
-5050.600
-5102.400
-5154.200
-5206.000
-5257.800
-5309.600
-5361.800
-5414.000
Rev 2.3
Y-pos
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
672.075
SSD1325
6
PIN ARRANGEMENT
6.1
SSD1325T6R1 pin assignment
Figure 4 : SSD1325T6R1 Pin Assignment
Solomon Systech
Jul 2010
P 13/63
Rev 2.3
SSD1325
Table 3: SSD1325T6R1 TAB Pin assignment Table
PIN NO.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
Solomon Systech
PIN NAME
NC
VCC
VCOMH
IREF
D7
D6
D5
D4
D3
D2
D1
D0
E/RD#
R/W#
D/C#
RES#
CS#
NC
BS2
BS1
VDD
NC
NC
NC
VBREF
RESE
FR
VDDB
GDR
VSS
VSL
COM79
COM77
COM75
COM73
COM71
COM69
COM67
COM65
COM63
COM61
COM59
COM57
COM55
COM53
COM51
COM49
COM47
COM45
COM43
COM41
COM39
COM37
COM35
COM33
COM31
COM29
COM27
COM25
COM23
COM21
COM19
COM17
COM15
COM13
COM11
COM9
COM7
COM5
COM3
COM1
NC
NC
NC
NC
NC
SEG127
SEG126
SEG125
SEG124
PIN NO.
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
PIN NAME
SEG123
SEG122
SEG121
SEG120
SEG119
SEG118
SEG117
SEG116
SEG115
SEG114
SEG113
SEG112
SEG111
SEG110
SEG109
SEG108
SEG107
SEG106
SEG105
SEG104
SEG103
SEG102
SEG101
SEG100
SEG99
SEG98
SEG97
SEG96
SEG95
SEG94
SEG93
SEG92
SEG91
SEG90
SEG89
SEG88
SEG87
SEG86
SEG85
SEG84
SEG83
SEG82
SEG81
SEG80
SEG79
SEG78
SEG77
SEG76
SEG75
SEG74
SEG73
SEG72
SEG71
SEG70
SEG69
SEG68
SEG67
SEG66
SEG65
SEG64
SEG63
SEG62
SEG61
SEG60
SEG59
SEG58
SEG57
SEG56
SEG55
SEG54
SEG53
SEG52
SEG51
SEG50
SEG49
SEG48
SEG47
SEG46
SEG45
SEG44
PIN NO.
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
PIN NAME
SEG43
SEG42
SEG41
SEG40
SEG39
SEG38
SEG37
SEG36
SEG35
SEG34
SEG33
SEG32
SEG31
SEG30
SEG29
SEG28
SEG27
SEG26
SEG25
SEG24
SEG23
SEG22
SEG21
SEG20
SEG19
SEG18
SEG17
SEG16
SEG15
SEG14
SEG13
SEG12
SEG11
SEG10
SEG9
SEG8
SEG7
SEG6
SEG5
SEG4
SEG3
SEG2
SEG1
SEG0
NC
NC
NC
NC
NC
COM0
COM2
COM4
COM6
COM8
COM10
COM12
COM14
COM16
COM18
COM20
COM22
COM24
COM26
COM28
COM30
COM32
COM34
COM36
COM38
COM40
COM42
COM44
COM46
COM48
COM50
COM52
COM54
COM56
COM58
COM60
PIN NO.
241
242
243
244
245
246
247
248
249
Jul 2010
PIN NAME
COM62
COM64
COM66
COM68
COM70
COM72
COM74
COM76
COM78
P 14/63
Rev 2.3
SSD1325
7
PIN DESCRIPTION
Key:
I = Input
NC = Not Connected
O = Output
Pull LOW = Connect to Ground
IO = Bi-directional (input/output) Pull HIGH = Connect to VDD
P = Power pin
Table 4: Pin Descriptions
Pin Name Pin Type
RES#
I
Description
This pin is reset signal input. When the pin is LOW, initialization of the chip is executed.
Keep this pin HIGH during normal operation.
CS#
I
This pin is the chip select input. The chip is enabled for MCU communication only when
CS# is pulled LOW.
D/C#
I
This pin is Data/Command control pin. When the pin is pulled HIGH, the data at D[7:0] is
treated as data. When the pin is pulled LOW, the data at D[7:0] will be transferred to the
command register. For detail relationship to MCU interface signals, please refer to the
Timing Characteristics Diagrams in Figure 34 to Figure 37.
E (RD#)
I
This pin is MCU interface input. When interfacing to a 6800-series microprocessor, this
pin will be used as the Enable (E) signal. Read/write operation is initiated when this pin is
pulled HIGH and the chip is selected.
When connecting to an 8080-microprocessor, this pin receives the Read (RD#) signal.
Data read operation is initiated when this pin is pulled LOW and the chip is selected.
R/W#
(WR#)
I
This pin is MCU interface input. When interfacing to a 6800-series microprocessor, this
pin will be used as Read/Write (R/W#) selection input. Read mode will be carried out
when this pin is pulled HIGH and write mode will be carried out when LOW.
When 8080 interface mode is selected, this pin will be the Write (WR#) input. Data write
operation is initiated when this pin is pulled LOW and the chip is selected.
D[7:0]
IO
These pins are 8-bit bi-directional data bus to be connected to the microprocessor’s data
bus. When serial mode is selected, D1 will be the serial data input SDIN and D0 will be
the serial clock input SCLK.
BS[2:0]
I
These pins are MCU bus interface selection.
Table 5 : Bus Interface selection
BS0
BS1
BS2
6800-parallel
interface (8 bit)
0
0
1
8080-parallel
interface (8 bit)
0
1
1
Serial interface
0
0
0
Note
(1)
0 is connected to VSS
(2)
1 is connected to VDD
VDD
P
This is a power supply pin. It must be connected to external source.
VSS
P
This is a ground pin. It also acts as ground reference for the logic pins. It must be
connected to external ground.
CL
IO
This pin is the system clock input. When internal oscillator is disabled (i.e. CLS is pulled
LOW), this pin receives display clock signal from external clock source. When internal
Solomon Systech
Jul 2010
P 15/63
Rev 2.3
SSD1325
Pin Name Pin Type
Description
clock is enabled (i.e. CLS is pulled HIGH), this pin should be kept NC and left open.
CLS
I
This is the internal clock enable pin. When this pin is pulled HIGH, internal oscillator is
selected.
The internal clock will be disabled when it is pulled LOW, an external clock source must
be connected to CL pin for normal operation.
VCC
P
This pin is the most positive voltage supply of the chip. It is supplied by external high
voltage source.
VCOMH
P
A capacitor should be connected between this pin and VSS. No external power supply is
allowed to connect to this pin.
IREF
I
This pin is the segment output current reference pin. ISEG is derived from IREF. A resistor
should be connected between this pin and VSS to maintain the current around 10uA.
COM0 ~ O
COM79
These pins provide the Common switch signals to the OLED panel. These pins are in high
impedance state when display is OFF.
SEG0 ~ O
SEG127
These pins provide the OLED segment driving signals. These pins are in high impedance
state when display is OFF.
VREF
P
This pin is the voltage reference for the pre-charge voltage in driving OLED device.
Voltage should be set matching with the OLED driving voltage in the current drive phase.
It can be either supplied externally or connected to VCC.
VCL
O
This is the output pin for the voltage output low level for COM signals. This pin should be
connected to VSS.
VSL
O
This is the output pin for the voltage output low level for SEG signals. This pin can be
kept NC or connected with a capacitor to VSS for stability. Refer to command BFh for
VSL pin connection details.
VSLCAP
O
This is a reserved pin. It has to be kept NC and left open.
M/S#
I
This pin is an input pin and must be pulled HIGH to enable the chip function.
VDDB
P
This is a reserved pin. It should be connected to VDD.
VSSB
P
This is a reserved pin. It should be connected to VSS.
GDR
O
This is a reserved pin. It should be kept NC.
RESE
I
This is a reserved pin. It should be kept NC.
FB
I
This is a reserved pin. It should be kept NC.
VBREF
I
This is an internal voltage reference pin. It should be kept NC and left open.
FR
-
It is No Connection pin. It should be kept NC and left open.
DOF#
-
It is No Connection pin. It should be kept NC and left open.
GPIO0
IO
This is a reserved pin. It should be kept NC and left open.
GPIO1
IO
This is a reserved pin. It should be kept NC and left open.
Solomon Systech
Jul 2010
P 16/63
Rev 2.3
SSD1325
Pin Name Pin Type
TR[8:0]
-
Description
This is a reserved pin. It should be kept NC and left open.
ICAS
This is a reserved pin. It should be kept NC and left open.
-
Solomon Systech
Jul 2010
P 17/63
Rev 2.3
SSD1325
8
FUNCTIONAL BLOCK DESCRIPTIONS
8.1
MCU Interface selection
SSD1325 MCU interface consist of 8 data pins and 5 control pins. The pin assignment at different
interface mode is summarized in Table 6. Different MCU mode can be set by hardware selection on
BS[2:0] pins (please refer to Table 5 for BS[2:0] setting).
Table 6 : MCU interface assignment under different bus interface mode
Pin Name
Bus
Interface
8-bit 8080
8-bit 6800
SPI
8.1.1
Data/Command Interface
D7
D6
D5
D4
Control Signal
D3
D[7:0]
D[7:0]
Tie LOW
D2
NC
D1
D0
E
R/W#
RD# WR#
E
R/W#
SDIN SCLK Tie LOW
CS#
CS#
CS#
CS#
D/C#
D/C#
D/C#
D/C#
RES#
RES#
RES#
RES#
MCU Parallel 6800-series Interface
The parallel interface consists of 8 bi-directional data pins (D[7:0]), R/W#, D/C#, E and CS#.
A LOW in R/W# indicates WRITE operation and HIGH in R/W# indicates READ operation.
A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write.
The E input serves as data latch signal while CS# is LOW. Data is latched at the falling edge of E signal.
Table 7: Control pins of 6800 interface
Function
Write command
Read status
Write data
Read data
E
↓
↓
↓
↓
R/W#
L
H
L
H
CS#
L
L
L
L
D/C#
L
L
H
H
Note
↓ stands for falling edge of signal
H stands for HIGH in signal
L stands for LOW in signal
(1)
In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline
processing is internally performed which requires the insertion of a dummy read before the first actual
display data read. This is shown in Figure 5.
