DER-351

Design Example Report
Title
Low Cost, 3 W Output Isolated LED Driver
Using LinkSwitchTM-II LNK604DG
Specification
90 VAC – 265 VAC Input;
9 VTYP, 330 mA Output
Application
GU10 LED Lamp
Author
Applications Engineering Department
Document
Number
DER-351
Date
November 14, 2012
Revision
2.1
Summary and Features




Accurate (primary-side control) constant current (CC)
 Accurate CC, less than ±5% variation over load and line
Low part-count solution (17 electrical components)
Over-temperature protection with hysteretic recovery
Output short-circuit and open-loop protection with auto-restart
 No-load consumption <200 mW at 265 VAC
 Easily meets EN55015 and CISPR-22 Class B EMI standards
PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered
by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A
complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under
certain patent rights as set forth at <http://www.powerint.com/ip.htm>.
Power Integrations
5245 Hellyer Avenue, San Jose, CA 95138 USA.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER 351 3 W LED Driver using LNK604DG
14-Nov-12
Table of Contents
1 2 3 Introduction ................................................................................................................. 3 Power Supply Specification ........................................................................................ 5 Schematic ................................................................................................................... 6 3.1 Schematic - No Clamp Circuit ............................................................................. 6 3.2 Schematic - Clamp Circuit ................................................................................... 6 4 Circuit Description ...................................................................................................... 7 5 PCB Layout ................................................................................................................ 8 6 Bill of Materials ........................................................................................................... 9 6.1 No Primary Clamp Design Bill of Materials (Figure 3A) ....................................... 9 6.2 Clamp Design Bill of Materials (Figure 3B) .......................................................... 9 7 PIXls Design Spreadsheet ........................................................................................ 10 9 Performance Data .................................................................................................... 15 9.1 Efficiency ........................................................................................................... 15 9.2 Line and Load Regulation.................................................................................. 16 9.3 Test Data ........................................................................................................... 17 9.3.1 Test Data, 7 V Output................................................................................. 17 9.3.2 Test Data, 9 V Output................................................................................. 17 9.3.3 Test Data, 11 V Output............................................................................... 17 10 Thermal Performance ........................................................................................... 18 10.1 VIN = 115 VAC ................................................................................................... 18 10.2 VIN = 230 VAC ................................................................................................... 18 11 Waveforms ............................................................................................................ 19 11.1 Input Voltage and Input Current at Normal Operation ....................................... 19 11.2 Output Current and Output Voltage at Normal Operation .................................. 20 11.3 Output Current / Voltage Rise and Fall .............................................................. 21 11.4 Input Voltage and Output Current Waveform at Start-up ................................... 22 11.5 Drain Waveforms at Normal Operation.............................................................. 23 11.6 Output diode Waveforms at Normal Operation.................................................. 24 11.7 Start-up Drain Voltage and Current ................................................................... 25 11.8 Drain Current and Drain Voltage During Output Short-Circuit ........................... 26 11.9 No-Load Output Voltage .................................................................................... 27 12 Conducted EMI ..................................................................................................... 28 13 Line Surge............................................................................................................. 30 13.1 500 V Surge (No Clamp Circuit) ........................................................................ 30 13.2 1 kV Surge (With Clamp Circuit) ........................................................................ 30 14 Revision History .................................................................................................... 31 Important Note: Although this board is designed to satisfy safety isolation requirements, the
engineering prototype has not been agency approved. Therefore, all testing should be performed using
an isolation transformer to provide the AC input to the prototype board.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 2 of 32
14-Nov-12
DER-351 3 W LED Driver Using LNK604DG
1 Introduction
This engineering report describes the design for a universal input, 9 V, 330 mA LED
driver. This power supply utilizes the LNK604DG device from the Power Integrations
LinkSwitch-II family.
This document contains the power supply and transformer specifications, schematics, bill
of materials, and typical performance characteristics pertaining to this power supply.
Figure 1 – Populated Circuit Board, Top (1.02” [26 mm] x .63” [16 mm]).
Page 3 of 32
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER 351 3 W LED Driver using LNK604DG
14-Nov-12
Figure 2 – Populated Circuit Board, Bottom.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 4 of 32
14-Nov-12
DER-351 3 W LED Driver Using LNK604DG
2 Power Supply Specification
The table below represents the minimum acceptable performance for the design. Actual
performance is listed in the results section.
Description
Input
Voltage
Frequency
Output
Output Voltage
Output Current
Total Output Power
Continuous Output Power
Efficiency
Full Load
Symbol
Min
VIN
fLINE
90
VOUT
IOUT
7
Max
Units
Comment
265
VAC
Hz
2 Wire – no P.E.
11
V
mA
50/60
9
330
3
POUT

Typ
W
75
%
Measured at 115 / 230 VAC input
Environmental
Conducted EMI
CISPR 15B / EN55015B
Differential Surge (1.2 / 50 s)
Ambient Temperature
Page 5 of 32
500 V / 1 kV
TAMB
40
0
C
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER 351 3 W LED Driver using LNK604DG
14-Nov-12
3 Schematic
3.1
Schematic - No Clamp Circuit
Figure 3A – Schematic (No Clamp Circuit).
