An 8-Watt 250-3000 MHz Low Noise GaN Feedback

An 8-Watt 250-3000 MHz
Low Noise GaN Feedback Amplifier MMIC
with > +50 dBm OIP3
Kevin W.
W Kobayashi
RFMD, Torrance CA
OUTLINE
•
•
•
•
•
Motivation
0.25um Commercial GaN
MMIC Design
Results
Summary
Motivation
• Future GaN trends
– Power Density Æ Wideband Linearity
– Higher frequency, lower voltage
– E-D
E D for mixed signal MMICs
• GaN Linear Applications
– Software
S ft
Defined
D fi d Radios
R di (SDR)
– Phased Array
– BTS
– CATV
C
/Fiber (FTTX)
• Æ Common Need: > octave-BW, high-linearity, LNAs, PAs, SWs
• This work
– Demonstrates a new linearity benchmark for GaN MMIC LNAs
OUTLINE
•
•
•
•
•
Motivation
0.25um Commercial GaN
MMIC Design
Results
Summary
Microwave--mmW GaN HEMT Technology
Microwave
0.25um GaN HEMT Foundry
Technology
Parameter
Units
Northrop
Grumman
Application
Frequency
GHz
up to 40
Gate Structure
-
T-gate
Imax
mA/mm
1000
Gm
mS/mm
325
Vbd
V
80
Operating Vds
V
up to 28V
fT
GHz
47 @ 25V
Power Density
W/mm
~2 @ 40G
Backside Vias
-
Yes
Microwave--mmW GaN HEMT Technology
Microwave
Plated Top Metal
Airbridge
Inductor
SiN
Passivation
HEMT
TFR
4 mil SiC Substrate
VIA
•
•
•
•
•
•
•
•
0.25um T-gate HEMT devices
150pF/mm2 MIM capacitors
2 metal layers
Airbridges
NiCr Thin Film Resistor
Substrate Vias
Silicon Carbide substrate
Operation up to Vds = 28V
Pulsed Drain Current
(A/mm)
Features
1.4
1.2
1
0.8
0.6
0.4
0.2
0
0
20
40
Drain-Source Voltage (V)
60
State-ofStateof-thethe-Art
GaN MMIC Noise Figure
4
[This Work]
Cascode LNA
8-Watt
Noise
e Figure ((dB)
35
3.5
3
[11]
[1] HRL
25
2.5
< 1 Watt
Dual-gate
LNA
[3] NG
2
[4] NG
[2] UCSB
15
1.5
[9] NG
1
[10]
[5]NG
[6] SIRENZA-NG
CS-LNA
2 Watt
2-Watt
0.5
[7] RFMD-NG, T= -10C
0
0
2
4
F
Frequency
(GHz)
(GH )
6
8
OUTLINE
•
•
•
•
•
Motivation
0.25um Commercial GaN
MMIC Design
Results
Summary
Common-Source vs. Cascode
Performance
Common‐source
Cascode/*Dual gate
Practical Vdd
20V ((T‐gate)
g )
40V
Pout , IP3
4‐6 dB improvement
Idd
250mA/mm
same
Tj @ 85C base
~200C
~*200C
NF
higher (id1_n,id2_n)
BW
much wider
Gain
much higher, flatter
St bilit
Stability
poorer
Thermal Analysis
4 fingers x 125um
(Wg = 500um Unit cell)
250
Tjuncttion (C)
225
200
198
205
205
198
175
150
Tbase = 85C
125
100
75
Courtesy of Don Willis, Rob Dry
1
2
3
Finger #
4
DC I-V Comparison
A/mm
12
1.2
IDS (A/mm)
1.0
COMMON-SOURCE
CASCODE
0.8
0.6
0.4
0.2
50 ohm
0.0
0
10
20
30
40
VDS
50
60
70
80
MAG Comparison
Wg = 500um HEMT
Ma
ax Gain (d
dB)
50
40
CASCODE
30
20
10
COMMON-SOURCE
0
0
10 20 30 40 50 60 70 80 90 100
Frequency (GHz)
GaN Cascode Feedback Design
GaN Cascode Feedback LNA
• Cascode
-Thermal
Thermal
-Electrical
• Wg_total = 3 mm
• Vdd = 40V
• Idd = 500-750mA
500 750mA
Chip size is 1.6x1.3 mm2
4 finger x 125um
(Wg=500um unit cell)
OUTLINE
•
•
•
•
•
Motivation
0.25um Commercial GaN
MMIC Design
Results
Summary
Wide--band S
Wide
S--parameters Performance
40V--750mA
40V
750 A D
Design
ig
40V-750mA
Gain & Retturn-Loss
s (dB)
30
20
S21
10
0
S11
-10
10
S22
-20
-30
30
-40
0
1
2
Frequency (GHz)
3
Noise Figure
40V--500mA
40V
500 A & 750mA
750 A D
Designs
ig
Noise
e Figure (dB)
6
5
4
3
3.0
2.9
2.7
2.4
2
2.7
2.3
3.0
2.5
4.6
750 mA
3 8 3.73.6
3.8
3.2 3.0
2.9
2.5
500 mA
1
0
0
1
2
Frequency
q
y ((GHz))
3
4
Noise Contribution Calculation
Tj = 150C
Noisse Figure (dB)
6
5
MEASURED
4
3
CALCULATED
2
Channel Thermal Noise
4ΚΤ Γ(1/gm)
Γ(1/ )
II_gate
t shot
h t noise?