Solomon Systech
Jul 2010
P 18/63
Rev 2.3
SSD1325
Figure 5 : Data read back procedure - insertion of dummy read
R/W#
E
N
Databus
Write column
address
8.1.2
n
Dummy read
Read 1st data
n+1
n+2
Read 2nd data
Read 3rd
MCU Parallel 8080-series Interface
The parallel interface consists of 8 bi-directional data pins (D[7:0]), RD#, WR#, D/C# and CS#.
A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write.
A rising edge of RD# input serves as a data READ latch signal while CS# is kept LOW.
A rising edge of WR# input serves as a data/command WRITE latch signal while CS# is kept LOW.
Figure 6 : Example of Write procedure in 8080 parallel interface mode
CS#
WR#
D[7:0]
D/C#
RD#
high
low
Figure 7 : Example of Read procedure in 8080 parallel interface mode
CS#
RD#
D[7:0]
D/C#
WR#
high
low
Solomon Systech
Jul 2010
P 19/63
Rev 2.3
SSD1325
Table 8: Control pins of 8080 interface (Form 1)
Function
Write command
Read status
Write data
Read data
RD#
H
↑
WR#
↑
H
H
↑
↑
H
CS#
L
L
L
L
D/C#
L
L
H
H
Note
(1)
↑ stands for rising edge of signal
(2)
H stands for HIGH in signal
(3)
L stands for LOW in signal
(4)
Refer to Figure 35 for Form 1 8080-Series MCU Parallel Interface Timing Characteristics
Alternatively, RD# and WR# can be keep stable while CS# serves as the data/command latch signal.
Table 9: Control pins of 8080 interface (Form 2)
Function
Write command
Read status
Write data
Read data
RD#
H
L
H
L
WR#
L
H
L
H
CS#
↑
↑
↑
↑
D/C#
L
L
H
H
Note
(1)
↑ stands for rising edge of signal
(2)
H stands for HIGH in signal
(3)
L stands for LOW in signal
(4)
Refer to Figure 36 for Form 2 8080-Series MCU Parallel Interface Timing Characteristics
In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline
processing is internally performed which requires the insertion of a dummy read before the first actual
display data read. This is shown in Figure 8.
Figure 8: Display data read back procedure - insertion of dummy read
WR#
RD#
Databus
N
Write column
address
Solomon Systech
Dummy
read
n
n+1
Read 1st data
Read 2nd data
Jul 2010
P 20/63
n+2
Read 3rd data
Rev 2.3
SSD1325
8.1.3
MCU Serial Interface
The serial interface consists of serial clock SCLK, serial data SDIN, D/C#, CS#. In SPI mode, D0 acts as
SCLK, D1 acts as SDIN. For the unused data pins, D2 should be left open. The pins from D3 to D7, E and
R/W# can be connected to an external ground.
Table 10: Control pins of Serial interface
Function
Write command
Write data
E
Tie LOW
Tie LOW
R/W#
Tie LOW
Tie LOW
CS#
L
L
D/C#
L
H
SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6, ... D0.
D/C# is sampled on every eighth clock and the data byte in the shift register is written to the Graphic
Display Data RAM (GDDRAM) or command register in the same clock.
Under serial mode, only write operations are allowed.
Figure 9: Display data write procedure in SPI mode
CS#
D/C#
SDIN/
SCLK
DB1
DB2
DBn
SCLK(D0)
SDIN(D1)
Solomon Systech
D7
D6
D5
D4
D3
D2
Jul 2010
D1
P 21/63
D0
Rev 2.3
SSD1325
8.2
Segment Drivers/Common Drivers
Segment drivers have 128 current sources to drive OLED panel. The driving current can be adjusted from
0 to 300uA with 7 bits, 128 steps. Common drivers generate voltage scanning pulses. The block diagrams
and waveforms of the segment and common driver are shown as follow.
Figure 10 : Segment and Common Driver Block Diagram
VCC
ISEG
VCOMH
Current
Drive
Non-select
Row
Reset
OLED
Pixel
Selected
Row
VLSS
Segment Driver
VLSS
Common Driver
The commons are scanned sequentially, row by row. If a row is not selected, all the pixels on the row are
in reverse bias by driving those commons to voltage VCOMH as shown in Figure 11.
In the scanned row, the pixels on the row will be turned ON or OFF by sending the corresponding data
signal to the segment pins. If the pixel is turned OFF, the segment current is kept at 0. On the other hand,
the segment drives to ISEG when the pixel is turned ON.
Solomon Systech
Jul 2010
P 22/63
Rev 2.3
SSD1325
Figure 11 : Segment and Common Driver Signal Waveform
One Frame Period
COM0
Non-select Row
VCOMH
VCL
Selected Row
COM1
VCOMH
VCL
COM
Voltage
This row is selected to turn
on
VCOMH
VCL
Time
Segment
Voltage
Waveform for ON
VP
Waveform for OFF
VSL
Time
Solomon Systech
Jul 2010
P 23/63
Rev 2.3
SSD1325
There are three phases to driving an OLED a pixel. In phase 1, the pixel is reset by the segment driver to
VSS in order to discharge the previous data charge stored in the parasitic capacitance along the segment
electrode. The period of phase 1 can be programmed by command B1h A[3:0] from 1 to 15 DCLK. An
OLED panel with larger capacitance requires a longer period for discharging.
In phase 2, pre-charge is performed. The pixel is driven to attain the corresponding voltage level VP from
VSS. The amplitude of VP can be programmed by the command BCh. The period of phase 2 can be
programmed in length from 1 to 15 DCLK by command B1h A[7:4]. If the capacitance value of the pixel
of OLED panel is larger, a longer period is required to charge up the capacitor to reach the desired voltage.
Last phase (phase 3 is current drive stage. The current source in the segment driver delivers constant
current to the pixel. The driver IC employs PWM (Pulse Width Modulation) method to control the gray
scale of each pixel individually. The wider pulse widths in the current drive stage results in brighter
pixels and vice versa. This is shown in the following figure.
Figure 12 : Gray Scale Control by PWM in Segment
Phase2
Phase1
Phase3
Segment
Voltage
VP
VSL
Wider pulse width
drives pixel brighter
OLED
Panel
After finishing phase 3, the driver IC will go back to phase 1 to display the next row image data. This
three-step cycle is run continuously to refresh image display on OLED panel.
The pulse width, which is counted from Phase 2 to Phase 3, is defined by command B8h “Set Gray Scale
Table”. In the table, the gray scale is defined in incremental way, with reference to the length of previous
table entry.
Solomon Systech
Jul 2010
P 24/63
Rev 2.3
SSD1325
8.3
Oscillator Circuit and Display Time Generator
This module is an On-Chip low power RC oscillator circuitry. The operation clock (CLK) can be
generated either from internal oscillator or external source CL pin. This selection is done by CLS pin. If
CLS pin is pulled HIGH, internal oscillator is chosen and CL should be left open. Pulling CLS pin LOW
disables internal oscillator and external clock must be connected to CL pins for proper operation. When
the internal oscillator is selected, its output frequency FOSC can be changed by command B3h, please refer
to Table 18.
Figure 13 : Oscillator Circuit
Internal
Oscillator
Fosc
M
U
X
CL
CLK
DCLK
Divider
Display
Clock
CLS
The display clock (DCLK) for the Display Timing Generator is derived from CLK. The division factor
“D” can be programmed from 1 to 16 by command B3h
DCLK = FOSC / D
The frame frequency of display is determined by the following formula.
FFRM =
Fosc
D × K × No. of Mux
where
• D stands for clock divide ratio. It is set by command B3h A[3:0]. The divide ratio has the range from
1 to 16.
• K is row period. It is configured by command B2h. This value should comply with following
condition.
K ≥ Phase 1 + Phase 2 + Phase 3 + GS15
• Number of multiplex ratio is set by command A8h. The power ON reset value is 4Fh.
• FOSC is the oscillator frequency. It can be changed by command B3h A[7:4]. The higher the register
setting results in faster frequency.
If the frame frequency is set too low, flickering may occur. On the other hand, higher frame frequency
leads to higher power consumption on the whole system.
8.4
Command Decoder and Command Interface
This module determines whether the input data is interpreted as data or command. Data is interpreted
based upon the input of the D/C# pin.
If D/C# pin is HIGH, the input at D7-D0 is written to Graphic Display Data RAM (GDDRAM). If it is
LOW, the input at D7-D0 is interpreted as a Command which will be decoded and be written to the
corresponding command register.
Solomon Systech
Jul 2010
P 25/63
Rev 2.3
SSD1325
8.5
Reset Circuit
When RES# input is LOW, the chip is initialized with the following status:
1. Display is OFF
2. 128 x 80 Display Mode
3. Normal segment and display data column address and row address mapping (SEG0 mapped to
address 00h and COM0 mapped to address 00h)
4. Shift register data clear in serial interface
5. Display start line is set at display RAM address 0
6. Column address counter is set at 0
7. Normal scan direction of the COM outputs
8. Contrast control register is set at 40h
8.6
Current Control and Voltage Control
This block is used to derive the incoming power sources into the different levels of internal use voltage
and current.
• VDD is an external voltage supply.
• VCC is the most positive external voltage supply.
• VCOMH is the Common deselected level. It is internally regulated.
• VSS is the ground path of the analog and panel current.
• IREF is a reference current source for segment current drivers ISEG.
Note that VREF is reference voltage, which is used to derive driving voltage for segments and
commons. The magnitude of IREF is controlled by the value of resistor, which is connected
between IREF pin and Vss as shown in Figure 14. It is recommended to set IREF to 10uA+/- 2uA so
as to achieve ISEG = 300uA at maximum contrast 127.
Figure 14: IREF Current Setting by Resistor Value
SSD1325
IREF (voltage at
this pin =
VCC – 3)
IREF ~ 10uA
R1
VSS
Since the voltage at IREF pin is VCC – 3V, the value of resistor R1 can be found as below.
R1 = (Voltage at IREF – VSS) / IREF = (VCC – 3) / 10uA ≈ 910kΩ for VCC = 12V.
8.7
Graphic Display Data RAM (GDDRAM)
The GDDRAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM
is 128x80x4 bits. For mechanical flexibility, re-mapping on both Segment and Common outputs can be
selected by software. The GDDRAM address maps in
Table 11 to Table 15 show some examples on using the command “Set Re-map” A0h to re-map the
GDDRAM. In the following tables, the lower nibble and higher nibble of D0, D1, D2 … D5117, D5118,
D5119 represent the 128x80 data bytes in the GDDRAM.