3.2
Schematic - Clamp Circuit
Figure 3B – Schematic (With Optional Clamp Circuit, for 1 kV Surge).
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 6 of 32
14-Nov-12
DER-351 3 W LED Driver Using LNK604DG
4 Circuit Description
4.1 Input Filter
Bridge BR1 rectifies the AC input voltage. The rectified DC is filtered by the bulk storage
capacitor C1. Inductor L1 with capacitor C1 attenuates differential-mode EMI noise. This
configuration, along with Power Integrations’ transformer E-shield technology, allows
this design to meet the EN55015 class B EMI standard. Resistor R6 damps excessive
ringing and reduces EMI emissions. Fusible, flameproof resistor RF1 limits inrush current
when AC is first applied, in addition to acting as a fuse.
4.2 Primary Power Circuit
The rectified and filtered input voltage is applied to one side of the primary winding of T1.
The other side of the transformer’s primary winding is driven by U1. A small drain to
source capacitor C6 limits drain-voltage spikes caused by transformer leakage
inductance. The external bias supply, D2, R7 and C5, improves the power efficiency. A
slow recovery diode was selected for D2 to improve EMI. Capacitor C3 provides local
decoupling for the BYPASS (BP) pin of U1 which is the supply pin for the internal
controller.
The clamp circuits, C2, R1, R2, D1 in Figure 3B, reduce the maximum drain voltage to be
less than 700 V when 1 kV fast differential surge is applied.
4.3 Output Rectification and Regulation
The transformer’s secondary output is rectified by D3, a Schottky-barrier diode (chosen
for higher efficiency), and filtered by C4. LNK604DG regulates output using ON/OFF
control for CV regulation, and frequency control for constant current (CC) regulation.
Feedback resistors R3 and R4 have 1% tolerance values to accurately center the output
current. The output voltage was set to be higher than the maximum LED voltage, and
limits the overvoltage in case of a disconnected load.

Want More?
Use your smartphone QR Code
Reader and you will be connected to
related content on our website.
Page 7 of 32
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER 351 3 W LED Driver using LNK604DG
14-Nov-12
5 PCB Layout
Figure 4 – Top Side.
Figure 5 – Bottom Side.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 8 of 32
14-Nov-12
DER-351 3 W LED Driver Using LNK604DG
6 Bill of Materials
6.1
No Primary Clamp Design Bill of Materials (Figure 3A)
Item
Qty
Ref Des
1
1
BR1
2
1
C1
4.7 F, 400 V, Electrolytic, (8 x 11.5)
3
1
C3
1 F, 25 V, Ceramic, X5R, 0805
C2012X5R1E105K
TDK
4
1
C4
22 F, 16 V, Ceramic, X5R, 1210
GRM32ER61C226ME20L
Murata
5
1
C5
10 F, 25 V, Ceramic, X5R, 1206
C3216X7R1E106K
TDK
6
1
C6
10 pF, 1 kV, Ceramic, SL, 0.2" L.S.
DEA1X3A100JC1B
Murata
7
1
D2
200 V, 1 A, Rectifier, Glass Passivated, DO-213AA (MELF)
DL4003-13-F
Diodes, Inc.
8
1
D3
100 V, 2 A, Schottky, SMA
STPS2H100AY
ST Micro
9
1
L1
3300 H, 62 mA, 59.5 , Axial Ferrite Inductor
B78108S1335J
Epcos
10
1
R3
43.2 k, 1%, 1/16 W, Thick Film, 0603
ERJ-3EKF4322V
Panasonic
11
1
R4
5.9 k, 1%, 1/16 W, Thick Film, 0603
ERJ-3EKF5901V
Panasonic
12
1
R5
30 k, 5%, 1/10 W, Thick Film, 0603
ERJ-3GEYJ303V
Panasonic
13
1
R6
33 k, 5%, 1/10 W, Thick Film, 0603
ERJ-3GEYJ333V
Panasonic
14
1
R7
6.8 k, 5%, 1/10 W, Thick Film, 0603
ERJ-3GEYJ682V
Panasonic
15
1
RF1
4.7 , 1 W, Fusible/Flame Proof Wire Wound
FKN1WSJR-52-4R7
Yago
16
1
T1
Bobbin, EPC13, Horizontal, 10 pins
BEPC-13-1110CPH
17
1
U1
LinkSwitch-II, CV/CC, SO-8C
TDK
Power
Integrations
6.2
Description
Mfg Part Number
600 V, 0.5 A, Bridge Rectifier, SMD, MBS-1, 4-SOIC
Mfg
Micro
Commercial
Taicon
MB6S-TP
TAQ2G4R7MK0811MLL3
LNK604DG
Clamp Design Bill of Materials (Figure 3B)
Item
Qty
Ref Des
Description
Mfg Part Number
1
1
BR1
2
1
C1
4.7 F, 400 V, Electrolytic, (8 x 11.5)
3
1
C2
1 nF, 200 V, Ceramic, X7R, 0805
08052C102KAT2A
AVX
4
1
C3
1 F, 25 V, Ceramic, X5R, 0805
C2012X5R1E105K
TDK
5
1
C4
22 F, 16 V, Ceramic, X5R, 1210
GRM32ER61C226ME20L
Murata
6
1
C5
C3216X7R1E106K
TDK
7
1
D1
DL4005-13-F
Diodes, Inc.
