MAXIM MAX9643

19-5889; Rev 0; 8/11
备 有 评 估 板
MAX9643
60V高速、高精度电流检测放大器
概述
优势和特性
MAX9643是一款高速、60V、高精度单向检流放大器,非
常适合电源变化范围较大的控制应用。器件具有很高的信
号带宽,适用于DC-DC开关转换器的电源控制环路,具有
最小相位延迟。
S 支持高压应用
 宽输入VCM = -1.5V至+60V
IC具有50μV (最大值)精密输入偏压,允许使用很小的采样
电阻,支持高效率、宽动态范围电流测量应用。
S 提高系统精度
 高精度VOS = 50μV (最大值)
较高的DC CMRR和AC CMRR使得该器件可理想用于工作
条件变化范围较大的恶劣环境。器件提供2.5V/V和10V/V
固定增益,采用小尺寸、8引脚TDFN (2mm x 3mm)封装,
工作在-40℃至+125℃温度范围。
S -40℃至+125℃工作温度范围
S 高速工作
 15MHz带宽
应用
工业和汽车电源
GSM基站电源
高亮度LED控制
定购信息在数据资料的最后给出。
汽车引擎控制
相关型号以及配合该器件使用的推荐产品,请参见:china.maxim-ic.
com/MAX9643.related。
H桥电机控制
典型工作电路
RS+
RS-
CP1
CP2
OUT
VEE
VCC
MAX9643
BOOST
POWER-SUPPLY
CONTROL
LOAD
GND
����������������������������������������������������������������� Maxim Integrated Products 1
本文是英文数据资料的译文,文中可能存在翻译上的不准确或错误。如需进一步确认,请在您的设计中参考英文资料。
有关价格、供货及订购信息,请联络Maxim亚洲销售中心:10800 852 1249 (北中国区),10800 152 1249 (南中国区),
或访问Maxim的中文网站:china.maxim-ic.com。
MAX9643
60V高速、高精度电流检测放大器
Absolute Maximum Ratings
RS+ to GND, RS- to GND (Note 1)........................-3.5V to +65V
RS+ to RS-........................................................................... Q15V
VCC to GND............................................................-0.3V to +40V
VCC > 4.5V
OUT to GND......................................................-0.3V to +4.5V
VEE to GND.......................................................+0.3V to -4.5V
CP1 to GND.......................................................-0.3V to +4.5V
VCC ≤ 4.5V
OUT to GND.......................................... -0.3V to (VCC + 0.3V)
VEE to GND......................................... +0.3V to (-VCC + 0.3V)
CP1 to GND........................................... -0.3V to (VCC + 0.3V)
CP2 to GND .............................................. (VEE - 0.3V) to +0.3V
Short-Circuit Duration.................................................Continuous
Continuous Input Current into Any Pin............................. Q20mA
ESD on RS+, RS-........................................................Q4kV HBM
ESD on All Other Pins.................................................Q2kV HBM
Maximum Power Dissipation
TDFN-EP (derate 16.7mW/NC at +70NC).................1333.3mW
Operating Temperature Range......................... -40NC to +125NC
Junction Temperature......................................................+150NC
Lead Temperature (10s, soldering).................................+300NC
Soldering Temperature (reflow).......................................+260NC
Note 1: Voltages below -3.5V are allowed, as long as the input current is limited to 5mA by an external resistor.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
Package Thermal Characteristics (Note 2)
TDFN
Junction-to-Ambient Thermal Resistance (BJA).......... 60NC/W
Junction-to-Case Thermal Resistance (BJC)............... 11NC/W
Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to china.maxim-ic.com/thermal-tutorial.
Electrical Characteristics
(VCC = 5V, VRS+ = VRS- = 12V, TA = -40NC to +125NC, unless otherwise noted.) (Note 3)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
DC CHARACTERISTICS
Input Common-Mode Voltage
Range
VRS+, VRS-
Input Offset Voltage (Notes 4, 5)
VOS
Common-Mode Rejection Ratio
(Note 5)
CMRR
CMRR vs. Frequency (Note 5)
-1.5
+60
VCC < 5V, guaranteed by CMRR test,
VSENSE P 100mV
3.5 VCC
60
IRS+, IRS-
Input Bias Current, VCC = 0V,
VRS+ = VRS- = 60V
IRS+, IRS
Input Offset Current (Note 6)
IRS+ - IRS-
50
400
-40NC < TA <+125NC
-1.5V P VCM P 60V, TA = +25NC
-1.5V P VCM P 60V, -40NC P TA P +125NC
120
130
90
35
dB
60
60
-40NC < TA < +125NC
25
0.02
TA = +25NC
VCM R 2V
0.15
0.3
-40NC < TA < +125NC
FV
dB
110
TA = +25NC
VCM < 2V
FS
V
10
TA = +25NC
AC CMRR f = 100kHz
Input Bias Current
Maximum Sense Voltage Before
Input Saturation
VCC R 5V, guaranteed by CMRR test,
VSENSE P 100mV
FA
FA
FA
100
MAX9643T
400
MAX9643U
300
mV
����������������������������������������������������������������� Maxim Integrated Products 2
MAX9643
60V高速、高精度电流检测放大器
ELECTRICAL CHARACTERISTICS* (continued)
(VCC = 5V, VRS+ = VRS- = 12V, TA = -40NC to +125NC, unless otherwise noted.) (Note 3)
PARAMETER
SYMBOL
Voltage Gain (Note 4)
Voltage Gain Error (Note 4)
GE
CONDITIONS
MIN
TYP
MAX9643T
2.5
MAX9643U
10
TA = +25NC
0.06
MAX
V/V
0.5
0.6
-40NC < TA < +125NC
UNITS
%
AC CHARACTERISTICS
VSENSE = 25mVDC + 2mVP-P, MAX9643T
15
VSENSE = 25mVDC + 2mVP-P, MAX9643U
10
VOUT = 10mV to 110mV
12
V/Fs
Delay from Output Saturation to VOL
VSENSE = 0 to 20mV
100
ns
Delay from Input Saturation and
Delay from Output Saturation to VOH
VSENSE = 10V to 10mV
1
Fs
Signal Bandwidth
BW
Slew Rate
SR
MHz
OUTPUT CHARACTERISTICS
Output Short-Circuit Current
Output-Voltage Low (MAX9643T)
(Note 5)
ISC
VOL
3.39
IOUT = 100FA sink, TA = +25NC
IOUT = 100FA sink, -40NC < TA < +125NC
0.2
IOUT = 1mA sink, TA = +25NC
0.6
1
VOL
0.5
0.6
VOH
Capacitive Drive Capability
CL
10
mV
10
IOUT = 1mA sink, -40NC < TA < +125NC
Output-Voltage High (Note 7)
mV
3
3
IOUT = 100FA sink, -40NC < TA < +125NC
IOUT = 1mA sink, TA = +25NC
IOUT = 1mA source, VCC < 4.5V
IOUT = 1mA source, VCC R 4.5V
10
10
IOUT = 1mA sink, -40NC < TA < +125NC
IOUT = 100FA sink, TA = +25NC
Output-Voltage Low (MAX9643U)
(Note 5)
mA
1
VCC - 1.3
3.2
RLOAD = Open, no sustained oscillation
2.3
30
V
pF
POWER-SUPPLY CHARACTERISTICS
Power Supply
VCC
Power-Supply Rejection Ratio
(Note 5)
PSRR
Quiescent Supply Current
ICC
Charge-Pump Current
IEE
Note
Note
Note
Note
Note
Guaranteed by PSRR
2.7
VCC = 2.7V to 36V, VSENSE = 10mV,
TA = +25NC
107
-40NC < TA < +125NC
100
TA = +25NC
36
125
1000
DVEE = 500mV
dB
1400
1600
-40NC < TA < +125NC
4
V
FA
mA
3: All devices are 100% production tested at TA = +25NC. Temperature limits are guaranteed by design and/or characterization.