Solomon Systech
Jul 2010
P 26/63
Rev 2.3
SSD1325
Table 11 shows the GDDRAM map under the following condition:
• Command “Set Re-map” A0h is set to:
Disable Column Address Re-map
Disable Nibble Re-map
Enable Horizontal Address Increment
Disable COM Re-map
• Display Start Line=00h
• Data byte sequence: D0, D1, D2 … D5119
(A[0]=0)
(A[1]=0)
(A[2]=0)
(A[4]=0)
Table 11 : GDDRAM address map 1
SEG0
SEG1
SEG2
00
SEG3
SEG124
01
SEG125
SEG126
3E
SEG127
3F
SEG Outputs
Column Address
COM0
00
D0[3:0]
D0[7:4]
D1[3:0]
D1[7:4]
D62[3:0]
D62[7:4]
D63[3:0]
D63[7:4]
COM1
01
D64[3:0]
D64[7:4]
D65[3:0]
D65[7:4]
D126[3:0]
D126[7:4]
D127[3:0]
D127[7:4]
|
|
COM78
4E
D4992[3:0] D4992[7:4] D4993[3:0] D4993[7:4]
D5054[3:0] D5054[7:4] D5055[3:0] D5055[7:4]
COM79
4F
D5056[3:0] D5056[7:4] D5057[3:0] D5057[7:4]
D5118[3:0] D5118[7:4] D5119[3:0] D5119[7:4]
COM
Outputs
Row
Address
(HEX)
(HEX)
|
(Display Startline=0)
Nibble re-map A[1]=0
Table 12 shows the GDDRAM map under the following condition:
• Command “Set Re-map” A0h is set to:
Disable Column Address Re-map
(A[0]=0)
Disable Nibble Re-map
(A[1]=0)
Enable Vertical Address Increment (A[2]=1)
Disable COM Re-map
(A[4]=0)
• Display Start Line=00h
• Data byte sequence: D0, D1, D2 … D5119
Table 12 : GDDRAM address map 2
SEG0
SEG1
SEG2
00
SEG3
SEG124
01
SEG125
3E
SEG126
SEG127
3F
SEG Outputs
Column Address
COM0
00
D0[3:0]
D0[7:4]
D80[3:0]
D80[7:4]
D4960[3:0] D4960[7:4] D5040[3:0] D5040[7:4]
COM1
01
D1[3:0]
D1[7:4]
D81[3:0]
D81[7:4]
D4961[3:0] D4961[7:4] D5041[3:0] D5041[7:4]
|
|
COM78
4E
D78[3:0]
D78[7:4]
D158[3:0]
D158[7:4]
D5038[3:0] D5038[7:4] D5118[3:0] D5118[7:4]
COM79
4F
D79[3:0]
D79[7:4]
D159[3:0]
D159[7:4]
D5039[3:0] D5039[7:4] D5119[3:0] D5119[7:4]
COM
Outputs
Row
Address
(HEX)
(HEX)
|
(Display Startline=0)
Nibble re-map A[1]=0
Table 13 shows the GDDRAM map under the following condition:
Solomon Systech
Jul 2010
P 27/63
Rev 2.3
SSD1325
•
•
•
Command “Set Re-map” A0h is set to:
Enable Column Address Re-map
(A[0]=1)
Enable Nibble Re-map
(A[1]=1)
Enable Horizontal Address Increment (A[2]=0)
Disable COM Re-map
(A[4]=0)
Display Start Line=00h
Data byte sequence: D0, D1, D2 … D5119
Table 13 : GDDRAM address map 3
SEG0
SEG1
SEG2
3F
SEG3
SEG124
3E
SEG125
SEG126
01
SEG127
SEG Outputs
00
Column Address
COM0
00
D63[7:4]
D63[3:0]
D62[7:4]
D62[3:0]
D1[7:4]
D1[3:0]
D0[7:4]
D0[3:0]
COM1
01
D127[7:4]
D127[3:0]
D126[7:4]
D126[3:0]
D65[7:4]
D65[3:0]
D64[7:4]
D64[3:0]
|
|
COM78
4E
D5055[7:4] D5055[3:0] D5054[7:4] D5054[3:0]
D4993[7:4] D4993[3:0] D4992[7:4] D4992[3:0]
COM79
4F
D5119[7:4] D5119[3:0] D5118[7:4] D5118[3:0]
D5057[7:4] D5057[3:0] D5056[7:4] D5056[3:0]
COM
Outputs
Row
Address
(HEX)
(HEX)
|
Nibble re-map A[1]=1
(Display Startline=0)
For vertical scrolling of the display, an internal register storing display start line can be set to control the
portion of the RAM data to be mapped to the display.
Table 14 shows the example in which the display start line register is set to 10h with the following
condition:
• Command “Set Re-map” A0h is set to:
Disable Column Address Re-map
(A[0]=0)
Disable Nibble Re-map
(A[1]=0)
Enable Horizontal Address Increment (A[2]=0)
Enable COM Re-map
(A[4]=1)
• Display Start Line=10h (corresponds to COM15)
• Data byte sequence: D0, D1, D2 … D5119
Table 14 : GDDRAM address map 4
SEG0
SEG1
SEG2
00
SEG3
SEG124
01
SEG125
SEG126
SEG127
3E
SEG Outputs
3F
Column Address
COM15
0F
D0[3:0]
D0[7:4]
D1[3:0]
D1[7:4]
D62[3:0]
D62[7:4]
D63[3:0]
D63[7:4]
COM14
0E
D64[3:0]
D64[7:4]
D65[3:0]
D65[7:4]
D126[3:0]
D126[7:4]
D127[3:0]
D127[7:4]
|
|
COM17
11
D4992[3:0] D4992[7:4] D4993[3:0] D4993[7:4]
D5054[3:0] D5054[7:4] D5055[3:0] D5055[7:4]
COM16
10
D5056[3:0] D5056[7:4] D5057[3:0] D5057[7:4]
D5118[3:0] D5118[7:4] D5119[3:0] D5119[7:4]
COM
Outputs
Row
Address
(HEX)
(HEX)
|
(Display Startline=10H)
Nibble re-map A[1]=0
Table 15 shows the GDDRAM map under the following condition:
Solomon Systech
Jul 2010
P 28/63
Rev 2.3
SSD1325
•
Command “Set Re-map” A0h is set to:
Disable Column Address Re-map
(A[0]=0)
Disable Nibble Re-map
(A[1]=0)
Enable Horizontal Address Increment (A[2]=0)
Disable COM Re-map
(A[4]=0)
Display Start Line=00h
Column Start Address=01h
Column End Address=3Eh
Row Start Address=01h
Row End Address=4Eh
Data byte sequence: D0, D1, D2 … D4835
•
•
•
•
•
•
Table 15 : GDDRAM address map 5
SEG0
SEG1
SEG2
00
COM0
00
COM1
01
|
|
COM78
4E
COM79
4F
COM
Outputs
Row
Address
(HEX)
SEG3
SEG124
01
SEG125
SEG126
3E
SEG127
SEG Outputs
3F
Column Address
(HEX)
D0[3:0]
D0[7:4]
D61[3:0]
D61[7:4]
|
D4774[3:0] D4774[7:4]
D4835[3:0] D4835[7:4]
(Display Startline=0)
Nibble re-map A[1]=0
Note
(1]
Please refer to Table 18 for the details of setting command “Set Re-map”A0h.
(2)
The “Display Start Line” is set by the command “Set Display Start Line” A1h and please refer to Table 18 for the
setting details
(3)
The “Column Start/End Address” is set by the command “Set Column Address” 15h and please refer to Table 18
for the setting details
(4)
The “Row Start/End Address” is set by the command “Set Row Address” 75h and please refer to Table
18 for the setting detail
8.8
Gray Scale Decoder
There are 16 gray levels from GS0 to GS15. The gray scale of the display is defined by the pulse width
(PW) of current drive phase, GS0 has no pre-charge (phase 2) and no current drive (phase 3). Each L
value represents an offset to the corresponding gray scale level. See below table and graphical
representation:
Table16 : Gray scale pulse width set table
Solomon Systech
Jul 2010
P 29/63
Rev 2.3
SSD1325
L1
L2
L3
Description
Set GS1 level Pulse Width
Set GS2 level Pulse Width Offset
Set GS3 level Pulse Width Offset
Number of DCLKs
0-7
1-8
1-8
.
.
.
.
.
.
.
.
.
L13
L14
L15
Set GS13 level Pulse Width Offset
Set GS14 level Pulse Width Offset
Set GS15 level Pulse Width Offset
1-8
1-8
1-8
DCLK: Internal Display Clock. It is used for defining phase clock period.
Figure 15 : Gray scale pulse width set diagram
One Row Period
GS0
GS1
GS2
GS3
.
.
.
GS13
GS14
GS15
Phase 1
Phase 2
P1
P2
Phase 3
PW
offset
offset
.
.
.
.
.
.
.
.
.
offset
offset
offset
123………………………….…………………………………………………………K=40 (POR)
K: number of DCLKs
no precharge and current drive
Precharge
Current Drive
Table 17 : Gray scale pulse width default values
RESET
L1=1
L2=1
L3=1
L4=1
L5=1
L6=1
L7=1
L8=1
L9=1
L10=1
L11=1
L12=1
L13=1
L14=1
L15=1
Result
GS1 level Pulse width=1
GS2 level Pulse width=3
GS3 level Pulse width=5
GS4 level Pulse width=7
GS5 level Pulse width=9
GS6 level Pulse width=11
GS7 level Pulse width=13
GS8 level Pulse width=15
GS9 level Pulse width=17
GS10 level Pulse width=19
GS11 level Pulse width=21
GS12 level Pulse width=23
GS13 level Pulse width=25
GS14 level Pulse width=27
GS15 level Pulse width=29
Solomon Systech
Jul 2010
P 30/63
Rev 2.3
SSD1325
8.9 Power ON and OFF sequence
The following figures illustrate the recommended power ON and power OFF sequence of SSD1325.
Power ON sequence:
1. Power ON VDD.
2. After VDD become stable, set RES# pin LOW (logic LOW) for at least 3us (t1) (4) and then HIGH
(logic HIGH).