8
1
D2
DL4003-13-F
Diodes, Inc.
STPS2H100AY
ST Micro
600 V, 0.5 A, Bridge Rectifier, SMD, MBS-1, 4-SOIC
MB6S-TP
TAQ2G4R7MK0811MLL3
9
1
D3
10 F, 25 V, Ceramic, X5R, 1206
600 V, 1 A, Rectifier, Glass Passivated, DO-213AA
(MELF)
200 V, 1 A, Rectifier, Glass Passivated, DO-213AA
(MELF)
100 V, 2 A, Schottky, SMA
10
1
L1
2700 H, 75 mA, 40 Ohm, Axial Ferrite Inductor
11
1
R1
12
1
13
14
Mfg
Micro
Commercial
Taicon
B78148S1275J
Epcos
470 k, 5%, 1/4 W, Thick Film, 1206
ERJ-8GEYJ474V
Panasonic
R2
470 , 5%, 1/8 W, Thick Film, 0805
ERJ-6GEYJ471V
Panasonic
1
R3
43.2 k, 1%, 1/16 W, Thick Film, 0603
ERJ-3EKF4322V
Panasonic
1
R4
5.9 k, 1%, 1/16 W, Thick Film, 0603
ERJ-3EKF5901V
Panasonic
15
1
R5
30 k, 5%, 1/10 W, Thick Film, 0603
ERJ-3GEYJ303V
Panasonic
16
1
R6
33 k, 5%, 1/10 W, Thick Film, 0603
ERJ-3GEYJ333V
Panasonic
17
1
R7
6.8 k, 5%, 1/10 W, Thick Film, 0603
ERJ-3GEYJ682V
Panasonic
18
1
RF1
4.7 , 1 W, Fusible/Flame Proof Wire Wound
FKN1WSJR-52-4R7
Yago
19
1
T1
Bobbin, EPC13, Horizontal, 10 pins
BEPC-13-1110CPH
20
1
U1
LinkSwitch-II, CV/CC, SO-8C
TDK
Power
Integrations
Page 9 of 32
LNK604DG
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER 351 3 W LED Driver using LNK604DG
14-Nov-12
7 PIXls Design Spreadsheet
ACDC_LinkSwitchII_091611; Rev.1.13;
INPUT
INFO
Copyright Power
Integrations 2011
ENTER APPLICATION VARIABLES
VACMIN
VACMAX
fL
VO
9.00
IO
0.33
Power
n
0.75
OUTPUT
UNIT
85.00
265.00
50.00
9.00
V
V
Hz
V
0.33
A
2.97
W
0.75
Z
0.50
tC
3.00
Add Bias Winding
YES
CIN
4.70
ENTER LinkSwitch-II VARIABLES
Chosen Device
LNK604
Package
DG
ILIMITMIN
ILIMITTYP
ILIMITMAX
ms
YES
4.70
uF
LNK604
DG
0.24
0.25
0.28
A
A
A
FS
66.00
kHz
VOR
80.16
V
VDS
10.00
V
VD
0.50
V
KP
1.83
FEEDBACK WINDING PARAMETERS
NFB
15.00
VFLY
8.91
V
VFOR
5.72
V
VB
10.00
V
NB
3.00
REXT
8.30
k-ohm
DESIGN PARAMETERS
DCON
4.50
us
TON
6.97
ACDC_LinkSwitch-II_091611_Rev1-13;
LinkSwitch-II Discontinuous Flyback
Transformer Design Spreadsheet
Minimum AC Input Voltage
Maximum AC Input Voltage
AC Mains Frequency
Output Voltage (at continuous power)
Power Supply Output Current (corresponding
to peak power)
Continuous Output Power
Efficiency Estimate at output terminals.
Under 0.7 if no better data available
Z Factor. Ratio of secondary side losses to
the total losses in the power supply. Use 0.5
if no better data available
Bridge Rectifier Conduction Time Estimate
Choose Yes to add a Bias winding to power
the LinkSwitch-II.