4: Gain and offset voltage are calculated based on two point measurements: VSENSE1 = 10mV and VSENSE2 = 100mV.
5:VOS, VOL, CMRR, and PSRR are measured with the charge pump off.
6: Guaranteed by design and/or characterization.
7: The maximum VSENSE of the MAX9643T is 400mV. With the gain = 2.5V/V, the output swing high is not applicable to the
MAX9643T.
����������������������������������������������������������������� Maxim Integrated Products 3
MAX9643
60V高速、高精度电流检测放大器
典型工作特性
(VCC = 5V, VRS+ = VRS- = 12V, TA = -40NC to +125NC, unless otherwise noted. All devices are 100% production tested at TA = +25NC.
Temperature limits are guaranteed by design and/or characterization.)
SUPPLY CURRENT
vs. SUPPLY VOLTAGE
1.4
25
20
15
10
1.2
1.3
1.1
1.0
0.9
0.8
1.2
1.1
1.0
0.9
0.8
0.7
0.7
5
0.6
0.6
0
0.5
-20 -15 -10 -5
0
0.5
0
5 10 15 20 25 30
10
20
30
40
-25
0
25
50
75
100
SUPPLY VOLTAGE (V)
TEMPERATURE (°C)
GAIN ERROR
vs. COMMON-MODE VOLTAGE
GAIN ERROR vs. TEMPERATURE
COMMON-MODE REJECTION RATIO
vs. FREQUENCY (VCM_AC = 100mV)
0.12
0.10
0.08
0.14
0.12
0.10
0.08
0.06
0.06
0.04
0.04
0.02
0.02
0
10
20
30
40
COMMON-MODE VOLTAGE (V)
50
60
-20
-40
-60
-80
-100
-120
-140
0
0
0
125
MAX9643 toc06
0.16
GAIN ERROR (%)
0.14
0.18
COMMON-MODE REJECTION RATIO (dB)
0.16
MAX9643 toc05
0.20
MAX9643 toc04
0.18
-10
-50
INPUT OFFSET VOLTAGE (V)
0.20
GAIN ERROR (%)
1.4
SUPPLY CURRENT (mA)
1.3
SUPPLY CURRENT (mA)
30
1.5
MAX9643 toc02
35
OCCURRENCE (%)
1.5
MAX9643 toc01
40
SUPPLY CURRENT
vs. TEMPERATURE
MAX9643 toc03
INPUT OFFSET VOLTAGE HISTOGRAM
-50
-25
0
25
50
75
TEMPERATURE (°C)
100
125
1
10
100
1000
10,000 100,000
FREQUENCY (kHz)
����������������������������������������������������������������� Maxim Integrated Products 4
MAX9643
60V高速、高精度电流检测放大器
典型工作特性(续)
(VCC = 5V, VRS+ = VRS- = 12V, TA = -40NC to +125NC, unless otherwise noted. All devices are 100% production tested at TA = +25NC.
Temperature limits are guaranteed by design and/or characterization.)
POWER-SUPPLY REJECTION RATIO
vs. FREQUENCY
-40
-60
-80
-100
-120
-140
100
10,000
1000
MAX9643 toc09
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
1
FREQUENCY (kHz)
10
100
1000
0
10,000 100,000
FREQUENCY (kHz)
740
720
700
680
660
640
620
3.9
3.8
15
20
25
30
35
40
3.7
3.6
3.5
3.4
3.3
3.2
600
MAX9643 toc12
760
4.0
10
OUTPUT-VOLTAGE LOW
vs. OUTPUT SINK CURRENT
MAX9643 toc11
780
OUTPUT-VOLTAGE HIGH (V)
MAX9643 toc10
800
5
SUPPLY VOLTAGE (V)
OUTPUT-VOLTAGE HIGH
vs. OUTPUT SOURCE CURRENT
SUPPLY CURRENT vs. TEMPERATURE
SUPPLY CURRENT (µA)
0.95
OUTPUT-VOLTAGE LOW (µV)
10
1.00
SUPPLY CURRENT (mA)
SMALL-SIGNAL GAIN (dB)
-20
20
18
16
14
12
10
8
6
4
2
0
-2
-4
-6
-8
-10
MAX9643 toc08
MAX9643 toc07
POWER-SUPPLY REJECTION RATIO (dB)
0
1
SUPPLY CURRENT
vs. SUPPLY VOLTAGE
SMALL SIGNAL vs. FREQUENCY
(MAX9643T)
500
400
300
200
100
3.1
600
3.0
-50
-25
0
25
50
75
TEMPERATURE (°C)
100
125
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
OUTPUT SOURCE CURRENT (mA)
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
OUTPUT SINK CURRENT (mA)
����������������������������������������������������������������� Maxim Integrated Products 5
MAX9643
60V高速、高精度电流检测放大器
典型工作特性(续)
(VCC = 5V, VRS+ = VRS- = 12V, TA = -40NC to +125NC, unless otherwise noted. All devices are 100% production tested at TA = +25NC.