3. After set RES# pin LOW (logic LOW), wait for at least 3us (t2). Then Power ON VCC.(1)
4. After VCC become stable, send command AFh for display ON. SEG/COM will be ON after 100ms
(tAF).
Figure 16 : The Power ON sequence
ON VDD RES# ON VCC
Send AFh command for Display ON
VDD
GND
t1
RES#
GND
t2
VCC
GND
tAF
ON
SEG/COM
OFF
Power OFF sequence:
1. Send command AEh for display OFF.
2. Wait until panel discharges completely.
3. Power OFF VCC. (1), (2) ,(3)
4. Wait for tOFF. Power OFF VDD. (where Minimum tOFF=0ms (5) Typical tOFF=100ms)
Figure 17 : The Power OFF sequence
Send command AEh for display OFF
OFF VCC
OFF VDD
VCC
GND
tOFF
VDD
GND
Note:
(1)
Since an ESD protection circuit is connected between VDD and VCC, VCC becomes lower than VDD
whenever VDD is ON and VCC is OFF as shown in the dotted line of VCC in Figure 16 and Figure 17.
(2)
VCC should be kept float (disable) when it is OFF.
(3)
Power Pins (VDD , VCC) can never be pulled to ground under any circumstance.
The register values are reset after t1.
(5)
VDD should not be Power OFF before VCC Power OFF.
(4)
Solomon Systech
Jul 2010
P 31/63
Rev 2.3
SSD1325
9
COMMAND TABLE
Table 18: Command Table
(D/C# = 0, R/W# (WR#) = 0, E (RD#) = 1) unless specific setting is stated
Fundamental Command Table
D/C Hex D7 D6 D5 D4 D3 D2 D1 D0
Command
Description
0
15
0 0 0 1 0 1 0 1 Set Column Address Second command A[5:0] sets the column start address
from 0-63, POR = 00h
0 A[5:0] * * A5 A4 A3 A2 A1 A0
0
B[5:0] *
0
0
75
0 1 1 1 0 1 0 1 Set Row address
A[6:0] * A6 A5 A4 A3 A2 A1 A0
Second command A[6:0]sets the row start address from
0-79, RESET = 00h
0
B[6:0] * B6 B5 B4 B3 B2 B1 B0
Third command B[6:0] sets the row end address from 079, RESET = 4Fh
0
0
81
1 0 0 0 0 0 0 1 Set Contrast Current Double byte command to select 1 out of 128 contrast
steps. Contrast increases as level increase
A[6:0] * A6 A5 A4 A3 A2 A1 A0
The level is set to 40h after RESET
0
84~86
0
0
A0
1 0 1 0 0 0 0 0 Set Re-map
A[6:0] * A6 A5 A4 A3 A2 A1 A0
1
* B5 B4 B3 B2 B1 B0
0
0
0
0
1
X1 X0 Set Current Range
Third command B[5:0] sets the column end address
from 0-63, RESET = 3Fh
84h = Quarter Current Range (RESET)
85h = Half Current Range
86h = Full Current Range
A[0]=0, Disable Column Address Re-map (RESET)
A[0]=1, Enable Column Address Re-map
A[1]=0, Disable Nibble Re-map (RESET)
A[1]=1, Enable Nibble Re-map
A[2]=0, Horizontal Address Increment (RESET)
A[2]=1, Vertical Address Increment
A[4]=0, Disable COM Re-map disable (RESET)
A[4]=1, Enable COM Re-map
A[5]=0, Reserved (RESET)
A[5]=1, Reserved
A[6]=0, Disable COM Split Odd Even (RESET)
A[6]=1, Enable COM Split Odd Even
0
0
A1
1 0 1 0 0 0 0 1 Set Display Start Line Set display RAM display start line register from 0-79
Display start line register is reset to 00h after RESET
A[6:0] * A6 A5 A4 A3 A2 A1 A0
0
0
A2
1 0 1 0 0 0 1 0 Set Display Offset
A[6:0] * A6 A5 A4 A3 A2 A1 A0
Solomon Systech
Set vertical scroll by COM from 0-79
The value is reset to 00H after RESET
Jul 2010
P 32/63
Rev 2.3
SSD1325
Fundamental Command Table
D/C Hex D7 D6 D5 D4 D3 D2 D1 D0
Command
0 A4~A7 1 0 1 0 0 X2 X1 X0 Set Display Mode
Description
A4h = Normal Display (RESET)
A5h = Entire Display ON,
all pixels turns ON in GS level 15
A6h = Entire Display OFF, all pixels turns OFF
A7h = Inverse Display
0
0
A8
1 0 1 0 1 0 0 0 Set Multiplex Ratio
A[6:0] * A6 A5 A4 A3 A2 A1 A0
The next command determines multiplex ratio N from
16MUX-80MUX,
A[6:0] = 15 represents 16MUX
A[6:0] = 16 represents 17MUX
:
A[6:0] = 78 represents 79MUX
A[6:0] = 79 represents 80MUX
0
0
AD
1
A[1:0] *
0
*
1
*
0
*
1
*
1
*
0 1 Set Master
1 A0 Configuration
A[0] = 0, Select external VCC supply
A[0] = 1, Reserved (RESET)
Note
(1)
Bit A[0] must be set to 0b after RESET.
(2)
The setting will be activated after issuing Set Display
ON command (AFh)
0
AE
1
0
1
0
1
1
1
0 Set Display OFF
AEh = Display OFF (Sleep mode) (RESET)
0
AF
1
0
1
0
1
1
1
1 Set Display ON
AFh = Display ON
0
B0
1
0
1
1
0
0
0
1
*
1 0 0 0 1 Set Phase Length
* A 3 A2 A1 A0
0
A[5:0] *
0 Set Pre-charge
A[5:0] = 08h (RESET)
Compensation Enable
* A5 A4 A3 A2 A1 A0
A[5:0] = 28h, Enable pre-charge compensation
0
0
B1
1
A[3:0] *
0
*
0
A[7:4] A7 A6 A5 A4 *
*
*
*
A[3:0] = P1, phase 1 period of 1-15 DCLKs,
RESET = 3DCLKS = 3h
A[7:4] = P2, phase 2 period of 1-15 DCLKs,
RESET = 5DCLKS = 5h
Note
(1)
0 DCLK is invalid in phase 1 & phase 2
0
0
B2
1 0 1 1 0 0 1 0 Set Row Period
The next command sets the number of DCLKs, K,
A[7:0] A7 A6 A5 A4 A3 A2 A1 A0 (set frame frequency) per row between 2-158 DCLKS
RESET = 37DCLKS = 25h
The K value should be set as
K = P1+P2+GS15 pulse width
(RESET: 3+5+29DCLKS)
Solomon Systech
Jul 2010
P 33/63
Rev 2.3
SSD1325
Fundamental Command Table
D/C Hex D7 D6 D5 D4 D3
0
B3
1 0 1 1 0
0 A[3:0] * * * * A3
0 A[7:4] A7 A6 A5 A4 *
D2
0
A2
*
D1
1
A1
*
D0
Command
Description
The lower nibble (A[3:0]) of the next command defines
1 Set Display Clock
the divide ratio (D) of display clock (DCLK)
A0 Divide Ratio /
Divide ratio (D)=A[3:0]+1
Oscillator
Frequency
*
(A[3:0]RESET is 0001b, i.e. divide ratio (D) = 2)
The higher nibble (A[7:4] ) of the next command sets
the Oscillator Frequency
Oscillator Frequency increases with the value of A[7:4]
and vice versa
Range: 0000b~1111b
RESET= 0100b represents 630KHz,
typical step value: 5% of previous value
0
B4
1
0
1
1
0
0
A[2:0] *
*
*
*
* A2 A1 A0 Compensation Level A[2:0] = 3h, Recommended level
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
B8
A[2:0]
B[2:0]
B[6:4]
C[2:0]
C[6:4]
D[2:0]
D[6:4]
E[2:0]
E[6:4]
F[2:0]
F[6:4]
G[2:0]
G[6:4]
H[2:0]
H[6:4]
BC
A[7:0]
0
*
*
B6
*
C6
*
D6
*
E6
*
F6
*
G6
*
H6
0
A6
1
*
*
B5
*
C5
*
D5
*
E5
*
F5
*
G5
*
H5
1
A5
1
*
*
B4
*
C4
*
D4
*
E4
*
F4
*
G4
*
H4
1
A4
0
0
BE
1
A[4 :0] *
1
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
1
A7
0
*
Solomon Systech
1
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
1
A3
1
0
A2
B2
*
C2
*
D2
*
E2
*
F2
*
G2
*
H2
*
1
A2
0
0 Set Pre-charge
A[2:0] = 0 (RESET)
0
A1
B1
*
C1
*
D1
*
E1
*
F1
*
G1
*
H1
*
0
A1
0 Set Gray Scale Table The next eight bytes of command set the gray scale level
of GS1-15 as below:
A0
A[2:0] = Gray scale level of GS1, RESET=1
B0
B[2:0] = Gray scale level of GS2, RESET=1
*
B[6:4] = Gray scale level of GS3, RESET=1
C0
C[2:0] = Gray scale level of GS4 RESET=1
*
C[6:4] = Gray scale level of GS5, RESET=1
D0
D[2:0] = Gray scale level of GS6, RESET=1
*
D[6:4] = Gray scale level of GS7, RESET=1
E[2:0] = Gray scale level of GS8, RESET=1
E0
E[6:4] = Gray scale level of GS9, RESET=1
*
F[2:0] = Gray scale level of GS10, RESET=1
F0
F[6:4] = Gray scale level of GS11, RESET=1
*
G[2:0] = Gray scale level of GS12, RESET=1
G0
G[6:4] = Gray scale level of GS13, RESET=1
*
H[2:0] = Gray scale level of GS14, RESET=1
H[6:4] = Gray scale level of GS15, RESET=1
H0
*
0 Set Precharge Voltage Second command A[7:0] sets the precharge voltage
level,
A0
A[7:0] 1xxxxxxx connects to VCOMH
001xxxxx 1.0 * VREF
00000000 0.51* VREF
00000001 0.52* VREF
.....
(RESET)
00011000 0.75* VREF
.....
00011111 0.84* VREF
1 1 1 1 1 0 Set VCOMH Voltage
Second command A[4:0] sets the VCOMH voltage level ,
A[4:0] 00000 0.51*VREF
0 A4 A3 A2 A1 A0
00001 0.52* VREF
.....