Input Capacitance
Chosen LinkSwitch-II device
Select package (PG, GG or DG)
Minimum Current Limit
Typical Current Limit
Maximum Current Limit
Typical Device Switching Frequency at
maximum power
Reflected Output Voltage (VOR < 135 V
Recommended)
LinkSwitch-II on-state Drain to Source
Voltage
Output Winding Diode Forward Voltage Drop
Ensure KDP > 1.3 for discontinuous mode
operation
Feedback winding turns
Flyback Voltage - Voltage on Feedback
Winding during switch off time
Forward voltage - Voltage on Feedback
Winding during switch on time
BIAS WINDING PARAMETERS
RUPPER
23.19
RLOWER
6.04
ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES
Core Type
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
us
k-ohm
k-ohm
Bias Winding Voltage. Ensure that VB >
VFLY. Bias winding is assumed to be ACSTACKED on top of Feedback winding
Bias Winding number of turns
Suggested value of BYPASS pin resistor
(use standard 5% resistor)
Output diode conduction time
LinkSwitch-II On-time (calculated at minimum
inductance)
Upper resistor in Feedback resistor divider
Lower resistor in resistor divider
Page 10 of 32
14-Nov-12
Core
DER-351 3 W LED Driver Using LNK604DG
EPC13
EPC13
Bobbin
AE
LE
AL
BW
EPC13_BOBBIN
12.50
30.60
870.00
6.88
mm^2
mm
nH/turn^2
mm
M
0.00
mm
L
3.00
NS
16.00
DC INPUT VOLTAGE PARAMETERS
VMIN
VMAX
CURRENT WAVEFORM SHAPE PARAMETERS
DMAX
IAVG
IP
IR
IRMS
TRANSFORMER PRIMARY DESIGN PARAMETERS
LPMIN
LPTYP
LP_TOLERANCE
NP
135.00
ALG
BM_TARGET
92.18
2500.00
nH/turn^2
Gauss
BM
2488.89
Gauss
3011.56
Gauss
BAC
1244.44
Gauss
ur
LG
BWE
169.48
0.17
20.64
mm
mm
OD
0.15
mm
INS
0.03
DIA
0.12
AWG
37.00
CM
20.16
Cmils
187.20
Cmils/A
BP
CMA
Warning
Warning
51.52
374.77
V
V
Minimum DC bus voltage
Maximum DC bus voltage
0.46
0.10
0.24
0.24
0.11
A
A
A
A
Maximum duty cycle measured at VMIN
Input Average current
Peak primary current
Primary ripple current
Primary RMS current
1512.00
1680.00
10.00
uH
uH
%
TRANSFORMER SECONDARY DESIGN PARAMETERS
Lumped parameters
ISP
2.00
ISRMS
0.73
IRIPPLE
0.65
CMS
145.69
Page 11 of 32
Enter Transformer Core. Based on the output
power the recommended core sizes are
EE13 or EE16
Generic EPC13_BOBBIN
Core Effective Cross Sectional Area
Core Effective Path Length
Ungapped Core Effective Inductance
Bobbin Physical Winding Width
Safety Margin Width (Half the Primary to
Secondary Creepage Distance)
Number of Primary Layers
Number of Secondary Turns. To adjust
Secondary number of turns change DCON
mm
A
A
A
Cmils
Minimum Primary Inductance
Typical Primary inductance
Tolerance in primary inductance
Primary number of turns. To adjust Primary
number of turns change BM_TARGET
Gapped Core Effective Inductance
Target Flux Density
Maximum Operating Flux Density (calculated
at nominal inductance), BM < 2500 is
recommended
!!! Warning. Peak Flux density exceeds 3000
Gauss and is not recommended. Reduce BP
by increasing NS
AC Flux Density for Core Loss Curves (0.5 X
Peak to Peak)
Relative Permeability of Ungapped Core
Gap Length (LG > 0.1 mm)
Effective Bobbin Width
Maximum Primary Wire Diameter including
insulation
Estimated Total Insulation Thickness (= 2 *
film thickness)
Bare conductor diameter
Primary Wire Gauge (Rounded to next
smaller standard AWG value)
Bare conductor effective area in circular mils
!!! Warning. CMA is less than 200 and may
cause overheating of the primary winding.
Increase primary winding layers or use larger
transformer
Peak Secondary Current
Secondary RMS Current
Output Capacitor RMS Ripple Current
Secondary Bare Conductor minimum circular
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER 351 3 W LED Driver using LNK604DG
AWGS
14-Nov-12
mils
Secondary Wire Gauge (Rounded up to next
larger standard AWG value)
28.00
VOLTAGE STRESS PARAMETERS
Maximum Drain Voltage Estimate (Assumes
20% clamping voltage tolerance and an
additional 10% temperature tolerance)
Output Rectifier Maximum Peak Inverse
Voltage
VDRAIN
563.09
V
PIVS
53.42
V
RUPPER_ACTUAL
23.19
k-ohm
RLOWER_ACTUAL
6.04
k-ohm
9.00
V
Measured Output voltage from first prototype
0.33
Amps
Measured Output current from first prototype
RUPPER_FINE
23.19
k-ohm
RLOWER_FINE
6.04
k-ohm
FINE TUNING
Actual (Measued)
Output Voltage
(VDC)
Actual (Measured)
Output Current
(ADC)
Actual Value of upper resistor (RUPPER)
used on PCB
Actual Value of lower resistor (RLOWER)
used on PCB
New value of Upper resistor (RUPPER) in
Feedback resistor divider. Nearest standard
value is 23.2 k-ohms
New value of Lower resistor (RLOWER) in
Feedback resistor divider. Nearest standard
value is 6.04 k-ohms
Note:
1) BP = 3011 gauss is accepted with no saturation observed in drain current waveform.
