Cree C3M0065090D Silicon Carbide Power MOSFET

C3M0065090D
VDS
900 V
ID @ 25˚C Silicon Carbide Power MOSFET
TM
C3M MOSFET Technology
RDS(on)
36 A
65 mΩ
N-Channel Enhancement Mode
Features
•
•
•
•
•
Package
New C3M SiC MOSFET technology
High blocking voltage with low On-resistance
High speed switching with low capacitances
Fast intrinsic diode with low reverse recovery (Qrr)
Halogen free, RoHS compliant
Benefits
•
•
•
•
Higher system efficiency
Reduced cooling requirements
Increased power density
Increased system switching frequency
Applications
•
•
•
•
Renewable energy
EV battery chargers
High voltage DC/DC converters
Switch Mode Power Supplies
Part Number
Package
C3M0065090D
TO-247-3
Maximum Ratings (TC = 25 ˚C unless otherwise specified)
Symbol
Value
Unit
Test Conditions
VDSmax
Drain - Source Voltage
900
V
VGS = 0 V, ID = 100 μA
VGSmax
Gate - Source Voltage
-8/+18
V
Absolute maximum values
VGSop
Gate - Source Voltage
-4/+15
V
Recommended operational values
ID
Continuous Drain Current
ID(pulse)
36
23
A
VGS = 15 V, TC = 25˚C
90
A
EAS
Avalanche energy, Single pulse
110
mJ
ID = 22A, VDD = 50V
PD
Power Dissipation
125
W
TC=25˚C, TJ = 150 ˚C
-55 to
+150
˚C
260
˚C
TL
Operating Junction and Storage Temperature
Solder Temperature
C3M0065090D Rev. -
Note
Fig. 19
VGS = 15 V, TC = 100˚C
Pulsed Drain Current
TJ , Tstg
1
Parameter
Pulse width tP limited by Tjmax
1.6mm (0.063”) from case for 10s
Fig. 22
Fig. 20
Electrical Characteristics (TC = 25˚C unless otherwise specified)
Symbol
Parameter
V(BR)DSS
Drain-Source Breakdown Voltage
VGS(th)
Gate Threshold Voltage
Min.
Typ.
Max.
900
1.8
Unit
Test Conditions
V
VGS = 0 V, ID = 100 μA
2.1
V
VDS = 10V, ID = 5 mA
1.6
V
VDS = 10V, ID = 5 mA, TJ = 150ºC
IDSS
Zero Gate Voltage Drain Current
1
100
μA
VDS = 900 V, VGS = 0 V
IGSS
Gate-Source Leakage Current
10
250
nA
VGS = 15 V, VDS = 0 V
65
78
RDS(on)
Drain-Source On-State Resistance
90
13.6
gfs
Transconductance
Ciss
Input Capacitance
660
Coss
Output Capacitance
60
Crss
Reverse Transfer Capacitance
4.0
Eoss
Coss Stored Energy
16
EON
Turn-On Switching Energy
225
EOFF
Turn Off Switching Energy
91
td(on)
Turn-On Delay Time
21
Rise Time
36
Turn-Off Delay Time
28
Fall Time
25
Internal Gate Resistance
4.7
tr
td(off)
tf
RG(int)
Note
Qgs
Gate to Source Charge
7.5
Gate to Drain Charge
12
Qg
Total Gate Charge
VGS = 15 V, ID = 20A, TJ = 150ºC
VDS= 15 V, IDS= 20 A
S
11.6
Qgd
VGS = 15 V, ID = 20 A
mΩ
VDS= 15 V, IDS= 20 A, TJ = 150ºC
f = 1 MHz
VAC = 25 mV
μJ
Fig. 4,
5, 6
Fig. 7
Fig. 17,
18
VGS = 0 V, VDS = 600 V
pF
Fig. 11
Fig. 16
μJ
VDS = 400 V, VGS = -4 V/15 V, ID = 20A,
RG(ext) = 2.5Ω, L= 77 μH, TJ = 150ºC
Fig. 26
ns
VDD = 400 V, VGS = -4 V/15 V
ID = 20 A, RG(ext) = 2.5 Ω,
Timing relative to VDS
Per IEC60747-8-4 pg 83
Resistive load
Fig. 27
Ω
f = 1 MHz, VAC = 25 mV
nC
VDS = 400 V, VGS = -4 V/15 V
ID = 20 A
Per IEC60747-8-4 pg 21
30.4
Fig. 12
Reverse Diode Characteristics (TC = 25˚C unless otherwise specified)
Symbol
VSD
IS
IS, pulse
Parameter
Diode Forward Voltage
Typ.
Max.