10001 0.68* VREF (RESET)
......
11101 0.81* VREF
11110 0.82* VREF
11111 0.84* VREF
Jul 2010
P 34/63
Rev 2.3
SSD1325
Fundamental Command Table
D/C Hex D7 D6 D5 D4 D3 D2 D1 D0
Command
0
BF
1 0 1 1 1 1 1 1 Set Segment Low
0 A[3:0] * * * * A3 A2 A1 A0 Voltage (VSL)
0
E3
1
1
1
0
0
0
1
1 NOP
Description
Second command A[3:0] sets the VSL voltage as
follow:
A[3:0] = 0010 kept VSL pin NC
A[3:0] = 1110 (RESET) connect a capacitor between
VSL pin and VSS
Command for No Operation
Table 19: Graphic acceleration command
Set (GAC) (D/C# = 0, R/W#(WR#)= 0, E(RD#) = 1) unless specific setting is stated
Graphic acceleration command
D/C#
0
Hex
23
0
A[4:0]
D7 D6 D5 D4 D3 D2 D2 D0
0 0 1 0 0 0 1 1
*
*
*
A4
*
*
Command
A1 A0
Graphic
Acceleration
Command
Options
0
0
0
0
0
0
24
0
0
1
0
0
1
0
0
A[5:0] * *
B[6:0] * B6
C[5:0] * *
D[6:0] * D6
E[7:0] E7 E6
A5
B5
C5
D5
E5
A4
B4
C4
D4
E4
A3
B3
C3
D3
E3
A2
B2
C2
D2
E2
A1
B1
C1
D1
E1
A0
B0
C0
D0
E0
Description
A[0] = 0b: Disable Fill rectangle
A[0] = 1b: Enable Fill rectangle (RESET)
A[1] = 0b: Disable x-wrap(RESET)
A[1] = 1b: Enable wrap around in x-direction during
copying and scrolling
A[4] = 0b: Disable reverse copy (RESET)
A[4] = 1b: Enable reverse during copying.
A[5:0]: Column Address of Start
B[6:0]: Row Address of Start
C[5:0]: Column Address of End
D[6:0]: Row Address of End
E[7:0]: Set Gray scale pattern
E[7:0] This byte is divided into two nibbles. The
most significant 4 bits represent the gray scale
Draw Rectangle
level of the left pixel of each group. The least
significant 4 bits represent the gray scale level of
the right pixel of each group. Please refer to
Figure 31 for the gray scale pattern setting
examples.
Note:
(1)
0 ≤ A < C ≤ 63
(2)
0 ≤ B < D ≤ 79
0
0
0
0
0
0
0
25
A[5:0]
B[6:0]
C[5:0]
D[6:0]
E[5:0]
F[6:0]
0
*
*
*
*
*
*
0
*
B6
*
D6
*
F6
Solomon Systech
1
A5
B5
C5
D5
E5
F5
0
A4
B4
C4
D4
E4
F4
0
A3
B3
C3
D3
E3
F3
1
A2
B2
C2
D2
E2
F2
0
A1
B1
C1
D1
E1
F1
1
A0
B0
C0
D0
E0
F0
Copy
A[5:0]: Column Address of Start
B[6:0]: Row Address of Start
C[5:0]: Column Address of End
D[6:0]: Row Address of End
Jul 2010
P 35/63
Rev 2.3
SSD1325
Graphic acceleration command
D/C#
Hex
D7 D6 D5 D4 D3 D2 D2 D0
Command
Description
E[5:0]: Column Address of New Start
F[6:0]: Row Address of New Start
Note:
(1)
0 ≤ A < C ≤ 63
(2)
0 ≤ B < D ≤ 79
(3)
0 ≤ E ≤ 63
(4)
0 ≤ F ≤ 79
0
26
0
0
1
0
0
1
1
0
0
0
A[5:0]
B[6:0]
C[1:0]
*
*
*
* A5 A4 A3 A2 A1 A0
B6 B5 B4 B3 B2 B1 B0
* * * * * C1 C0
A[5:0]: 1~63 horizontal offset in number of 2~127 column
0
no horizontal scroll
0
B[6:0]: 2~80 number of rows to be H-scrolled
C[1:0]: scrolling time interval
00b 12 frames
Horizontal Scroll
01b 64 frames
10b 128 frames
11b 256 frames
Note:
(1)
Scrolling operates during display ON.
(2)
The parameters should not be changed after scrolling is
activated
This command deactivates the scrolling action.
0
2E
0
0
1
0
1
1
1
0
Stop Moving
Note
After sending 2Eh command to deactivate the scrolling
action, the ram data needs to be rewritten.
(1)
This command activates the scrolling function according to
the setting done by Horizontal Scroll command 26h.
0
2F
0
0
1
0
1
1
1
1
Start Moving
Note
The “wrap around in x-direction” function must be
enabled before scrolling start. i.e. Bit A{1} of command
23h must be set to 1b before issuing 2F command.
(1)
Table 20: Read Command Table
D7D6D5D4D3D2D1
D0
(D/C#=0, R/W# (WR#)=1, E (RD#)=1 for 6800 or E (RD#)=0 for 8080)
D7 = 0:reserved
D7 = 1:reserved
D6 = 0:indicates the display is ON
D6 = 1:indicated the display is OFF
Status Register Read
D5 = 0:reserved
D5 = 1:reserved
D4 = 0:reserved
D4 = 1:reserved
Note
(1)
Patterns other than that given in Command Table are prohibited to enter to the chip as a command;
Otherwise, unexpected result will occur
Solomon Systech
Jul 2010
P 36/63
Rev 2.3
SSD1325
9.1
Data Read / Write
To read data from the GDDRAM, input HIGH to R/W# (WR#) pin and D/C# pin for 6800-series parallel
mode, LOW to E (RD#) pin and HIGH to D/C# pin for 8080-series parallel mode.
In horizontal address increment mode, GDDRAM column address pointer will be increased by one
automatically after each data read. In vertical address increment mode, GDDRAM row address pointer
will be increased by one automatically after each data read.
Also, a dummy read is required before the first data read. See Figure 5 and Figure 8 in Functional
Description.
To write data to the GDDRAM, input LOW to R/W#(WR#) pin and HIGH to D/C# pin for 6800-series
parallel mode and 8080-series parallel mode. For serial interface mode, it is always in write mode. In
horizontal address increment mode, GDDRAM column address pointer will be increased by one
automatically after each data write. In vertical address increment mode, GDDRAM row address pointer
will be increased by one automatically after each data write.
It should be noted that, in horizontal address increment mode, the row address pointer would be increased
by one automatically if the column address pointer wraps around. In vertical address increment mode, the
column address pointer will be increased by one automatically if the row address pointer wraps around.
Table 21: Address Increment Table (Automatic)
Solomon Systech
D/C#
R/W# (WR#)
Comment
Address Increment
0
0
1
1
0
1
0
1
Write Command
Read Status
Write Data
Read Data
No
No
Yes
Yes
Jul 2010
P 37/63
Rev 2.3
SSD1325
10 COMMAND DESCRIPTIONS
10.1 Fundamental command description
10.1.1 Set Column Address (15h)
This triple byte command specifies column start address and end address of the display data RAM. This
command also sets the column address pointer to column start address. This pointer is used to define the
current read/write column address in graphic display data RAM. If horizontal address increment mode is
enabled by command A0h, after finishing read/write one column data, it is incremented automatically to
the next column address. Whenever the column address pointer finishes accessing the end column
address, it is reset back to start column address and the row address is incremented to the next row.
10.1.2 Set Row Address (75h)
This triple byte command specifies row start address and end address of the display data RAM. This
command also sets the row address pointer to row start address. This pointer is used to define the current
read/write row address in graphic display data RAM. If vertical address increment mode is enabled by
command A0h, after finishing read/write one row data, it is incremented automatically to the next row
address. Whenever the row address pointer finishes accessing the end row address, it is reset back to start
row address.
The diagram below shows the way of column and row address pointer movement through the example:
column start address is set to 2 and column end address is set to 61, row start address is set to 1 and row
end address is set to 78; horizontal address increment mode is enabled by command A0h. In this case, the
graphic display data RAM column accessible range is from column 2 to column 61 and from row 1 to row
78 only. In addition, the column address pointer is set to 2 and row address pointer is set to 1. After
finishing read/write one pixel of data, the column address is increased automatically by 1 to access the
next RAM location for next read/write operation (solid line in Figure 18). Whenever the column address
pointer finishes accessing the end column 61, it is reset back to column 2 and row address is automatically
increased by 1 (solid line in Figure 18). While the end row 78 and end column 61 RAM location is
accessed, the row address is reset back to 1 and the column address is reset back to 2 (dotted line in Figure
18).
Figure 18 : Example of Column and Row Address Pointer Movement
Row 0
Row 1
Row 2
:
:
:
Row 77
Row 78
Row 79
Solomon Systech
SEG127
SEG126
63
SEG125
SEG124
62
SEG123
61
SEG122
:
:
…….
:
:
…..
SEG5
SEG4
2
SEG3
SEG2
1
SEG1
SEG0
0
Column address
SEG outputs
:
:
:
Jul 2010
P 38/63
Rev 2.3
SSD1325
10.1.3 Set Contrast Current (81h)
This command is to set Contrast Setting of the display. The chip has 128 contrast steps from 00H to 7FH.
The segment output current increases with the increase of contrast step. See Figure 19 below.
Figure 19 : Segment current vs Contrast setting
10.1.4 Set Current Range (84h, 85h, 87h)
This command is used to select quarter range or half range or full range current mode. With the same
contrast level, quarter range mode will give a quarter of the current output of the full range mode. Similar
to half range current mode, it will give a half of the current output of the full range mode. See Figure 19.
In RESET, quarter range current mode is default.
10.1.5 Set Re-map (A0h)
This double command has multiple configurations and each bit setting is described as follows:
•
Column Address Remapping (A[0])
This bit is made for increase the flexibility layout of segment signals in OLED module with
segment arranged from left to right (when A[0] is set to 0) or from right to left (when A[0] is set
to 1).
•
Nibble Remapping (A[1])
When A[1] is set to 1, the two nibbles of the data bus for RAM access are re-mapped, such that
(D7, D6, D5, D4, D3, D2, D1, D0) acts like (D3, D2, D1, D0, D7, D6, D5, D4).