Temperature limits are guaranteed by design and/or characterization.)
SMALL-SIGNAL TRANSIENT RESPONSE
LARGE-SIGNAL TRANSIENT RESPONSE
MAX9643 toc13
OUTPUT HIGH-SATURATION RECOVERY
RESPONSE (INPUT SIGNAL = 4V TO 100mV)
MAX9643 toc15
MAX9643 toc14
MAX9643T
MAX9643T
MAX9643T
OUTPUT
10mV/div
OUTPUT
100mV/div
INPUT
2V/div
GND
GND
VRS_
INPUT
10mV/div
INPUT
100mV/div
OUTPUT
1V/div
GND
GND
GND
200ns/div
100ns/div
1µs/div
OUTPUT LOW-SATURATION RECOVERY
RESPONSE (INPUT SIGNAL = 0V TO 20mV)
STARTUP DELAY
(VSENSE = 200mV)
INPUT SENSE VOLTAGE SATURATION
(VCM = 12V)
MAX9643 toc16
MAX9643T
INPUT
20mV/div
MAX9643 toc17
MAX9643T
VCC
5V/div
MAX9643 toc18
MAX9643T
VSENSE
1V/div
GND
VRS_
GND
OUTPUT
500mV/div
OUTPUT
50mV/div
OUTPUT
1V/div
GND
GND
GND
200ns/div
100µs/div
200µs/div
INPUT SENSE VOLTAGE SATURATION
(VCM = 1.5V)
CHARGE-PUMP NOISE
COMMON MODE
(VCM = 0V TO 10V)
MAX9643 toc19
MAX9643 toc20
MAX9643T
VSENSE
500mV/div
MAX9643 toc21
MAX9643T
MAX9643T
VCM
5V/div
CP1
2V/div
GND
GND
GND
OUTPUT
200mV/div
OUTPUT
200mV/div
OUTPUT
20mV/div
GND
GND
200µs/div
1µs/div
20ns/div
����������������������������������������������������������������� Maxim Integrated Products 6
MAX9643
60V高速、高精度电流检测放大器
引脚配置
TOP VIEW
OUT VCC
8
7
RS- RS+
6
5
MAX9643
EP
+
1
2
GND VEE
3
4
CP1 CP2
TDFN
引脚说明
PIN
NAME
1
GND
地。
DESCRIPTION
2
VEE
电荷泵输出,利用1μF电容连接至GND。
3
CP1
1μF飞电容的正端。
4
CP2
1μF飞电容的负端。
5
RS+
检流电阻输入正端。
6
RS-
检流电阻输入负端。
7
VCC
电源。
8
OUT
输出。
—
EP
裸焊盘,必须从外部连接至GND。
����������������������������������������������������������������� Maxim Integrated Products 7
MAX9643
60V高速、高精度电流检测放大器
详细说明
MAX9643是一款高速、高精度电流检测放大器,非常适合
各种高性能工业和汽车电源应用。器件具有低输入失调电
压、极低的增益误差和温漂,允许使用小阻值检流电阻测
量电流,有助于提高电源转换效率和测量精度。器件的快
速响应能力可迅速响应电源电路的开关电流,适合作为控
制环路的一部分。
单向高边电流检测放大器具有-1.5V至+60V较宽的输入共
模电压范围。即使在电源对地短路的条件下,也能够监测
电源的负载电流。高边电流监测不会影响被测负载的接地
通路,因此,这款IC能够满足各种高可靠性系统的要求。
IC采用专有的高速互补BiCMOS SOI工艺设计。这种高压
模拟工艺优化用于高交流动态性能、超低噪声、宽工作电
压范围、低漂移信号调理电路。
应用信息
输入共模电压范围
电流检测放大器输入级由内部负电源供电,允许放大器的
输入共模电压扩展到地电位以下,无任何交越误差。如果
电流检测放大器利用两个不同的差分输入级(npn/pnp晶体
管或pnp晶体管和基于电阻的输入级)覆盖整个共模电压工
作范围,则会发生交越失真问题,从而影响测量精度。
输入共模电压的最小值取决于内部电荷泵产生的负电源电
压。由于负电源电压在较低VCC (低于5V时)下会下跌,所以,
输入共模电压的最小值也受VCC的限制。
如果输入电流限制在5mA以下,则可超出负的输入共模电
压范围,利用串联输入电阻实现。负输入共模电压的ESD
保护架构类似于5个串联的二极管。假设每个二极管导通
压降为0.7V,则需利用输入串联电阻来抑制-3.5V以下的输
图1. PCB布局
FROM RSENSE
内部电荷泵
利用器件内部的电荷泵提供两个极具吸引力的应用特性:
TO ADC
U 输入共模电压范围扩展至地电位以下1.5V。
8
0.1µF
250kHz内部电荷泵用于产生负电源电压,为电流检测放大
器的输入级和输出级提供偏置。在IC的CP1和CP2引脚之
间使用1µF陶瓷电容,并确保布局紧凑,将环路面积降至
最小。为达到良好的低噪声性能,必须在VEE和GND之间
使用1µF陶瓷电容。
还可将VEE引脚直接连接到外部-5V电源,确保该电压低于
内部产生的电荷泵电压。
0.1µF
U 输出电压范围可扩展到真正的地电位。
7
6
5
MAX9643
+
1
MAX9643评估板给出了很好的布局实例,如图1所示。
1µF
2
3
4
1µF
0.1µF
图1. PCB布局
����������������������������������������������������������������� Maxim Integrated Products 8
MAX9643
60V高速、高精度电流检测放大器
入瞬态电压。例如,如果应用中可能出现-12V的输入瞬态
电压或故障电压,则应使用一个大于8.5V/5mA = 1700Ω
的电阻,可选择2kΩ电阻,以留有一定设计裕量。
U 效率和功耗:电流较大时,RSENSE的I2R损耗很明显,
选择电阻值及其功耗(瓦数)额定值时,须考虑这一因素。
另外,如果器件过度发热,还须考虑检流电阻的温漂。
在2.7V至36V整个VCC范围内,最大输入共模电压可扩展至
高达60V。建议采取器件屏蔽措施,以防止电压高于其65V
绝对最大额定值,有效保护器件。
U 电感:如果ISENSE具有较大的高频分量,则需保持尽
可能低的寄生电感。由于有大电流流过RSENSE,需谨
慎考虑布线,以消除寄生电阻的影响,避免引入检测
电压误差。使用四端检流电阻,或开尔文(加载/感应)
PCB布局技术。
输出电压范围
电荷泵产生的内部负电源也用于电流检测放大器的输出
级偏置,使其支持真正的VOL = 0V。该特性允许极低的
检测电压,便于连接其它模拟和混合信号IC。实际上,当
VSENSE = 0V时,VOUT = VOS x 增益,因此,VOL = 0V下
的检测性能往往受限于电流检测放大器的失调电压。
电源旁路和接地