2) CMA = 187 Cmil/A : Used #36 AWG for primary winding.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 12 of 32
14-Nov-12
DER-351 3 W LED Driver Using LNK604DG
8 Transformer Specification
8.1 Electrical Diagram
Figure 6 – Transformer Electrical Diagram.
8.2 Electrical Specifications
Electrical Strength
Primary Inductance
Resonant Frequency
Primary Leakage
Inductance
1 second, 60 Hz, from primary to secondary.
Pin 5-6, other windings open, measured at 100 kHz, 1 VRMS.
Pin 5-6, other windings open.
3000 VAC
1.68 mH, ±7%
500 kHz
Pin 5-6, with FL1-FL2 shorted, measured at 100 kHz, 1 VRMS.
60 H
8.3 Materials
Item
[1]
[2]
[3]
[4]
[5]
[6]
[7]
Page 13 of 32
Description
Core: EPC13, PC44, gapped for ALG of 84.69 nH/T2.
Bobbin: EPC13, Horizontal, 10 pins, (5/5).
Magnet Wire: #36 AWG.
Magnet Wire: #37 AWG.
Magnet Wire: #28 AWG, TIW.
Tape: 3M 1298 Polyester film, 2.0 mils thick, 7.0 mm wide.
Varnish: Dolph BC-359, or equivalent.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER 351 3 W LED Driver using LNK604DG
14-Nov-12
8.4 Transformer Build Diagram
Figure 7 – Transformer Build Diagram.
8.5 Transformer Construction
WD#1
Cancellation
Winding
Insulation
WD#2
Primary Winding
Insulation
WD#3
Feedback
Winding
Insulation
WD#4
Secondary
Winding
Insulation
Core Assemble
Varnish
Pin 1 - pin 5 side of the bobbin oriented to left hand side.
Start at pin 5, wind 24 bifilar turns of item [4] in one layer. Wind with tight tension
across bobbin evenly. Cut the end of the wire.
1 layer of tape item [6] for basic insulation.
Start at pin 6, wind 45 turns of item [3] from right to left. Apply one layer of tape [5].
Then wind another 45 turns on the next layer from left to right. Apply one layer of
tape [5]. Wind the last 45 turns from right to left. Terminate on pin 5. Wind with tight
tension and spread turns across bobbin evenly.
1 layer of tape item [6] for basic insulation.
Start at pin 3, wind 17 trifilar turns of item [4] from left to right uniformly. Spread the
winding across bobbin evenly and terminate at pin 4.
1 layer of tape item [6] for basic insulation.
Start at pin 2 temporarily, wind 16 turns of item [5] from left to right in 1 layer and 3
turns on 2nd layer, leave the end lead floating at the right hand side, and mark it as
FL2. Bring the start end of the wire across the bobbin to the right side and fly out,
mark it as FL1.
2 layers of tape item [6] for basic insulation.
Gap core and assemble. Secure core halves with tape.
Dip varnish assembly with item [7].
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 14 of 32
14-Nov-12
DER-351 3 W LED Driver Using LNK604DG
9 Performance Data
All measurements were taken at room temperature using an LED load. The following
data were measured using 3 sets of loads for a load range of 7 V to 11 V. Refer to the
table on Section 9.3 for the complete set of test data values.
9.1
Efficiency
81
7V
9V
11 V
80
79
Efficiency (%)
78
77
76
75
74
73
72
71
80
100
120
140
160
180
200
220
240
260
Input Voltage (VAC)
Figure 8 – Efficiency vs. Line and Load.
Page 15 of 32
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
280
DER 351 3 W LED Driver using LNK604DG
9.2
14-Nov-12
Line and Load Regulation
2.5
7V
9V
11 V
2.0
1.5
% Regulation
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0
-2.5
80
100
120
140
160
180
200
220
240
260
280
Input Voltage (VAC)
Figure 9 – Regulation vs. Line and Load.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 16 of 32
14-Nov-12
DER-351 3 W LED Driver Using LNK604DG
9.3 Test Data
All measurements were taken with the board at open frame, 25 ºC ambient.