If this feature works together with Column Address Re-map, it would produce an effect of
flipping the outputs from SEG0~127 to SEG127~SEG0 as show in Table 13.
•
Address increment mode (A[2])
When A[2] is set to 0, the driver is set as horizontal address increment mode. After the display
RAM is read / written, the column address pointer is increased automatically by 1. If the column
address pointer reaches column end address, the column address pointer is reset to column start
address and row address pointer is increased by 1. The sequence of movement of the row and
column address point for horizontal address increment mode is shown in Figure 20
Solomon Systech
Jul 2010
P 39/63
Rev 2.3
SSD1325
Figure 20 : Address Pointer Movement of Horizontal Address Increment Mode
Row 0
Row 1
:
Row 78
Row 79
0
1
…..
62
63
:
:
:
:
:
Column address
When A[2] is set to 1, the driver is set to vertical address increment mode. After the display
RAM is read / written, the row address pointer is increased automatically by 1. If the row address
pointer reaches the row end address, the row address pointer is reset to row start address and
column address pointer is increased by 1. The sequence of movement of the row and column
address point for vertical address increment mode is shown in Figure 21.
Figure 21: Address Pointer Movement of Vertical Address Increment Mode
0
Row 0
Row 1
:
Row 126
Row 127
•
1
…..
…..
…..
:
…..
…..
62
63
Column address
COM Remapping (A[4])
This bit defines the scanning direction of the common for flexible layout of common signals in
OLED module either from up to down (when A[4] is set to 0) or from bottom to up (when A[4] is
set to 1). Table 14 shows an example of the using the COM Remapping to perform vertical
scrolling.
Solomon Systech
Jul 2010
P 40/63
Rev 2.3
SSD1325
•
Splitting of Odd / Even COM Signals (A[6])
This bit is made to match the COM layout connection on the panel.
When A[6] is set to 0, no splitting odd / even of the COM signal is performed, output pin
assignment sequence is shown as below (for 80MUX ratio):
Figure 22: Output pin assignment when command A0h bit A[6]=0.
ROW79
ROW40
128 x80
ROW39
ROW0
COM40
COM0
COM39
COM79
SSD1325Z2
Output Pin Connection
SSD1325Z2
Panel
COM0
ROW0
COM1
ROW1
COM2
ROW2
COM3
ROW3
:
:
COM39
ROW39
COM40
ROW40
:
:
COM77
ROW77
COM78
ROW78
COM79
ROW79
Pad 1,2,3,…
Gold Bumps face up
When A[6] is set to 1, splitting odd / even of the COM signal is performed, output pin assignment
sequence is shown as below (for 128MUX ratio):
Figure 23 : Output pin assignment when command A0h bit A[6]=1.
ROW79
ROW77
ROW75
ROW78
ROW76
ROW74
......
......
128 x128
ROW5
ROW4
ROW3
ROW2
ROW0
ROW1
COM0
COM1
COM2
...
COM77
COM78
COM79
...
COM40
COM41
COM42
COM37
COM38
COM39
Output Pin Connection
SSD1325Z2
Panel
COM0
ROW0 (Even)
COM1
ROW2
COM2
ROW4
:
:
COM37
ROW74
COM38
ROW76
COM39
ROW78
COM40
ROW1 (Odd)
COM41
ROW3
COM42
ROW5
:
:
COM77
ROW75
COM78
ROW77
COM79
ROW79
SSD1325Z2
Pad 1,2,3,…
Gold Bumps face up
Solomon Systech
Jul 2010
P 41/63
Rev 2.3
SSD1325
10.1.6 Set Display Start Line (A1h)
This double byte command is to set Display Start Line register for determining the starting address of
display RAM to be displayed by selecting a value from 0 to 79. Figure 24 shows an example using this
command of this command when MUX ratio= 80 and MUX ratio= 54 and Display Start Line = 28. In
there, “ROW” means the graphic display data RAM row.
Figure 24: Example of Set Display Start Line with no Remapping
MUX ratio (A8h) = 80
MUX ratio (A8h) = 80
MUX ratio (A8h) = 54
MUX ratio (A8h) = 54
COM Pin Display Start Line (A1h) Display Start Line (A1h) Display Start Line (A1h) Display Start Line (A1h)
=0
= 28
=0
= 28
COM0 ROW0
ROW28
ROW0
ROW28
COM1 ROW1
ROW29
ROW1
ROW29
COM2 ROW2
ROW30
ROW2
ROW30
COM3 ROW3
ROW31
ROW3
ROW31
:
:
:
:
:
:
:
:
:
:
COM23 ROW23
ROW51
ROW23
ROW51
COM24 ROW24
ROW52
ROW24
ROW52
COM25 ROW25
ROW53
ROW25
ROW53
COM26 ROW26
ROW54
ROW26
ROW54
:
:
:
:
:
:
:
:
:
:
COM49 ROW50
ROW77
ROW50
ROW77
COM51 ROW51
ROW78
ROW51
ROW78
COM52 ROW52
ROW79
ROW52
ROW79
COM53 ROW53
ROW0
ROW53
ROW0
COM54 ROW54
ROW1
COM55 ROW55
ROW2
:
:
:
:
:
:
:
:
:
:
COM76 ROW76
ROW24
COM77 ROW77
ROW25
COM78 ROW78
ROW26
COM79 ROW79
ROW27
Display
Example
Solomon Systech
Jul 2010
P 42/63
Rev 2.3
SSD1325
10.1.7 Set Display Offset (A2h)
This double byte command specifies the mapping of display start line (it is assumed that COM0 is the
display start line, display start line register equals to 0) to one of COM0~COM79. Figure 25 shows an
example using this command when MUX ratio= 80 and MUX ratio= 54 and Display Offset = 28. In there,
“Row” means the graphic display data RAM row.
Figure 25: Example of Set Display Offset with no Remapping
MUX ratio (A8h) = 80
COM Pin Display Offset (A2h)=0
COM0 ROW0
COM1 ROW1
COM2 ROW2
COM3 ROW3
:
:
:
:
COM23 ROW23
COM24 ROW24
COM25 ROW25
COM26 ROW26
:
:
:
:
COM49 ROW50
COM51 ROW51
COM52 ROW52
COM53 ROW53
COM54 ROW54
COM55 ROW55
:
:
:
:
COM76 ROW76
COM77 ROW77
COM78 ROW78
COM79 ROW79
MUX ratio (A8h) = 80
Display Offset (A2h)=18
ROW28
ROW29
ROW30
ROW31
:
:
ROW51
ROW52
ROW53
ROW54
:
:
ROW77
ROW78
ROW79
ROW0
ROW1
ROW2
:
:
ROW24
ROW25
ROW26
ROW27
MUX ratio (A8h) = 64
Display Offset (A2h)=0
ROW0
ROW1
ROW2
ROW3
:
:
ROW23
ROW24
ROW25
ROW26
:
:
ROW50
ROW51
ROW52
ROW53
:
:
-
MUX ratio (A8h) = 64
Display Offset (A2h)=18
ROW28
ROW29
ROW30
ROW31
:
:
ROW51
ROW52
ROW53
:
:
ROW0
ROW1
ROW2
:
:
ROW24
ROW25
ROW26
ROW27
Display
Example
Solomon Systech
Jul 2010
P 43/63
Rev 2.3
SSD1325
10.1.8 Set Display Mode (A4h ~ A7h)
These are single byte commands (A4h ~ A7h) and are used to set display status to Normal Display, Entire
Display ON, Entire Display OFF or Inverse Display, respectively.
•
Normal Display (A4h)
Reset the “Entire Display ON, Entire Display OFF or Inverse Display” effects and turn the data to
ON at the corresponding gray level. Figure 26 shows an example of Normal Display.
Figure 26: Example of Normal Display
Memory
•
Display
Set Entire Display ON (A5h)
Force the entire display to be at gray scale level GS15, regardless of the contents of the display
data RAM, as shown on Figure 27.
Figure 27: Example of Entire Display ON
Memory
•
Display
Set Entire Display OFF (A6h)
Force the entire display to be at gray scale level GS0, regardless of the contents of the display
data RAM, as shown on Figure 28.
Figure 28 : Example of Entire Display OFF
Memory
•
Display
Inverse Display (A7h)
The gray scale level of display data are swapped such that “GS0” <-> “GS15”, “GS1” <->
“GS14”, etc. Figure 29 shows an example of inverse display.
Figure 29: Example of Inverse Display
Memory
Solomon Systech
Display
Jul 2010
P 44/63
Rev 2.3
SSD1325
10.1.9 Set Multiplex Ratio (A8h)
This double byte command sets multiplex ratio (MUX ratio) from 16MUX to 80MUX. In RESET,
multiplex ratio is 80MUX. Please refer to Figure 24 and Figure 25 for the example of setting different
MUX ratio.
10.1.10 Set Master Configuration (ADh)
This command selects the external VCC power supply. External VCC power should be connected to the VCC
pin. A[0] bit must be set to 0b after RESET.
This command will be activated after issuing Set Display ON command (AFh)
10.1.11 Set Display ON/OFF (AEh / AFh)
These single byte commands are used to turn the matrix display on the OLED panel display either ON or
OFF. For AEh, the display is OFF, the segment and common output are in high impedance state and
circuits will be turned OFF. When the sleep mode is set to OFF (AFh), the display is ON.
10.1.12 Set VCOMH Voltage (BEh)
This double byte command sets the high voltage level of common pins, VCOMH . The level of VCOMH is
programmed with reference to VCC . Please refer to Table 18 for detail information and breakdown levels
of each step.
Solomon Systech
Jul 2010
P 45/63
Rev 2.3
SSD1325
10.1.13 Set Precharge Voltage (BCh)
This double byte command is used to set the pre-charge voltage (phase 2) level. Please refer to Table 18
for detail information and breakdown levels of each step.
10.1.14 Set Phase Length (B1h)
This is a double byte command. In the second byte of this double command, lower nibble and higher
nibble is defined separately. The lower nibble adjusts the phase length of Reset (phase 1). The higher
nibble is used to select the phase length of the pre-charge phase (phase 2). The phase length is ranged
from 1 to 16 DCLK's. RESET for A[3:0] is set to 3h while reset for A[7:4] is set to 5h. Please refer to
Table 18 for detail breakdown levels of each step.