此外,IC的最大输出电压在内部箝位至5V以下(即使采用
40V电源供电),可以方便地连接下游的低压电路,不用担
心较大的瞬态电压或故障保护问题。
对于大多数应用来说,可以使用0.1μF陶瓷电容将VCC旁路
至GND。在许多应用中,VCC可以连接到其中一个检流端
子(RS+或RS-)。因为VCC与被监测电压无关,VCC可连接至
独立的稳压电源,无需考虑特殊的供电顺序。即使VCC =
0V,器件仍可承受60V的输入共模电压,并在这种应用条
件下保持高输入阻抗。
选择检流电阻
芯片信息
按照以下原则选择RSENSE:
PROCESS: BiCMOS
U 电压损耗:考虑到IR压降,较高的RSENSE会造成电源电
压 跌 落。 为 获 得 最 小 电 压 损 耗, 应 使 用 尽 可 能 低 的
RSENSE。
U 精度:较高的RSENSE能够以更高精度测量微小电流。
这是因为检流电压较大时,可以相对降低输入失调电
压的影响。
定购信息
PART
PINPACKAGE
GAIN
(V/V)
TEMP
RANGE
MAX9643TATA+
8 TDFN-EP*
2.5
-40NC to +125NC
MAX9643UATA+
8 TDFN-EP*
10
-40NC to +125NC
+表示无铅(Pb)/符合RoHS标准的封装。
*EP = 裸焊盘。
����������������������������������������������������������������� Maxim Integrated Products 9
MAX9643
60V高速、高精度电流检测放大器
封装信息
如需最近的封装外形信息和焊盘布局(占位面积),请查询china.maxim-ic.com/packages。请注意,封装编码中的“+”、“#”或“-”仅
表示RoHS状态。封装图中可能包含不同的尾缀字符,但封装图只与封装有关,与RoHS状态无关。
封装编码
外形编号
焊盘布局编号
8 TDFN-EP
T823+1
21-0174
90-0091
8L, TDFN.EPS
封装类型
PACKAGE OUTLINE
8L TDFN, EXPOSED PAD, 2x3x0.8mm
21-0174
B
1
2
DIMENSIONS
SYMBOL
A
E
MIN.
0.70
NOM.
0.75
MAX.
0.80
2.95
3.00
3.05
D
A1
L
1.95
0.00
2.00
0.02
2.05
0.05
0.30
0.40
0.20 MIN.
0.20 REF.
0.50
k
A2
E2
D2
PKG.
CODE
MIN.
NOM.
MAX.
MIN.
NOM.
MAX.
T823-1
1.60
1.75
1.90
1.50
1.63
1.75
���������������������������������������������������������������� Maxim Integrated Products 10
N
e
b
EXPOSED PAD PACKAGE
0.18
8
0.50 BSC
0.25
0.30
MAX9643
60V高速、高精度电流检测放大器
封装信息(续)
PACKAGE OUTLINE
8L TDFN, EXPOSED PAD, 2x3x0.8mm
1
如需最近的封装外形信息和焊盘布局(占位面积),请查询china.maxim-ic.com/packages。请注意,封装编码中的
“+”、“#”或
B “-”仅
21-0174
2
表示RoHS状态。封装图中可能包含不同的尾缀字符,但封装图只与封装有关,与RoHS状态无关。
DIMENSIONS
SYMBOL
A
E
MIN.
0.70
NOM.
0.75
2.95
3.00
D
A1
L
1.95
0.00
0.30
2.00
0.02
0.40
0.20 MIN.
0.20 REF.
k
A2
N
e
b
0.18
8
0.50 BSC
0.25
MAX.
0.80
3.05
2.05
0.05
0.50
EXPOSED PAD PACKAGE
E2
D2
PKG.
CODE
MIN.
NOM.
MAX.
MIN.
NOM.
MAX.
T823-1
1.60
1.75
1.90
1.50
1.63
1.75
0.30
PACKAGE OUTLINE
8L TDFN, EXPOSED PAD, 2x3x0.8mm
21-0174
B
2
2
���������������������������������������������������������������� Maxim Integrated Products 11
MAX9643
60V高速、高精度电流检测放大器
修订历史
修订号
修订日期
0
8/11
说明
修改页
—
最初版本。
Maxim北京办事处
北京8328信箱 邮政编码100083
免费电话:800 810 0310
电话:010-6211 5199
传真:010-6211 5299
Maxim不对Maxim产品以外的任何电路使用负责,也不提供其专利许可。Maxim保留在任何时间、没有任何通报的前提下修改产品资料和规格的权利。
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2011 Maxim Integrated Products 12
Maxim是Maxim Integrated Products,Inc.的注册商标。
MAX9643 60V高速、高精度电流检测放大器 - 概述
Page 1 of 2
Login
产品
方案
设计
销售联络
支持中心
公司简介
Register
简体中文 (cn)
我的Maxim
Maxim > 产品 > 放大器和比较器 > MAX9643
MAX9643
60V高速、高精度电流检测放大器
业内最快的电流检测放大器,提供出色的50µV VOS精度
概述
设计资源
定购信息
相关产品
所有内容
状况
数据资料
状况:生产中。
提供更新的英文版数据资料
英文
下载 Rev. 2 (PDF, 710.2kB)
概述
Email
中文
MAX9643是一款高速、60V、高精度单向检流放大器,非常适合电源变化范围较大的控制应用。器件具有很高的信
号带宽,适用于DC-DC开关转换器的电源控制环路,具有最小相位延迟。
下载 Rev. 0 (PDF, 2MB)
Email
IC具有50µV (最大值)精密输入偏压,允许使用很小的采样电阻,支持高效率、宽动态范围电流测量应用。
较高的DC CMRR和AC CMRR使得该器件可理想用于工作条件变化范围较大的恶劣环境。器件提供2.5V/V和10V/V
固定增益,采用小尺寸、8引脚TDFN (2mm x 3mm)封装,工作在-40°C至+125°C温度范围。
现备有评估板:MAX9643EVKIT
关键特性




应用/使用
支持高压应用
 宽输入VCM = -1.5V至+60V
高速工作
 15MHz带宽
提高系统精度
 高精度VOS = 50µV (最大值)
-40°C至+125°C工作温度范围





汽车引擎控制
GSM基站电源
H桥电机控制
高亮度LED控制
工业和汽车电源
关键特性:
Current Sense Amplifiers
Part
Number
MAX9643
Output
Format
Voltage
CMVR
(V)
CMVR
(V)
VCC
(V)
VCC
(V)
ICC
(µA)
min
max
min
max
typ
-1.5
60
2.7
36
1000
BiDir.