9.3.1 Test Data, 7 V Output
Input
VAC Freq
(VRMS) (Hz)
90
60
100
60
115
60
135
60
195
50
210
50
230
50
245
50
265
50
Input Measurement
VIN
IIN
PIN
(VRMS) (mARMS) (W)
89.93
55.59
3.11
99.97
50.99
3.07
114.98
45.71
3.02
134.97
40.77
2.98
194.99
31.67
2.97
209.94
30.32
2.98
230.02
28.79
3.00
244.95
27.85
3.03
265.03
26.73
3.06
Load Measurement
VOUT
IOUT
POUT
(VDC) (mADC) (W)
6.68 337.60 2.27
6.68 339.00 2.28
6.67 338.60 2.28
6.67 336.80 2.27
6.67 336.70 2.27
6.68 336.80 2.27
6.67 336.60 2.27
6.67 338.50 2.28
6.68 337.10 2.28
PCAL
(W)
2.26
2.26
2.26
2.25
2.25
2.25
2.25
2.26
2.25
Calculation
Efficiency
(%)
73.03
74.23
75.41
75.94
76.22
76.12
75.48
75.40
74.42
Loss
(W)
0.84
0.79
0.74
0.72
0.71
0.71
0.74
0.74
0.78
Load Measurement
VOUT
IOUT
POUT
(VDC) (mADC) (W)
8.74 341.30 3.00
8.74 344.60 3.02
8.73 344.80 3.03
8.74 342.40 3.01
8.73 344.20 3.02
8.72 342.90 3.01
8.72 343.60 3.02
8.73 344.50 3.03
8.73 345.00 3.03
PCAL
(W)
2.98
3.01
3.01
2.99
3.00
2.99
3.00
3.01
3.01
Calculation
Efficiency
(%)
73.95
75.28
76.63
77.55
78.51
78.26
78.07
77.87
77.32
Loss
(W)
1.06
0.99
0.92
0.87
0.83
0.84
0.85
0.86
0.89
PCAL
(W)
3.86
3.87
3.89
3.85
3.85
3.86
3.86
3.85
3.86
Calculation
Efficiency
(%)
73.34
75.19
77.06
78.37
79.61
79.57
78.91
78.81
78.50
Loss
(W)
1.41
1.28
1.16
1.07
0.99
1.00
1.03
1.04
1.06
9.3.2 Test Data, 9 V Output
Input
VAC Freq
(VRMS) (Hz)
90
60
100
60
115
60
135
60
195
50
210
50
230
50
245
50
265
50
Input Measurement
VIN
IIN
PIN
(VRMS) (mARMS) (W)
89.93
69.89
4.05
99.96
63.95
4.02
114.98
57.10
3.95
134.97
50.49
3.88
194.99
39.02
3.85
209.94
37.27
3.85
230.02
35.31
3.86
244.95
34.13
3.89
265.04
32.71
3.92
9.3.3 Test Data, 11 V Output
Input
VAC Freq
(VRMS) (Hz)
90
60
100
60
115
60
135
60
195
50
210
50
230
50
245
50
265
50
Page 17 of 32
Input Measurement
VIN
IIN
PIN
(VRMS) (mARMS) (W)
89.93
89.18
5.28
99.97
79.75
5.17
114.98
70.44
5.06
134.97
61.67
4.93
194.99
47.10
4.85
209.94
45.17
4.87
230.02
42.90
4.90
244.95
41.28
4.90
265.04
39.43
4.93
Load Measurement
VOUT
IOUT
POUT
(VDC) (mADC) (W)
11.21 344.60 3.87
11.20 345.80 3.89
11.20 347.30 3.90
11.19 344.40 3.87
11.18 344.20 3.86
11.18 345.30 3.88
11.18 344.90 3.87
11.17 344.70 3.87
11.17 345.30 3.87
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER 351 3 W LED Driver using LNK604DG
14-Nov-12
10 Thermal Performance
Images captured after running for >30 minutes at room temperature (25 °C), no airflow,
open frame
10.1 VIN = 115 VAC
Figure 10 – EMI filter inductor: 60.9 ºC.
Figure 11 – LNK604DG: 62.6 ºC.
10.2 VIN = 230 VAC
Figure 12 – Transformer: 46.8 ºC.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Figure 13 – LNK604DG 53.6 ºC.
Page 18 of 32
14-Nov-12
DER-351 3 W LED Driver Using LNK604DG
11 Waveforms
11.1 Input Voltage and Input Current at Normal Operation
Figure 14 – 90 VAC, 60 Hz Full Load.
Upper: IIN, 100 mA / div.
Lower: VIN, 100 V, 10 ms / div.
Figure 15 – 115 VAC, 60 Hz Full Load.
Upper: IIN, 100 mA / div.
Lower: VIN, 100 V, 10 ms / div.
Figure 16 – 230 VAC, 50 Hz Full Load.
Upper: IIN, 100 mA / div.
Lower: VIN, 200 V, 10 ms / div.
Figure 17 – 265 VAC, 50 Hz Full Load.
Upper: IIN, 100 mA / div.
Lower: VIN, 200 V, 10 ms / div.
Page 19 of 32
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER 351 3 W LED Driver using LNK604DG
14-Nov-12
11.2 Output Current and Output Voltage at Normal Operation
Figure 18 – 90 VAC, 60 Hz Full Load.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 20 V, 500 s / div.
Figure 19 – 115 VAC, 60 Hz Full Load.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 20 V, 500 s / div.
Figure 20 – 230 VAC, 50 Hz Full Load.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 20 V, 500 s / div.
Figure 21 – 265 VAC, 50 Hz Full Load.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 20 V, 500 s / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 20 of 32
14-Nov-12
DER-351 3 W LED Driver Using LNK604DG
11.3 Output Current / Voltage Rise and Fall
Figure 22 – 90 VAC, 60 Hz Output Rise.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 20 V, 100 ms / div.