10.1.15 Set Row Period (B2h)
This command is used to set the row period. It is defined by multiplying the internal display clock period
by the number of internal display clocks per row (valued from 14h to 7Fh), and RESET is 25h. The larger
the value, the more precise of each gray scale level can be tuned. See “Gray Scale Table” command (B8h)
for details. Also, it is used to define the frame frequency altogether with the use of “Display Clock Divide
Ratio” command (B3h). Row period equals to the sum of phase 1 and phase 2 periods and the pulse width
of GS15. See equation in Table 18.
10.1.16 Set Display Clock Divide Ratio (B3h)
This double command is used to set the frequency of the internal display clocks, DCLK's. It is defined by
dividing the oscillator frequency by the divide ratio (valued from 1 to 16). Frame frequency is determined
by divide ratio, number of display clocks per row, MUX ratio and oscillator frequency. The lower nibble
of the second byte is used to select the oscillator frequency. Please refer to Table 18 for detail breakdown
levels of each step.
10.1.17 Set Gray Scale Table
This command is used to set each individual gray scale level for the display. Except gray scale level GS0
that has no pre-charge and current drive, the pulse width of each gray scale level is programmed with unit
of DCLK. The longer the length of the pulse width, the brighter the OLED pixel when it is turned ON.
The setting of gray scale table entry can perform gamma correction on OLED panel display. Normally, it
is desired that the brightness response of the panel is linearly proportional to the image data value in
display data RAM. However, the OLED panel is somehow responded in non-linear way. Appropriate
gray scale table setting like example below can compensate this effect.
Figure 30 : Example of gamma correction by gray scale table setting
Pulse
Width
Brightness
Gray scale
table setting
Gray Scale
Brightness
Panel
response
Result in linear
response
Gray Scale
Pulse width
As shown in Table16 and
Table 17, GS1 is defined with pulse width equals to the first offset value, L1, select from 0-7 internal
display clocks. GS2 is defined with pulse width equals to GS1 plus the next offset value, L2, select from18 internal display clocks. Similarly, the next GS level is defined with pulse width equals to its lower one
GS level plus the next offset value, select from 1-8 internal display clocks. In normal operation, GS15
should take the full current drive period as its pulse width. Therefore, the row period should be set as the
Solomon Systech
Jul 2010
P 46/63
Rev 2.3
SSD1325
sum of phase 1 period, phase 2 periods, and the pulse width of GS15 with the use of “Row period”
command.
10.1.18 NOP (E3h)
This is a no operation command.
10.1.19 Status register Read
This command is issued by setting D/C# LOW during a data read (refer to Figure 34 to Figure 36 parallel
interface waveform). It allows the MCU to monitor the internal status of the chip.
Solomon Systech
Jul 2010
P 47/63
Rev 2.3
SSD1325
10.2 Graphic Acceleration Command Set Description
10.2.1 Graphic Acceleration Command Options (23h)
This command has two functions.
• Enable / Disable fill (A[0])
0 = Disable filling of rectangle in draw rectangle command.
1 = Enable filling of rectangle in draw rectangle command. (RESET)
•
Enable / Disable x-warp (A[1])
0 = Disable wrap around in x-direction during copying and scrolling
1 = Enable wrap around in x-direction during copying and scrolling (RESET)
•
Enable / Disable reverse copy (A[4])
0 = Disable reverse copy (RESET)
1 = During copy command, the new image colors are swapped such that “GS0” <-> “GS15”,
“GS1” <-> “GS14”, ….
10.2.2 Draw Rectangle (24h)
Specify a starting point (Row 1, Column 1) and an ending point (Row 2, Column 2) as well as giving the
desire gray scale pattern, a rectangle will then be drawn.
Figure 31 : Example of draw rectangle command
Row 1,
Column 1
Row 1,
Column 1
Gray scale
pattern =BBh
Gray scale pattern
=A0h
Row 2,
Column 2
Row 2,
Column 2
The following example illustrates the rectangle drawing command sequence.
1. Enter the “draw rectangle mode” by execute the command 24h
2. Set the starting column coordinates, Column 1. e.g., 01h.
3. Set the starting row coordinates, Row 1. e.g., 01h.
4. Set the finishing column coordinates, Column 9. e.g., 09h
5. Set the finishing row coordinates, Row 5. e.g., 05h
6. Set the gray scale pattern:
This byte is divided into two nibbles. The most significant 4 bits represent the gray scale level
of the left pixel of each group. The least significant 4 bits represent the gray scale level of the
right pixel of each group. Please refer to Figure 31 for the gray scale pattern setting examples.
Solomon Systech
Jul 2010
P 48/63
Rev 2.3
SSD1325
10.2.3 Copy (25h)
Copy the rectangular region defined by the starting point (Row 1, Column 1) and the ending point (Row 2,
Column 2) to location (Row 3, Column 3). If the new coordinates are smaller than the ending points, the
new image will overlap the original one.
The following example illustrates the copy procedure.
1. Enter the “copy mode” by execute the command 25h
2. Set the starting column coordinates, Column 1. E.g., 00h.
3. Set the starting row coordinates, Row 1. E.g., 00h.
4. Set the finishing column coordinates, Column 2. E.g., 05h
5. Set the finishing row coordinates, Row 2. E.g., 05h
6. Set the new column coordinates, Column 3. E.g., 03h
7. Set the new row coordinates, Row 3. E.g., 03h
Figure 32: Example of copy command
Row 1,
Column 1
Original
Image
Row 3,
Column 3
New Copied
Image
Row 3 + Row 2,
Column 3 + Column 2
10.2.4 Horizontal Scroll (26h)
This command consists of 3 consecutive bytes to set up the scrolling parameters. It determined the
horizontal scrolling offset, no of scrolling row and scrolling speed. Some scrolling examples are shown in
Figure 33 .
Before issuing this command, the scrolling must be deactivated (2Eh). Otherwise, RAM content may be
corrupted.
Figure 33: Scrolling examples
Display snap shot after scrolling start
Display before scrolling start
No of
scrolling
rows
Example 1 : Partial screen
horizontal scrolling with 1 column
shift in every 64 frames
Sample code
23h
02h
26h
01h
30h
01h
// Enable wrap around in x-direction
during scrolling
// Horizontal scroll
// Horizontal scroll by 1 column
// Scrolling 48 rows
// Set time interval between each
scroll step as 64 frames
2Fh // Activate scrolling
Solomon Systech
Jul 2010
P 49/63
Rev 2.3
SSD1325
10.2.5 Stop Moving (2Eh)
Stop motion of scrolling. After sending 2Eh command to deactivate the scrolling action, the ram data
needs to be rewritten.
10.2.6 Start Moving (2Fh)
Start motion of scrolling. This command should only be issued after scrolling setup parameters are
defined through command 26h and the function of wrap around in x-direction is enabled through 23h.
The following actions are prohibited after the horizontal scroll is activated
1.
RAM access (Data write or read)
2.
Changing scrolling setup parameters
Solomon Systech
Jul 2010
P 50/63
Rev 2.3
SSD1325
11 MAXIMUM RATINGS
Table 22 : Maximum Ratings (Voltage Reference to VSS)
Symbol
VDD
VCC
VREF
VSEG
VCOM
Vin
TA
Tstg
Parameter
Supply Voltage
SEG output voltage
COM output voltage
Input voltage
Operating Temperature
Storage Temperature Range
Value
-0.3 to +4.0
0 to +17.0
0 to +17.0
0 to +VCC
0 to +0.9xVCC
VSS -0.3 to VDD +0.3
-40 to +85
-65 to +150
Unit
V
V
V
V
V
ºC
ºC
Maximum Ratings are those values beyond which damage to the device may occur. Functional operation
should be restricted to the limits in the Electrical Characteristics tables or Pin Description.
This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light
source during normal operation. This device is not radiation protected.
Solomon Systech
Jul 2010
P 51/63
Rev 2.3
SSD1325
12 DC CHARACTERISTICS
Conditions (unless specified):
Voltage referenced to VSS;
VDD = 2.7, VCC = 12.0V, IREF = 10uA, at TA = 25°C.
Table 23 : DC Characteristics
Symbol
VCC
VDD
VOH
VOL
VIH
VIL
ISLEEP
Parameter
Operating Voltage
Logic Supply Voltage
HIGH Logic Output Level
LOW Logic Output Level
HIGH Logic Input Level
LOW Logic Input Level
Sleep mode Current
Test Condition
IOUT = 100uA, 3.3MHz
IOUT = 100uA, 3.3MHz
No loading
Min
8.0
2.4
0.9*VDD
0
0.8*VDD
0
-
Typ
12.0
2.7
0.2
Max
16.0
3.5
VDD
0.1*VDD
VDD
0.2*VDD
5
Unit
V
V
V
V
V
V
uA
Contrast = 7F
-
700
-
uA
Contrast = 7F
-
-
650
Contrast = 7F
270
300
370
Contrast = 5F
-
225
-
Contrast = 3F
-
150
-
Contrast = 1F
-
75
-
Adjacent pin
-1.5
-
+1.5
Overall pin to pin
-3
-
+3
VCC Supply Current
ICC
VDD =2.7V, external VCC =12V, IREF =10uA, Frame
rate=110Hz, All one pattern, Display ON, no loading
VDD Supply Current
IDD
VDD =2.7V, external VCC =12V, IREF =10uA, Frame
rate=110Hz, All one pattern, Display ON, no loading
Segment Output Current
ISEG
Dev
VDD =2.7V, VCC =12V, IREF =10uA, Frame
rate=110Hz, Display ON, Segment pin under test is
connected with a 20K resistive load to VSS
Segment output current uniformity
VDD=2.7V, VCC=12V, IREF=10uA, Contrast=7F
Solomon Systech
Jul 2010
P 52/63
Rev 2.3
uA
uA
%
SSD1325
13 AC CHARACTERISTICS
Conditions (Unless otherwise specified):
Voltage referenced to VSS
VDD = 2.4V to 3.5V
VCC = 8.0V to 16.0V
TA = 25°C
Table 24 : AC Characteristics
Symbol
FOSC
FFRM
RES#
Parameter
Oscillation Frequency of
Display Timing Generator
Frame Frequency for 128
MUX Mode
Test Condition
VDD = 2.7V
Min
535
Typ
630
Max
725
Unit
kHz
128x80 Graphic Display Mode, Display
ON, Internal Oscillator Enabled
-
FOSC *
1/(D*K*80)
-
Hz
3
-
-
-
-
2
Reset LOW pulse width
-
Reset complete time
-
us
us
Note:
(1)
Fosc stands for the frequency value of the internal oscillator and the value is measured when command B3h A[7:4]
is in default value.