Curr.
Sense
No
VSENSE_FS
(mV)
VOS
@25°
C
(µV)
recomm.
max
100
300
400
130
Gain
2.5V/V
10V/V
Gain
Accuracy
@25°C
(%)
BW
(kHz)
max
@3dB
0.5
10000
Comparators
Re
0
Ex
查看所有Current Sense Amplifiers (39)
Pricing Notes:
This pricing is BUDGETARY, for comparing similar parts. Prices are in U.S. dollars and subject to change. Quantity
pricing may vary substantially and international prices may differ due to local duties, taxes, fees, and exchange rates.
For volume-specific prices and delivery, please see the price and availability page or contact an authorized distributor.
图表
Typical Operating Circuit
更多信息
顶标
MAX9643
没有找到你需要的产品吗?
http://china.maximintegrated.com/datasheet/index.mvp/id/7283
2014-2-1
EVALUATION KIT AVAILABLE
MAX9643
60V High-Speed Precision Current-Sense Amplifier
General Description
The MAX9643 is a high-speed 60V precision unidirectional current-sense amplifier ideal for a wide variety of
power-supply control applications. Its high signal bandwidth allows its use within DC-DC switching converter
power-supply control loops with minimal phase delay.
The IC also features 130FV (max) precision input offset
voltage, allowing small sense resistors to be used in
applications where efficiency is important and when wide
dynamic-range current measurement is needed.
Benefits and Features
SSupports High-Voltage Applications
Wide Input VCM = -1.5V to +60V
SDelivers High-Speed Operation
15MHz Bandwidth
SIncreases System Accuracy

Precision VOS = 130µV (max)
S-40NC to +125NC Specified Temperature Range)
High DC CMRR and AC CMRR make it easy to use in
a wide variety of aggressive environments. The device
is available in fixed gains of 2.5V/V and 10V/V. It is also
available in a small, 8-pin TDFN (2mm x 3mm) package
and is rated over the -40NC to +125NC temperature range.
Applications
Industrial Power Supplies
GSM Base Station Power Supply
High-Brightness LED Control
Ordering Information appears at end of data sheet.
H-Bridge Motor Control
For related parts and recommended products to use with this part,
refer to www.maximintegrated.com/MAX9643.related.
Typical Operating Circuit
RS+
RS-
CP1
CP2
OUT
VEE
VCC
MAX9643
BOOST
POWER-SUPPLY
CONTROL
LOAD
GND
For pricing, delivery, and ordering information, please contact Maxim Direct
at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com.
19-5889; Rev 2; 1/14
MAX9643
60V High-Speed Precision Current-Sense Amplifier
ABSOLUTE MAXIMUM RATINGS
RS+ to GND, RS- to GND (Note 1)........................-3.5V to +65V
RS+ to RS-........................................................................... Q15V
VCC to GND............................................................-0.3V to +40V
VCC > 4.5V
OUT to GND......................................................-0.3V to +4.5V
VEE to GND..........................................................+0.3V to -5V
CP1 to GND.......................................................-0.3V to +4.5V
VCC ≤ 4.5V
OUT to GND.......................................... -0.3V to (VCC + 0.3V)
VEE to GND......................................... +0.3V to (-VCC + 0.3V)
CP1 to GND........................................... -0.3V to (VCC + 0.3V)
CP2 to GND .............................................. (VEE - 0.3V) to +0.3V
Short-Circuit Duration.................................................Continuous
Continuous Input Current into Any Pin............................. Q20mA
ESD on RS+, RS-........................................................Q4kV HBM
ESD on All Other Pins.................................................Q2kV HBM
Maximum Power Dissipation
TDFN-EP (derate 16.7mW/NC at +70NC).................1333.3mW
Operating Temperature Range......................... -40NC to +125NC
Junction Temperature......................................................+150NC
Lead Temperature (10s, soldering).................................+300NC
Soldering Temperature (reflow).......................................+260NC
Note 1: Voltages below -3.5V are allowed, as long as the input current is limited to 5mA by an external resistor.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
PACKAGE THERMAL CHARACTERISTICS (Note 2)
TDFN
Junction-to-Ambient Thermal Resistance (BJA).......... 60NC/W
Junction-to-Case Thermal Resistance (BJC)............... 11NC/W
Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.