Unit
Test Conditions
4.8
V
VGS = -4 V, ISD = 10 A
4.4
V
VGS = -4 V, ISD = 10 A, TJ = 150 °C
Note
Fig. 8,
9, 10
Continuous Diode Forward Current
21
A
VGS = -4 V
Note 1
Diode pulse Current
90
A
VGS = -4 V, pulse width tP limited by Tjmax
Note 1
VGS = -4 V, ISD = 20 A, VR = 400 V
dif/dt = 600 A/µs
Note 1
trr
Reverse Recover time
30
ns
Qrr
Reverse Recovery Charge
134
nC
Irrm
Peak Reverse Recovery Current
7.5
A
Note (1): When using SiC Body Diode the maximum recommended VGS = -4V
Thermal Characteristics
Symbol
2
Parameter
Max.
RθJC
Thermal Resistance from Junction to Case
1.0
RθJA
Thermal Resistance From Junction to Ambient
40
C3M0065090D Rev. -
Unit
°C/W
Test Conditions
Note
Fig. 21
Typical Performance
70
Drain-Source Current, IDS (A)
80
Conditions:
TJ = -55 °C
tp < 200 µs
Conditions:
TJ = 25 °C
tp < 200 µs
VGS = 15 V
70
VGS = 13 V
60
Drain-Source Current, IDS (A)
80
VGS = 11 V
50
40
VGS = 9 V
30
20
10
VGS = 15 V
VGS = 13 V
VGS = 11 V
60
50
VGS = 9 V
40
30
20
VGS = 7 V
10
VGS = 7 V
0
0
0.0
2.5
5.0
7.5
10.0
12.5
15.0
0.0
2.5
5.0
Drain-Source Voltage, VDS (V)
Figure 1. Output Characteristics TJ = -55 ºC
80
Conditions:
TJ = 150 °C
tp < 200 µs
2.0
VGS = 15 V
VGS = 11 V
1.6
60
VGS = 9 V
50
40
30
VGS = 7 V
20
10
1.4
1.2
1.0
0.8
0.6
0.4
0.0
0.0
2.5
5.0
7.5
10.0
12.5
-50
15.0
-25
0
Figure 3. Output Characteristics TJ = 150 ºC
Conditions:
VGS = 20 V
tp < 200 µs
TJ = 150 °C
80
TJ = -55 °C
60
75
100
125
150
Conditions:
IDS = 20 A
tp < 200 µs
120
On Resistance, RDS On (mOhms)
100
50
Figure 4. Normalized On-Resistance vs. Temperature
140
120
25
Junction Temperature, TJ (°C)
Drain-Source Voltage, VDS (V)
On Resistance, RDS On (Ohms)
15.0
0.2
0
TJ = 25 °C
40
20
100
VGS = 11 V
80
VGS = 13 V
60
VGS = 15 V
40
20
0
0
0
10
20
30
40
Drain-Source Current, IDS (A)
Figure 5. On-Resistance vs. Drain Current
For Various Temperatures
3
12.5
Conditions:
IDS = 20 A
VGS = 20 V
tp < 200 µs
1.8
VGS = 13 V
10.0
Figure 2. Output Characteristics TJ = 25 ºC
On Resistance, RDS On (P.U.)
Drain-Source Current, IDS (A)
70
7.5
Drain-Source Voltage, VDS (V)
C3M0065090D Rev. -
50
60
-50
-25
0
25
50
75
100
Junction Temperature, TJ (°C)
Figure 6. On-Resistance vs. Temperature
For Various Gate Voltage
125
150
Typical Performance
-10
Conditions:
VDS = 20 V
tp < 200 µs
-8
-6
-4
-2
0
0
40
TJ = 150 °C
VGS = -4 V
Drain-Source Current, IDS (A)
Drain-Source Current, IDS (A)
50
30
TJ = 25 °C
20
TJ = -55 °C
10
VGS = 0 V
-20
VGS = -2 V
-40
-60
Conditions:
TJ = -55°C
tp < 200 µs
0
0
2
4
6
8
10
Gate-Source Voltage, VGS (V)
Figure 7. Transfer Characteristic for
Various Junction Temperatures
-10
-8
-6
-4
-80
Drain-Source Voltage VDS (V)
Figure 8. Body Diode Characteristic at -55 ºC
-2
0
-10
-8
-6
-4
-2
0
Drain-Source Current, IDS (A)
VGS = -4 V
-20
VGS = 0 V
VGS = -2 V
-40
0
Drain-Source Current, IDS (A)
0
VGS = -4 V
-20
VGS = 0 V
VGS = -2 V
-40
-60
Conditions:
TJ = 25°C
tp < 200 µs