(2)
D stands for divide ratio
(3)
K stands for total number of display clocks per row defined by command B2h
(4)
N stands for number of MUX selected by command A8h
Solomon Systech
Jul 2010
P 53/63
Rev 2.3
SSD1325
Conditions:
VDD - VSS = 2.4 to 3.5V
TA = 25°C
Table 25 : 6800-Series MCU Parallel Interface Timing Characteristics
Symbol
tcycle
tAS
tAH
tDSW
tDHW
tDHR
tOH
tACC
PWCSL
Parameter
Clock Cycle Time
Address Setup Time
Address Hold Time
Write Data Setup Time
Write Data Hold Time
Read Data Hold Time
Output Disable Time
Access Time
Chip Select Low Pulse Width (read)
Chip Select Low Pulse Width (write)
Chip Select High Pulse Width (read)
Chip Select High Pulse Width (write)
Rise Time
Fall Time
PWCSH
tR
tF
Min
300
0
0
40
15
20
120
60
60
60
-
Typ
-
Max
70
140
-
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
-
-
ns
-
15
15
ns
ns
Figure 34 : 6800-series MCU Parallel Interface Characteristics
D/C#
tAS
tAH
R/W#
E
tcycle
PWCSH
PWCSL
CS#
tR
tDHW
tF
tDSW
D0~D7(WRITE)
Valid Data
tDHR
tACC
D0~D7(READ)
Valid Data
tOH
Solomon Systech
Jul 2010
P 54/63
Rev 2.3
SSD1325
Conditions:
VDD - VSS = 2.4 to 3.5V
TA = 25°C
Table 26 : 8080-Series MCU Parallel Interface Timing Characteristics
Symbol
tcycle
tAS
tAH
tDSW
tDHW
tDHR
tOH
tACC
tPWLR
tPWLW
tPWHR
tPWHW
tR
tF
tCS
tCSH
tCSF
Parameter
Clock Cycle Time
Address Setup Time
Address Hold Time
Write Data Setup Time
Write Data Hold Time
Read Data Hold Time
Output Disable Time
Access Time
Read Low Time
Write Low Time
Read High Time
Write High Time
Rise Time
Fall Time
Chip select setup time
Chip select hold time to read signal
Chip select hold time
Min
300
10
0
40
15
20
120
60
60
60
0
0
20
Typ
-
Max
70
140
15
15
-
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Figure 35 : 8080-series parallel interface characteristics (Form 1)
Write cycle (Form 1)
Read cycle (Form 1)
CS#
CS#
tCSH
tCSF
tCS
tCS
D/C#
D/C#
tAH
tAS
WR#
tAS
tR
tF
tcycle
tPWLW
tPWHW
tDSW
tR
tF
RD#
tcycle
tPWLR
tDHW
tPWHR
tACC
D[7:0]
tAH
tDHR
D[7:0]
tOH
Figure 36 : 8080-series parallel interface characteristics (Form 2)
Write cycle (Form 2)
Read cycle (Form 2)
tcycle
tcycle
tR
CS#
tR
tF
CS#
tPWLW
tF
tPWLR
tPWHR
tPWHW
tCS
tCS
D/C#
D/C#
tAS
tAH
WR#
tAH
RD#
tDSW
D[7:0]
tAS
tCSF
tDHW
tCSH
tACC
tDHR
D[7:0]
tOH
Solomon Systech
Jul 2010
P 55/63
Rev 2.3
SSD1325
Conditions:
VDD - VSS = 2.4 to 3.5V
TA = 25°C
Table 27 : Serial Interface Timing Characteristics
Symbol
tcycle
tAS
tAH
tCSS
tCSH
tDSW
tDHW
tCLKL
tCLKH
tR
tF
Parameter
Clock Cycle Time
Address Setup Time
Address Hold Time
Chip Select Setup Time
Chip Select Hold Time
Write Data Setup Time
Write Data Hold Time
Clock Low Time
Clock High Time
Rise Time
Fall Time
Min
250
150
150
120
60
100
100
100
100
-
Typ
-
Max
15
15
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Figure 37 : Serial Interface Characteristics
D/C#
tAS
tAH
tCSS
CS#
tCSH
tcycle
tCLKL
tCLKH
SCLK(D0)
tF
tR
tDSW
SDIN(D1)
tDHW
Valid Data
CS#
SCLK(D0)
SDIN(D1)
Solomon Systech
D7
D6
D5
D4
D3
D2
Jul 2010
D1
P 56/63
D0
Rev 2.3
SSD1325
14 APPLICATION EXAMPLES
Figure 38 : Application Example for SSD1325Z2 SPI serial interface mode
The configuration for SPI serial interface mode, externally VCC is shown in the following diagram:
(VDD = 3V, VCC = VREF = 12V, IREF = 10uA)
COM1
COM3
.
.
COM77
COM79
SEG0
.
.
.
.
.
.
.
.
.
.
.
.
SEG127
COM78
COM76
.
.
COM2
COM0
DISPLAY PANEL SIZE
128 X 80
SSD1325Z2
VCC
VCOMH
VDD
D/C# RES# CS#
E(RD#)
R/W#(WR#)
(SCLK) (SDIN)
D0
D1
IREF
VSS
R1
C1
C2
C3
VCC
VDD
D/C# RES# CS#
D0 (SCLK)
D1 (SDIN)
VSS (GND)
Pins connected to MCU interface: D0, D1, D/C#, RES#, CS#
Pins internally connected to VDD: M/S#, CLS, VDDB
Pins internally connected to VSS: BS0, BS1, BS2, E(RD#), R/W#(WR#), VSSB, VCL
Pin internally connected to VCC: VREF
Pins floated: CL, GDR, RESE, FB, VBREF
*VSL pin can be kept NC or connect a capacitor (1~2.2uF(1) ) between this pin and VSS. Refer to command BFh for VSL pin connection
details.
C1: 1uF, C2~ C3: 4.7uF (1)
R1: 910kΩ, R1 ≈ (Voltage at IREF pin - VSS) / IREF = (12.0-3.0)V/10.0uA
NOTE
(1)
The capacitor value is recommended value. Select appropriate value against module application.
Solomon Systech
Jul 2010
P 57/63
Rev 2.3
SSD1325
Figure 39: Application Example for SSD1325T6R1
The configuration for 6800-parallel interface mode, externally VCC is shown in the following diagram:
(VDD = 3V, VCC = VREF = 12V, IREF = 10uA)
COM1
COM3
.
.
COM77
COM79
SEG0
.
.
.
.
.
.
.
.
.
.
.
.
SEG127
COM78
COM76
.
.
COM2
COM0
DISPLAY PANEL SIZE
128 X 80
SSD1325T6R1
VCC VCOMH IREF D0~D7 E(RD#) R/W#(WR#) D/C# RES# CS#
BS2 BS1 VDD VBREF RESE FB VDDB GDR
VSS VSL
R1
C2
C3
C4
VCC
D0~D7 E (RD#) R/W#(WR#) D/C# RES# CS#
VDD
VSS
[GND]
VSS
[GND]
Pins connected to MCU interface: D0~D7, E(RD#), R/W#(WR#), D/C#, CS#, RES#
Pins internally connected to VDD: M/S#, CLS
Pins internally connected to VSS: BS0, VSSB
Pin internally connected to VCC: VREF
Pins floated: GDR, RESE, FB, VBREF, VDDB
*VSL pin can be kept NC or connect a capacitor (1~2.2uF(1) ) between this pin and VSS. Refer to command BFh for VSL pin connection
details.
C2~ C4: 4.7uF (1)
R1: 910kΩ, R1 ≈ (Voltage at IREF pin - VSS) / IREF = (12.0-3.0)V/10.0uA
Note
(1)
The capacitor value is recommended value. Select appropriate value against module application.
Solomon Systech
Jul 2010
P 58/63
Rev 2.3
SSD1325
15 PACKAGE INFORMATION
15.1 SSD1325Z2 Die Tray Information
Figure 40 : SSD1325Z2 Die Tray Drawing
H
DY
38.40
PY
PX
DX
E
28.54
H
K
Remark
1. Depth of text: Max. 0.1mm
2. Tray material: ABS
3. Tray color code: Black
4. Surface resistance 109 ~ 1011 Ω
5. Tray warpage: Max 0.10mm
6. Unspecifier dim's tolerance: ± 0.15mm
7. Pocket size: 13.56 x 1.65 x 0.61mm
Solomon Systech
Jul 2010
P 59/63
Rev 2.3
SSD1325
Table 28 : SSD1325Z2 Die Tray Dimensions
W1
W2
Dimensions
mm
(mil)
50.70±0.2 (1996)
45.50±0.2 (1791)
H
E
K
PX
PY
X
Y
Z
4.05±0.2 (160)
1.75±0.2 (69)
1.45±0.2 (57)
14.27±0.1 (562)
3.20±0.1 (126)
11.60±0.1 (457)
1.80±0.1 (71)
0.68±0.05 (27)
DX
DY
11.08±0.1 (437)
6.15±0.1 (242)
N (number of die)
39
Parameter
Solomon Systech
Jul 2010
P 60/63
Rev 2.3
SSD1325
15.2 SSD1325T6R1 Detail Dimension
Figure 41 : SSD1325T6R1 Detail Dimension
5T6
132
SSD
Solomon Systech
Jul 2010
P 61/63
Rev 2.3
SSD1325
Solomon Systech
Jul 2010
P 62/63
Rev 2.3
SSD1325
Solomon Systech reserves the right to make changes without further notice to any products herein. Solomon Systech makes no warranty,
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising
out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals” must be validated
for each customer application by customer’s technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of
others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the
body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could
create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors
harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal
injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the
design or manufacture of the part.
The product(s) listed in this datasheet comply with Directive 2002/95/EC of the European Parliament and of the council of 27
January 2004 on the restriction of the use of certain hazardous substances in electrical and electronic equipment and People’s
Republic of China Electronic Industry Standard SJ/T 11363-2006 “Requirements for concentration limits for certain hazardous
substances in electronic information products (电子信息产品中有毒有害物质的限量要求)”. Hazardous Substances test report is
available upon request.
http://www.solomon-systech.com
Solomon Systech
Jul 2010
P 63/63
Rev 2.3
SSD1325