ELECTRICAL CHARACTERISTICS
(VCC = 5V, VRS+ = VRS- = 12V, TA = -40NC to +125NC, unless otherwise noted.) (Note 3)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
DC CHARACTERISTICS
Input Common-Mode Voltage
Range
VRS+, VRS-
VCC R 5V, guaranteed by CMRR test,
VSENSE P 100mV
-1.5
VCC < 5V, guaranteed by CMRR test,
VSENSE P 100mV
3.5 VCC
TA = +25NC
Input Offset Voltage (Notes 4, 5)
Common-Mode Rejection Ratio
(Note 5)
CMRR vs. Frequency (Note 5)
VOS
CMRR
IRS+, IRS-
Input Bias Current, VCC = 0V,
VRS+ = VRS- = 60V
IRS+, IRS
-1.5V P VCM P 60V, TA = +25NC
-1.5V P VCM P 60V, -40NC P TA P +125NC
TA = +25NC
10
130
650
IRS+ - IRS- +10NC < TA <+85NC
FV
400
120
130
dB
110
90
35
dB
60
60
25
-40NC < TA < +125NC
Maxim Integrated
60
-40NC < TA < +125NC
TA = +25NC
Input Offset Current (Note 6)
V
-40NC < TA <+125NC
+10NC < TA <+85NC
AC CMRR f = 100kHz
Input Bias Current
+60
0.02
FA
FA
0.65
0.65
FA
0.8
2
MAX9643
60V High-Speed Precision Current-Sense Amplifier
ELECTRICAL CHARACTERISTICS* (continued)
(VCC = 5V, VRS+ = VRS- = 12V, TA = -40NC to +125NC, unless otherwise noted.) (Note 3)
PARAMETER
Maximum Sense Voltage Before
Input Saturation
SYMBOL
FS
Voltage Gain (Note 4)
Voltage Gain Error (Note 4)
CONDITIONS
VCM < 2V
GE
VCM R 2V
MIN
TYP
MAX
UNITS
100
MAX9643T
400
MAX9643U
300
mV
MAX9643T
2.5
MAX9643U
10
TA = +25NC
0.06
-40NC < TA < +125NC
V/V
0.5
0.6
%
AC CHARACTERISTICS
VSENSE = 25mVDC + 2mVP-P, MAX9643T
15
VSENSE = 25mVDC + 2mVP-P, MAX9643U
10
VOUT = 10mV to 110mV
12
V/Fs
Delay from Output Saturation to VOL
VSENSE = 0 to 20mV
100
ns
Delay from Input Saturation and
Delay from Output Saturation to VOH
VSENSE = 10V to 10mV
1
Fs
Signal Bandwidth
BW
Slew Rate
SR
MHz
OUTPUT CHARACTERISTICS
Output Short-Circuit Current
Output-Voltage Low (MAX9643T)
(Note 5)
Output-Voltage Low (MAX9643U)
(Note 5)
Output-Voltage High (Note 7)
Capacitive Drive Capability
Maxim Integrated
ISC
3.39
IOUT = 100FA sink, TA = +25NC
IOUT = 100FA sink, -40NC < TA < +125NC
VOL
VOL
0.2
2.2
IOUT = 100FA sink, +10NC < TA < +85NC
1.2
IOUT = 1mA sink, TA = +25NC
IOUT = 1mA sink, -40NC < TA < +125NC
0.6
IOUT = 100FA sink, TA = +25NC
IOUT = 100FA sink, -40NC < TA < +125NC
0.5
CL
RLOAD = Open, no sustained oscillation
4
8.8
4.8
IOUT = 1mA sink, TA = +25NC
IOUT = 1mA sink, -40NC < TA < +125NC
VOH
mV
10
10
IOUT = 100FA sink, +10NC < TA < +85NC
IOUT = 1mA source, VCC < 4.5V
IOUT = 1mA source, VCC R 4.5V
mA
1
0.6
mV
10
10
VCC - 1.3
V
3.2
30
pF
3
MAX9643
60V High-Speed Precision Current-Sense Amplifier
ELECTRICAL CHARACTERISTICS* (continued)
(VCC = 5V, VRS+ = VRS- = 12V, TA = -40NC to +125NC, unless otherwise noted.) (Note 3)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
36
V
POWER-SUPPLY CHARACTERISTICS
Power Supply
Power-Supply Rejection Ratio
(Note 5)
VCC
PSRR
Quiescent Supply Current
ICC
Charge-Pump Current
IEE
Note
Note
Note
Note
Note
Guaranteed by PSRR
2.7
VCC = 2.7V to 36V, VSENSE = 10mV,
TA = +25NC
107
-40NC < TA < +125NC
TA = +25NC
125
1000
-40NC < TA < +125NC
DVEE = 500mV
dB
100
1400
1600
4
FA
mA
3: All devices are 100% production tested at TA = +25NC. Temperature limits are guaranteed by design and/or characterization.
4: Gain and offset voltage are calculated based on two point measurements: VSENSE1 = 10mV and VSENSE2 = 100mV.
5:VOS, VOL, CMRR, and PSRR are measured with the charge pump off.
6: Guaranteed by design and/or characterization.
7: The maximum VSENSE of the MAX9643T is 400mV. With the gain = 2.5V/V, the output swing high is not applicable to the
MAX9643T.
Maxim Integrated
4
MAX9643
60V High-Speed Precision Current-Sense Amplifier
Typical Operating Characteristics
(VCC = 5V, VRS+ = VRS- = 12V, TA = -40NC to +125NC, unless otherwise noted. All devices are 100% production tested at TA = +25NC.
Temperature limits are guaranteed by design and/or characterization.)
SUPPLY CURRENT
vs. SUPPLY VOLTAGE
1.4
25
20
15
10
1.2
1.3
1.1
1.0
0.9
0.8
1.2
1.1
1.0
0.9
0.8
0.7
0.7
5
0.6
0.6
0
0.5
-20 -15 -10 -5
0
0.5
0
5 10 15 20 25 30
10
20
30
40
-25
0
25
50
75
100
SUPPLY VOLTAGE (V)
TEMPERATURE (°C)
GAIN ERROR
vs. COMMON-MODE VOLTAGE
GAIN ERROR vs. TEMPERATURE
COMMON-MODE REJECTION RATIO
vs. FREQUENCY (VCM_AC = 100mV)
0.12
0.10
0.08
0.14
0.12
0.10
0.08
0.06
0.06
0.04
0.04
0.02
0.02
0
10
20
30
40
COMMON-MODE VOLTAGE (V)
Maxim Integrated
50
60
-20
-40
-60
-80
-100
-120
-140
0
0
0
125
MAX9643 toc06
0.16
GAIN ERROR (%)
0.14
0.18
COMMON-MODE REJECTION RATIO (dB)
0.16
MAX9643 toc05
0.20
MAX9643 toc04
0.18
-10
-50
INPUT OFFSET VOLTAGE (V)
0.20
GAIN ERROR (%)
1.4
SUPPLY CURRENT (mA)
1.3
SUPPLY CURRENT (mA)
30
1.5
MAX9643 toc02
35
OCCURRENCE (%)
1.5
MAX9643 toc01
40
SUPPLY CURRENT
vs. TEMPERATURE
MAX9643 toc03
INPUT OFFSET VOLTAGE HISTOGRAM
-50
-25
0
25
50
75
TEMPERATURE (°C)
100
125
1
10
100
1000
10,000 100,000
FREQUENCY (kHz)
5
MAX9643
60V High-Speed Precision Current-Sense Amplifier
Typical Operating Characteristics (continued)
(VCC = 5V, VRS+ = VRS- = 12V, TA = -40NC to +125NC, unless otherwise noted. All devices are 100% production tested at TA = +25NC.