Drain-Source Voltage VDS (V)
-60
Conditions:
TJ = 150°C
tp < 200 µs
-80
Drain-Source Voltage VDS (V)
Figure 9. Body Diode Characteristic at 25 ºC
Figure 10. Body Diode Characteristic at 150 ºC
3.0
2.0
1.5
1.0
0.5
0.0
-50
-25
0
25
50
75
100
125
Junction Temperature TJ (°C)
Figure 11. Threshold Voltage vs. Temperature
4
Conditions:
IDS = 20 A
IGS = 100 mA
VDS = 400 V
TJ = 25 °C
12
Gate-Source Voltage, VGS (V)
Threshold Voltage, Vth (V)
16
Conditons
VDS = 10 V
IDS = 5 mA
2.5
C3M0065090D Rev. -
-80
150
8
4
0
-4
0
5
10
15
20
25
Gate Charge, QG (nC)
Figure 12. Gate Charge Characteristics
30
35
Typical Performance
-8
-7
-6
-5
-4
-3
-2
-1
0
-8
-7
-6
-5
-4
-3
-2
-1
0
0
0
VGS = 0 V
VGS = 5 V
-20
VGS = 10 V
-40
VGS = 15 V
Drain-Source Current, IDS (A)
Drain-Source Current, IDS (A)
VGS = 0 V
VGS = 5 V
-20
VGS = 10 V
-40
VGS = 15 V
-60
-60
Conditions:
TJ = -55 °C
tp < 200 µs
Conditions:
TJ = 25 °C
tp < 200 µs
-80
Drain-Source Voltage VDS (V)
Figure 13. 3rd Quadrant Characteristic at -55 ºC
-7
-8
-6
-5
-4
-3
-2
Figure 14. 3rd Quadrant Characteristic at 25 ºC
30
0
-1
-80
Drain-Source Voltage VDS (V)
0
25
-20
VGS = 5 V
-40
VGS = 10 V
VGS = 15 V
Stored Energy, EOSS (µJ)
Drain-Source Current, IDS (A)
VGS = 0 V
20
15
10
5
-60
Conditions:
TJ = 150 °C
tp < 200 µs
Drain-Source Voltage VDS (V)
0
0
-80
100
600
700
800
900
1000
Conditions:
TJ = 25 °C
VAC = 25 mV
f = 1 MHz
1000
Capacitance (pF)
Capacitance (pF)
500
10000
Ciss
Coss
100
Crss
10
400
Figure 16. Output Capacitor Stored Energy
Conditions:
TJ = 25 °C
VAC = 25 mV
f = 1 MHz
1000
300
Drain to Source Voltage, VDS (V)
Figure 15. 3rd Quadrant Characteristic at 150 ºC
10000
200
Ciss
100
Coss
10
Crss
1
1
0
50
100
Drain-Source Voltage, VDS (V)
150
Figure 17. Capacitances vs. Drain-Source
Voltage (0 - 200V)
5
C3M0065090D Rev. -
200
0
100
200
300
400
500
600
Drain-Source Voltage, VDS (V)
700
Figure 18. Capacitances vs. Drain-Source
Voltage (0 - 900V)
800
900
Typical Performance
140
Conditions:
TJ ≤ 150 °C
35
Maximum Dissipated Power, Ptot (W)
Drain-Source Continous Current, IDS (DC) (A)
40
30
25
20
15
10
5
0
-55
-30
-5
20
45
70
95
120
Conditions:
TJ ≤ 150 °C
120
100
80
60
40
20
0
145
-55
Case Temperature, TC (°C)
-30
-5
20
45
70
95
120
145
Case Temperature, TC (°C)
Figure 19. Continuous Drain Current Derating vs.
Case Temperature
Figure 20. Maximum Power Dissipation Derating vs.
Case Temperature
1
10 µs
Limited by RDS On
0.5
Drain-Source Current, IDS (A)
Junction To Case Impedance, ZthJC (oC/W)
100.00
0.3
100E-3
0.1
0.05
0.02
10E-3
0.01
SinglePulse
10.00
1 ms
100 ms
1.00
0.10
Conditions:
TC = 25 °C
D = 0,
Parameter: tp
0.01
1E-3
1E-6
10E-6
100E-6
1E-3
10E-3
Time, tp (s)
100E-3
0.1
1
Switching Energy (uJ)
1200
1000
800
700
ETotal
800
EOn
600
EOff
400
200
100
1000
ETotal
600
500
EOn
400
300
EOff
200
100
0
0
0
10
20
30
40
Drain to Source Current, IDS (A)
Figure 23. Clamped Inductive Switching Energy vs.