Figure 23 – 90 VAC, 60 Hz Output Fall.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 20 V,100 ms / div.
Figure 24 – 265 VAC, 50 Hz Output Rise.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 20 V, 100 ms / div.
Figure 25 – 265 VAC, 50 Hz Output Fall.
Upper: IOUT, 100 mA / div.
Lower: VOUT, 20 V, 100 ms / div.
Page 21 of 32
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER 351 3 W LED Driver using LNK604DG
14-Nov-12
11.4 Input Voltage and Output Current Waveform at Start-up
Figure 26 – 90 VAC, 60 Hz.
Upper: IOUT, 100 mA / div.
Lower: VIN, 100 V, 20 ms / div.
Figure 27 – 115 VAC, 60 Hz.
Upper: IOUT, 100 mA / div.
Lower: VIN, 100 V, 20 ms / div.
Figure 28 – 230 VAC, 50 Hz.
Upper: IOUT, 100 mA / div.
Lower: VIN, 200 V, 20 ms / div.
Figure 29 – 265 VAC, 50 Hz.
Upper: IOUT, 100 mA / div.
Lower: VIN, 200 V, 20 ms / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 22 of 32
14-Nov-12
DER-351 3 W LED Driver Using LNK604DG
11.5 Drain Waveforms at Normal Operation
Figure 30 – 90 VAC, 60 Hz.
Upper: IDRAIN, 100 mA / div.
Lower: VDRAIN, 100 V, 5 ms / div.
Figure 31 – 90 VAC, 60 Hz.
Upper: IDRAIN, 100 mA / div.
Lower: VDRAIN, 100 V, 10 s / div.
Figure 32 – 265 VAC, 50 Hz.
Upper: IDRAIN, 100 A / div.
Lower: VDRAIN, 200 V, 5 ms / div.
Figure 33 – 265 VAC, 50 Hz.
Upper: IDRAIN, 100 A / div.
Lower: VDRAIN, 200 V, 10 s / div.
Page 23 of 32
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER 351 3 W LED Driver using LNK604DG
14-Nov-12
11.6 Output diode Waveforms at Normal Operation
Figure 34 – 90 VAC, 60 Hz.
Upper: IDRAIN, 1A / div.
Lower: VDRAIN, 100 V, 5 ms / div.
Figure 35 – 90 VAC, 60 Hz.
Upper: IDRAIN, 1 A / div.
Lower: VDRAIN, 100 V, 10 s / div.
Figure 36 – 265 VAC, 50 Hz.
Upper: IDRAIN, 2 A / div.
Lower: VDRAIN, 200 V, 5 ms / div.
Figure 37 – 265 VAC, 50 Hz.
Upper: IDRAIN, 2 A / div.
Lower: VDRAIN, 200 V, 10 s / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 24 of 32
14-Nov-12
DER-351 3 W LED Driver Using LNK604DG
11.7 Start-up Drain Voltage and Current
Figure 38 – 90 VAC, 60 Hz.
Upper: IDRAIN, 100 mA / div.
Lower: VDRAIN, 100 V, 5 ms / div.
Page 25 of 32
Figure 39 – 265 VAC, 50 Hz.
Upper: IDRAIN, 100 mA / div.
Lower: VDRAIN, 200 V, 5 ms / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER 351 3 W LED Driver using LNK604DG
14-Nov-12
11.8 Drain Current and Drain Voltage During Output Short-Circuit
Figure 40 – 90 VAC, 60 Hz Output Short Condition.
Upper: IDRAIN, 100 mA / div.
Lower: VDRAIN,100 V, 1 s / div.
Figure 41 – 90 VAC, 60 Hz Output Short Condition.
Upper: IDRAIN, 100 mA / div.
Lower: VDRAIN, 100 V, 10 s / div.
Figure 42 – 265 VAC, 50 Hz Output Short Condition.
Upper: IDRAIN, 100 mA / div.
Lower: VDRAIN, 200 V, 1 s / div.
Figure 43 – 265 VAC, 50 Hz Output Short Condition.
Upper: IDRAIN, 100 mA / div.
Lower: VDRAIN, 200 V, 50 s / div.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 26 of 32
14-Nov-12
DER-351 3 W LED Driver Using LNK604DG
11.9 No-Load Output Voltage
Figure 44 – 90 VAC, 60 Hz No-Load Characteristic.
Upper: VOUT, 5 V / div.
Lower: VDRAIN, 100 V / div., 1 ms / div.
Page 27 of 32
Figure 45 – 265 VAC, 50 Hz No-Load Characteristic.
Upper: VOUT, 5 V / div.
Lower: VDRAIN, 100 V / div., 1 ms / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER 351 3 W LED Driver using LNK604DG
14-Nov-12
12 Conducted EMI
The unit was tested using LED load (9 V) with input voltage of 115 VAC, 60 Hz at room
temperature.