Temperature limits are guaranteed by design and/or characterization.)
POWER-SUPPLY REJECTION RATIO
vs. FREQUENCY
-40
-60
-80
-100
-120
-140
1
10
100
1000
MAX9643 toc09
3.9
3.8
3.7
3.6
3.5
3.4
3.3
3.2
3.1
3.0
1
10
100
1000
0
10,000 100,000
FREQUENCY (kHz)
FREQUENCY (kHz)
OUTPUT-VOLTAGE LOW
vs. OUTPUT SINK CURRENT
SMALL-SIGNAL TRANSIENT RESPONSE
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
OUTPUT SOURCE CURRENT (mA)
LARGE-SIGNAL TRANSIENT RESPONSE
MAX9643 toc11
MAX9643 toc10
600
OUTPUT-VOLTAGE LOW (µV)
10,000
4.0
OUTPUT-VOLTAGE HIGH (V)
SMALL-SIGNAL GAIN (dB)
-20
20
18
16
14
12
10
8
6
4
2
0
-2
-4
-6
-8
-10
MAX9643 toc08
MAX9643 toc07
POWER-SUPPLY REJECTION RATIO (dB)
0
OUTPUT-VOLTAGE HIGH
vs. OUTPUT SOURCE CURRENT
SMALL SIGNAL vs. FREQUENCY
(MAX9643T)
500
400
300
200
100
MAX9643 toc12
MAX9643T
MAX9643T
OUTPUT
10mV/div
OUTPUT
100mV/div
GND
GND
INPUT
10mV/div
INPUT
100mV/div
GND
GND
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
200ns/div
100ns/div
OUTPUT SINK CURRENT (mA)
Maxim Integrated
6
MAX9643
60V High-Speed Precision Current-Sense Amplifier
Typical Operating Characteristics (continued)
(VCC = 5V, VRS+ = VRS- = 12V, TA = -40NC to +125NC, unless otherwise noted. All devices are 100% production tested at TA = +25NC.
Temperature limits are guaranteed by design and/or characterization.)
OUTPUT LOW-SATURATION RECOVERY
RESPONSE (INPUT SIGNAL = 0V TO 20mV)
OUTPUT HIGH-SATURATION RECOVERY
RESPONSE (INPUT SIGNAL = 4V TO 100mV)
STARTUP DELAY
(VSENSE = 200mV)
MAX9643 toc14
MAX9643 toc13
MAX9643T
MAX9643T
INPUT
2V/div
MAX9643T
VCC
5V/div
INPUT
20mV/div
MAX9643 toc15
GND
VRS_
VRS_
OUTPUT
1V/div
OUTPUT
50mV/div
GND
GND
OUTPUT
500mV/div
GND
200ns/div
1µs/div
100µs/div
INPUT SENSE VOLTAGE SATURATION
(VCM = 1.5V)
INPUT SENSE VOLTAGE SATURATION
(VCM = 12V)
MAX9643 toc17
MAX9643 toc16
MAX9643T
MAX9643T
VSENSE
1V/div
VSENSE
500mV/div
GND
GND
OUTPUT
1V/div
OUTPUT
200mV/div
GND
GND
200µs/div
200µs/div
COMMON MODE
(VCM = 0V TO 10V)
CHARGE-PUMP NOISE
MAX9643 toc18
MAX9643T
CH2
MAX9643 toc19
MAX9643T
VCM
5V/div
CP1
2V/div
GND
GND
OUTPUT
200mV/div
OUTPUT
20mV/div
GND
1µs/div
Maxim Integrated
CH1
20ns/div
7
MAX9643
60V High-Speed Precision Current-Sense Amplifier
Pin Configuration
TOP VIEW
OUT VCC
8
7
RS- RS+
6
5
MAX9643
EP
+
1
2
GND VEE
3
4
CP1 CP2
TDFN
Pin Description
PIN
NAME
1
GND
Ground
2
VEE
Charge-Pump Output. Connect 1µF to GND.
3
CP1
Positive Terminal of 1µF Flying Capacitor
4
CP2
Negative Terminal of 1µF Flying Capacitor
5
RS+
Positive Sense Resistor Input
6
RS-
Negative Sense Resistor Input
7
VCC
Power Supply
8
OUT
Output
—
EP
Maxim Integrated
DESCRIPTION
Exposed Pad. Must be externally connected to GND.
8
MAX9643
60V High-Speed Precision Current-Sense Amplifier
Detailed Description
The MAX9643 is a high-speed precision current-sense
amplifier ideal for a wide variety of high-performance
industrial and automotive power-supply applications. The
device’s low input offset voltage, tight gain error, and low
temperature drift characteristics allow the use of smallsense resistors for current measurements to improve
power-supply conversion efficiency and accuracy of measurements. Its fast response allows it to react quickly to
switching currents as is common in power-supply circuits,
and makes it possible to be used as part of control loops.
The unidirectional high-side, current-sense amplifier
also features a wide -1.5V to +60V input common-mode
range. This feature allows monitoring of power-supply
load current even if the rail is shorted to ground. Highside current monitoring does not interfere with the ground
path of the load being measured, making the IC particularly useful in a wide range of high-reliability systems.
The IC has been designed on a proprietary high-speed
complementary BiCMOS SOI process. This high-voltage
analog process is optimized for excellent AC dynamic
performance, ultra-low noise, wide operating voltage
range, and low-drift signal conditioning circuitry.