i ?
CALCULATED
1
FB Resistor
R Ri R
Rg+Ri+Rs
0
0
1
2
Frequency (GHz)
3
4
Fukui
Equation
Output IP3
40V--750 mA
40V
A & 500
500mA
AD
Designs
ig
60
54.3
OIP
P3 (dBm))
50
750 mA
52.7 53.3 51.9 51.8 51.4
50.8 52.0
500 mA
40
30
20
0
1
2
Frequency (GHz)
3
4
Output IP3
as a function
f
ti off Vdd
60
OIIP3 (dBm
m)
50
40
30
20V
30V
40V
20
10
Δ IP3 = 6dB
0
0
1
2
3
Frequency (GHz)
Frequency (GHz)
4
P1dB & Psat
Psa
at & P1dB
B (dBm)
45
750 mA
41.37
40.03 39.2
40
35
39.2
37.7
500 mA
30
Δ (Psat
(Psat-P1dB)
P1dB) ~ < 1 dB
25
20
0
1
2
Frequency (GHz)
3
IP3-NF
IP3T h l g C
Technology
Comparison
i
Summary of S-band LNA & Gain Block
Performance
55
GaN
[6]
OIP3
3 (d Bm)
HBT-WB
HBT-NB
[This Work]
50
HFET
45
[3]
[7]
40
[12-13]
[10]
E-PHEMT
35
D PHEMT
E PHEMT
[1]
GaAs HBT
[5]
HFET/MESFET
30
D PHEMT
D-PHEMT
GaN HEMT
25
0
1
2
NB= N
NB
Narrow b
band
d ttuned
d
WB= Wide band tuned
3
4
5
Noise Figure (dB)
6
7
8
GaN MMIC Topology Comparison
(
(reported
t d NF & IP3)
Summary of GaN MMIC FB LNA Performance (S-, C-band)
Reference
Topology
[1]
Matched-FB
[3], [5]
[6] [7]
[6],
High
NF
Best
BW
Dual-gate FB
Noise
OIP3
Figure (dB) (dBm)
2.4
37.8*
1.5
43
1.03
32
Darlington
[11] [13]
[11],
DA
This Work
Cascode FB
9.5:1
44-46
30
< 25
dBm
32.9
6.64:1
11-13
42-44
32.8
4.2:1
11.2
4.3**
43.5
31
3.7
12.5
3.3
29
22
4.3**
42-44
30-33
~2:1
11-12
2.5
48.4
36.8
3.5:1
11.7
3
51.9
38.5
5.2:1
13.4
Source-Match- 0.75-0.9
FB
0.25-0.45
[12]
P1dB
LFOM
Δ (IP3-P1dB)
(dBm) (IP3/Pdc)
13
2.0:1
7
Lowest
NF
Summary
• Benchmark- 0.25um T-gate GaN MMIC 8-Watt LNA
– Cascode
– Wideband NF ~2.5-3dB
~2 5 3dB
– High IP3 > 51 dBm
• Respectable Linearity FOMs
– IP3/Pdc LFOM ~ 5.2:1
– (IP3-P1dB) ~11.7-13.4dB
– Improves with device maturity
• Future work
– E-mode GaN,, MISFET
– mmW applications up to 40 GHz
ACKNOWLEGMENT
• RFMD
– Tony Sellas, Curtis Kitani, Robert Dry, Don
Willis, Daniel Jin, Joe Johnson, Dave Aichele, Jeff
Shealy, Karthik Krishnamurthy, Ramakrishna
Vetury, Conrad Young, Alastair Upton, Brad
Nelson, Dave Runton, Jay Martin, Norm Hilgendorf
• Northrop Grumman
– Richard To, Wen-Ben Luo, Ioulia
Smorchkova, Benjamin Heying, William
Sutton YaoChung Chen
Sutton,
Chen, Mike Wojtowicz
Wojtowicz, Aaron
Oki, Schaffer Grimm, Ed Rezek, and Frank
Kropschot