Power Integrations
07.Sep 12 18:10
RBW
MT
9 kHz
500 ms
Att 10 dB AUTO
dBµV
120
EN55015Q
110
1 QP
CLRWR
100 kHz
LIMIT CHECK
1 MHz
PASS
10 MHz
SGL
100
90
2 AV
CLRWR
TDF
80
70
60
50
EN55015A
6DB
40
30
20
10
0
-10
-20
9 kHz
30 MHz
Figure 46 – Conducted EMI 9 V / 330 mA Load, 115 VAC, 60 Hz, and EN55015 Limits.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 28 of 32
14-Nov-12
DER-351 3 W LED Driver Using LNK604DG
Power Integrations
07.Sep 12 17:34
RBW
MT
9 kHz
500 ms
Att 10 dB AUTO
dBµV
120
EN55015Q
110
1 QP
CLRWR
100 kHz
LIMIT CHECK
1 MHz
PASS
10 MHz
SGL
100
90
2 AV
CLRWR
TDF
80
70
60
50
EN55015A
6DB
40
30
20
10
0
-10
-20
9 kHz
30 MHz
Figure 47 – Conducted EMI 9 V / 330 mA Load, 230 VAC, 60 Hz, and EN55015 Limits.
Page 29 of 32
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER 351 3 W LED Driver using LNK604DG
14-Nov-12
13 Line Surge
Input voltage was set at 230 VAC / 60 Hz. Output was loaded with 9 V LED string.
Differential input line 1.2 / 50 s surge testing
13.1 500 V Surge (No Clamp Circuit)
Figure 48 – Drain Voltage Waveform at 500 V Fast Surge.
13.2 1 kV Surge (With Clamp Circuit)
Figure 49 – Drain Voltage Waveform at 1 kV Fast Surge.
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
Page 30 of 32
14-Nov-12
DER-351 3 W LED Driver Using LNK604DG
14 Revision History
Date
22-Oct-12
14-Nov-12
Page 31 of 32
Author
DK
DK
Revision
2.0
2.1
Description and Changes
Initial Release
Updated Schematic 3A and BOM
Reviewed
Apps & Mktg
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER 351 3 W LED Driver using LNK604DG
14-Nov-12
For the latest updates, visit our website: www.powerint.com
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability.
Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER
INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING,
WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.
PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits’ external to the products)
may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications
assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. Power
Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.
The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS,
HiperLCS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power
Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2012 Power Integrations, Inc.
Power Integrations Worldwide Sales Support Locations
WORLD HEADQUARTERS
5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax: +1-408-414-9765
e-mail: usasales@powerint.com
GERMANY
Lindwurmstrasse 114
80337, Munich
Germany
Phone: +49-895-52739110
Fax: +49-895-527-39200
e-mail:
eurosales@powerint.com
JAPAN
Kosei Dai-3 Building
2-12-11, Shin-Yokohama,
Kohoku-ku, Yokohama-shi,
Kanagawa 222-0033
Japan
Phone: +81-45-471-1021
Fax: +81-45-471-3717
e-mail: japansales@powerint.com
TAIWAN
5F, No. 318, Nei Hu Rd.,
Sec. 1
Nei Hu District
Taipei 114, Taiwan R.O.C.
Phone: +886-2-2659-4570
Fax: +886-2-2659-4550
e-mail:
taiwansales@powerint.com
CHINA (SHANGHAI)
Rm 1601/1610, Tower 1
Kerry Everbright City
No. 218 Tianmu Road West
Shanghai, P.R.C. 200070
Phone: +86-021-6354-6323
Fax: +86-021-6354-6325
e-mail: chinasales@powerint.com
INDIA
#1, 14th Main Road
Vasanthanagar
Bangalore-560052
India
Phone: +91-80-4113-8020
Fax: +91-80-4113-8023
e-mail:
indiasales@powerint.com
KOREA
RM 602, 6FL
Korea City Air Terminal B/D,
159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728 Korea
Phone: +82-2-2016-6610
Fax: +82-2-2016-6630
e-mail: koreasales@powerint.com
EUROPE HQ
1st Floor, St. James’s House
East Street, Farnham
Surrey GU9 7TJ
United Kingdom
Phone: +44 (0) 1252-730-141
Fax: +44 (0) 1252-727-689
e-mail:
eurosales@powerint.com
CHINA (SHENZHEN)
3rd Floor, Block A, Zhongtou
International Business Center, No.
1061, Xiang Mei Road, FuTian District,
ShenZhen, China, 518040
Phone: +86-755-8379-3243
Fax: +86-755-8379-5828
e-mail: chinasales@powerint.com
ITALY
Via Milanese 20, 3rd. Fl.
20099 Sesto San Giovanni
(MI) Italy
Phone: +39-024-550-8701
Fax: +39-028-928-6009
e-mail:
eurosales@powerint.com
SINGAPORE
51 Newton Road,
#19-01/05 Goldhill Plaza
Singapore, 308900
Phone: +65-6358-2160
Fax: +65-6358-2015
e-mail:
singaporesales@powerint.com
APPLICATIONS HOTLINE
World Wide +1-408-4149660
Power Integrations, Inc.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
APPLICATIONS FAX
World Wide +1-408-4149760
Page 32 of 32