Input Common-Mode Voltage Range
The use of an internal negative voltage rail for its
input stage allows the current-sense amplifier to extend
its input common-mode voltage below ground without
any crossover inaccuracies. Crossover problems with
precision can occur with alternate architectures of
current-sense amplifiers that use two different input
differential stages to cover the entire operating commonmode voltage range (either npn/pnp transistors or pnp
transistor and resistor-based input stages).
The minimum input common-mode voltage capability
is dependent on the internal negative voltage rail generated by the charge pump. Since this negative voltage rail
goes down at low values of VCC (i.e., when under 5V), the
minimum input common-mode voltage rail is also limited
at low VCC.
The negative input common-mode voltage specification
can be exceeded if the input current is limited to under
5mA. This is typically accomplished by using series
input resistors. The input ESD structure for negative input
common-mode voltages looks like 5 series-connected
diodes. Assuming an on-drop of 0.7V per diode, negative
Applications Information
Internal Charge Pump
An internal charge pump on the part is utilized to provide
two attractive application features:
FROM RSENSE
TO ADC
8
U Input common-mode voltage range extends to 1.5V
below ground.
7
6
5
It is possible to also connect the VEE pin directly to an
external -5V power supply. Ensure that this voltage is
lower than the internally generated charge-pump voltage.
The -4.7V voltage is the minimum necessary to guarantee
the charge pump is turned off.
0.1µF
A 250kHz internal charge pump is used to generate a
negative voltage rail to bias both the input stage and
output stage of the current-sense amplifier. Use a 1FF
ceramic capacitor between the CP1 and CP2 pins of the
IC, and ensure a tight layout to minimize loop area. Using
a 1FF ceramic capacitor from VEE to GND is essential to
good low-noise performance.
0.1µF
U Output voltage range extends down to true ground.
MAX9643
+
1
1µF
2
3
4
1µF
0.1µF
Figure 1. PCB Layout
The MAX9643 EV kit shows a good example layout. A
representation is shown in Figure 1.
Maxim Integrated
9
MAX9643
60V High-Speed Precision Current-Sense Amplifier
input voltage transients below -3.5V should be limited by
the use of input series resistors. For example, if an input
voltage transient or fault condition of -12V were to occur
in the application, use a resistor greater than 8.5V/5mA =
1700I. Use 2kI for margin.
The maximum input common-mode voltage extends up
to 60V over the entire VCC range of 2.7V to 36V. It is recommended to shield the device from overvoltages above
its 65V absolute maximum rating to protect the device.
Output Voltage Range
The internal negative voltage rail generated by the
charge pump is also used to bias the output stage of
the current-sense amplifier, allowing it to feature true
VOL = 0V performance. This feature allows small sense
voltages to be used and eases interface to other analog
and mixed-signal ICs. In reality, attaining true VOL = 0V
specification is usually limited by the offset voltage of the
current-sense amplifier since VOUT = VOS x gain, when
input VSENSE = 0V.
In addition, the maximum output voltage of the IC is internally clamped to less than 5V even when it is powered
from a 40V rail. This allows easy interface to low-voltage
downstream circuitry without worrying about protecting
them from large input voltage transients or faults.
Common Mode and Differential Filtering
When the AC common-mode signal with large amplitudes (>5VP-P for example) at high frequencies
(> 1kHz for example) is present at the inputs, AC
CMRR limitation causes spikes at the output as shown
in the Common Mode graph in the Typical Operating
Characteristics. Application Note 3888: Performance
of Current-Sense Amplifiers with Input Series Resistors
explains the way to filter out these common-mode transients as seen by the amplifier and filtering of the differential mode.
Choosing the Sense Resistor
Choose RSENSE based on the following criteria:
U Voltage loss: A high RSENSE value causes the
power-source voltage to reduce due to IR drop. For
minimal voltage loss, use the lowest RSENSE value.
UAccuracy: A high RSENSE value allows lower currents
to be measured more accurately. This is because
input offset voltages become less significant when the
sense voltage is larger.
U Efficiency and power dissipation: At high current
levels, the I2R losses in RSENSE can be significant.
Take this into consideration when choosing the resistor value and its power dissipation (wattage) rating.
Also, the sense resistor’s value might drift if it is
allowed to heat up excessively.
UInductance: Keep inductance low if ISENSE has a
large high-frequency component. Because of the
high currents that flow through RSENSE, take care
to eliminate parasitic trace resistance from causing
errors in the sense voltage. Either use a four-terminal
current-sense resistor or use Kelvin (force and sense)
PCB layout techniques.
Power-Supply Bypassing and Grounding
For most applications, bypass VCC to GND with a 0.1FF
ceramic capacitor. In many applications, VCC can be
connected to one of the current monitor terminals (RS+
or RS-). Because VCC is independent of the monitored
voltage, VCC can be connected to a separate regulated
supply. There are no specific power-supply sequencing
issues to consider. The part can withstand 60V input
common-mode voltages even when VCC = 0V, and
maintains a high input impedance in this application
condition.
Chip Information
Ordering Information
PROCESS: BiCMOS
PART
PINPACKAGE
GAIN
(V/V)
TEMP
RANGE
MAX9643TATA+
8 TDFN-EP*
2.5
-40NC to +125NC
MAX9643UATA+
8 TDFN-EP*
10
-40NC to +125NC
+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
Maxim Integrated
10
MAX9643
60V High-Speed Precision Current-Sense Amplifier
Package Information
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a
“+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the
drawing pertains to the package regardless of RoHS status.
PACKAGE TYPE
PACKAGE CODE
OUTLINE NO.
LAND PATTERN NO.
8 TDFN-EP
T823+1
21-0174
90-0091
Maxim Integrated
11
MAX9643
60V High-Speed Precision Current-Sense Amplifier
Revision History
REVISION
NUMBER
REVISION
DATE
0
8/11
Initial release
1
2/13
Updated Electrical Characteristics and Typical Operating Characteristics. Added the
Common Mode and Differential Filtering section.
2
1/14
Revised the General Description, Benefits and Features, Electrical Characteristics,
and Internal Charge Pump sections.
DESCRIPTION
PAGES
CHANGED
—
3, 5, 6, 9
1–3, 8
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and
max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.
Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000
© 2014
Maxim Integrated
12
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.