Drain Current (VDD = 600V)
6
Conditions:
TJ = 25 °C
VDD = 400 V
RG(ext) = 2.5 Ω
VGS = -4V/+15 V
FWD = C3D10060A
L = 77 μH
900
Switching Energy (uJ)
1400
10
Figure 22. Safe Operating Area
1000
Conditions:
TJ = 25 °C
VDD = 600 V
RG(ext) = 2.5 Ω
VGS = -4V/+15 V
FWD = C3D10060A
L = 77 μH
1
Drain-Source Voltage, VDS (V)
Figure 21. Transient Thermal Impedance
(Junction - Case)
1600
100 µs
C3M0065090D Rev. -
50
0
10
20
30
40
Drain to Source Current, IDS (A)
Figure 24. Clamped Inductive Switching Energy vs.
Drain Current (VDD = 400V)
50
Typical Performance
1000
Switching Loss (uJ)
600
Conditions:
TJ = 25 °C
VDD = 400 V
IDS = 20 A
VGS = -4V/+15 V
FWD = C3D10060A
L = 77 μH
800
Conditions:
IDS = 20 A
VDD = 400 V
RG(ext) = 2.5 Ω
VGS = -4V/+15 V
FWD = C3D10060A
L = 77 μH
500
ETotal
600
Switching Loss (uJ)
1200
EOn
400
EOff
200
400
ETotal
300
EOn
200
EOff
100
0
0
0
5
10
15
20
25
External Gate Resistor RG(ext) (Ohms)
-50
-25
0
25
50
75
100
Figure 26. Clamped Inductive Switching Energy vs.
Temperature
Figure 25. Clamped Inductive Switching Energy vs. RG(ext)
140
Conditions:
TJ = 25 °C
VDD = 400 V
IDS = 20 A
VGS = -4V/+15 V
120
100
td (off)
tf
Time (ns)
tr
80
td (on)
60
40
20
0
0
5
10
15
20
25
External Gate Resistor, RG(ext) (Ohms)
Figure 27. Switching Times vs. RG(ext)
7
C3M0065090D Rev. -
125
Junction Temperature, TJ (°C)
Figure 28. Switching Times Definition
150
Test Circuit Schematic
D1
L=77 uH
VDC
C3D08060G
8A, 60V
SiC Schottky
CDC=42.3 uF
Q2
RG
D.U.T
C3M0065090D
Figure 30. Clamped Inductive Switching
Waveform Test Circuit
Q1
RG
L=77 uH
VDC
CDC=42.3 uF
D.U.T
C3M0065090D
VGS= - 3 V
RG
Q2
C3M0065090D
Figure 31. Body Diode Recovery Test Circuit
8
C3M0065090D Rev. -
Package Dimensions
POS
Package TO-247-3
A
T
V
U
W
Pinout Information:
•
•
•
Pin 1 = Gate
Pin 2, 4 = Drain
Pin 3 = Source
Recommended Solder Pad Layout
TO-247-3
9
C3M0065090D Rev. -
Inches
Millimeters
Min
Max
Min
Max
.190
.205
4.83
5.21
A1
.090
.100
2.29
2.54
A2
.075
.085
1.91
2.16
b
.042
.052
1.07
1.33
b1
.075
.095
1.91
2.41
b2
.075
.085
1.91
2.16
b3
.113
.133
2.87
3.38
b4
.113
.123
2.87
3.13
c
.022
.027
0.55
0.68
D
.819
.831
20.80
21.10
D1
.640
.695
16.25
17.65
D2
.037
.049
0.95
1.25
E
.620
.635
15.75
16.13
E1
.516
.557
13.10
14.15
E2
.145
.201
3.68
5.10
E3
.039
.075
1.00
1.90
E4
.487
.529
12.38
13.43
e
.214 BSC
N
3
5.44 BSC
3
L
.780
.800
19.81
20.32
L1
.161
.173
4.10
4.40
ØP
.138
.144
3.51
3.65
Q
.216
.236
5.49
6.00
S
.238
.248
6.04
6.30
T
9˚
11˚
9˚
11˚
U
9˚
11˚
9˚
11˚
V
2˚
8˚
2˚
8˚
W
2˚
8˚
2˚
8˚
Notes
•
RoHS Compliance
The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the
threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/
EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or
from the Product Documentation sections of www.cree.com.
•
REACh Compliance
REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA)
has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is
also available upon request.
•
This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body
nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited
to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical
equipment, aircraft navigation or communication or control systems, air traffic control systems.
Related Links
•
•
SiC MOSFET Isolated Gate Driver reference design: www.cree.com/power/Tools-and-Support
Application Considerations for Silicon-Carbide MOSFETs: www.cree.com/power/Tools-and-Support
Copyright © 2015 Cree, Inc. All rights reserved.
The information in this document is subject to change without notice.
Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc.
10
C3M0065090D Rev - 05-2015
Cree, Inc.
4600 Silicon Drive
Durham, NC 27703
USA Tel: +1.919.313.5300
Fax: +1.919.313.5451
www.cree.com/power