ROHM UMF6N

UMF6N
Transistors
Power management (dual transistors)
UMF6N
2SA2018 and 2SK3019 are housed independently in a UMT package.
0.65
(1)
1.25
2.0
1.3
(3)
(2)
(4)
(5)
(6)
0.2
!Features
1) Power switching circuit in a single package.
2) Mounting cost and area can be cut in half.
0.65
!External dimensions (Units : mm)
!Application
Power management circuit
ROHM : UMT6
EIAJ : SC-88
!Equivalent circuits
(3)
(2)
0.1Min.
0.9
0.7
0~0.1
!Structure
Silicon epitaxial planar transistor
0.15
2.1
Each lead has same dimensions
(1)
Tr1
Tr2
(4)
(5)
(6)
!Packaging specifications
Type
Package
Marking
Code
Basic ordering unit (pieces)
UMF6N
UMT6
F6
TR
3000
1/5
UMF6N
Transistors
!Absolute maximum ratings (Ta=25°C)
Tr1
Limits
Symbol
−15
VCBO
−12
VCEO
−6
VEBO
−500
IC
Collector current
−1.0
ICP
150(TOTAL)
PC
Power dissipation
Tj
150
Junction temperature
Tstg
−55~+150
Range of storage temperature
Parameter
Collector-base voltage
Collector-emitter voltage
Emitter-base voltage
Unit
V
V
V
mA
A
mW
°C
°C
∗1
∗2
∗1 Single pulse PW=1ms
∗2 120mW per element must not be exceeded. Each terminal mounted on a recommended land.
Tr2
Symbol
Limits
Parameter
VDSS
30
Drain-source voltage
VGSS
±20
Gate-source voltage
ID
100
Continuous
Drain current
200
IDP
Pulsed
IDR
100
Continuous
Reverse drain
current
IDRP
200
Pulsed
Total power dissipation
150(TOTAL)
PD
Tch
150
Channel temperature
Tstg
−55~+150
Range of storage temperature
Unit
V
V
mA
mA
mA
mA
mW
°C
°C
∗1
∗1
∗2
∗1 PW≤10ms Duty cycle≤50%
∗2 120mW per element must not be exceeded. Each terminal mounted on a recommended land.
!Electrical characteristics (Ta=25°C)
Tr1
Parameter
Collector-emitter breakdown voltage
Collector-base breakdown voltage
Emitter-base breakdown voltage
Collector cut-off current
Emitter cut-off current
Collector-emitter saturation voltage
DC current gain
Transition frequency
Collector output capacitance
Symbol
BVCEO
BVCBO
BVEBO
ICBO
IEBO
VCE(sat)
hFE
fT
Cob
Min.
−12
−15
−6
−
−
−
270
−
−
Typ.
−
−
−
−
−
−100
−
260
6.5
Max.
−
−
−
−100
−100
−250
680
−
−
Unit
V
V
V
nA
nA
mV
−
MHz
pF
Conditions
IC=−1mA
IC=−10µA
IE=−10µA
VCB=−15V
VEB=−6V
IC=−200mA, IB=−10mA
VCE=−2V, IC=−10mA
VCE=−2V, IE=10mA, f=100MHz
VCB=−10V, IE=0mA, f=1MHz
Symbol
IGSS
V(BR)DSS
IDSS
VGS(th)
Min.
−
30
−
0.8
−
−
20
−
−
−
−
−
−
−
Typ.
−
−
−
−
5
7
−
13
9
4
15
35
80
80
Max.
±1
−
1.0
1.5
8
13
−
−
−
−
−
−
−
−
Unit
µA
V
µA
V
Ω
Ω
ms
pF
pF
pF
ns
ns
ns
ns
Conditions
VGS=±20V, VDS=0V
ID=10µA, VGS=0V
VDS=30V, VGS=0V
VDS=3V, ID=100µA
ID=10mA, VGS=4V
ID=1mA, VGS=2.5V
VDS=3V, ID=10mA
Tr2
Parameter
Gate-source leakage
Drain-source breakdown voltage
Zero gate voltage drain current
Gate-threshold voltage
Static drain-source
on-state resistance
Forward transfer admittance
Input capacitance
Output capacitance
Reverce transfer capacitance
Turn-on delay time
Rise time
Turn-off delay time
Fall time
RDS(on)
|Yfs|
Ciss
Coss
Crss
td(on)
tr
td(off)
tf
VDS=5V, VGS=0V, f=1MHz
ID=10mA, VDD 5V,
VGS=5V, RL=500Ω,
RGS=10Ω
2/5
UMF6N
Transistors
0.2
10
0.4
0.6
0.8
1.0
1.2
1
1.4
10
BASE TO EMITTER VOLTAGE : VBE (V)
Ta=25°C
Ta=−40°C
10
1
10
100
1000
1000
IE=0A
f=1MHz
Ta=25°C
100
Cib
10
Cob
1
0.1
1
10
100
EMITTER TO BASE VOLTAGE : VEB(V)
Fig.7 Collector output capacitance
vs. collector-base voltage
Emitter input capacitance
vs. emitter-base voltage
1000
Ta=−40°C
Ta=25°C
1000
Ta=125°C
100
10
1
10
100
Ta=25°C
Pulsed
100
IC/IB=50
IC/IB=20
IC/IB=10
10
1
1
1000
10
100
1000
COLLECTOR CURRENT : IC (mA)
1000
IC/IB=20
Pulsed
VCE=2V
Ta=25°C
Pulsed
100
10
1
1
10
100
1000
COLLECTOR CURRENT : IC (mA)
EMITTER CURRENT : IE (mA)
Fig.5 Base-emitter saturation voltage
vs. collector current
Fig.6 Gain bandwidth product
vs. emitter current
COLLECTOR CURRENT : IC (mA)
Fig.4 Collector-emitter saturation voltage
vs. collector current ( ΙΙ )
EMITTER INPUT CAPACITANCE : Cib (pF)
COLLECTOR OUTPUT CAPACITANCE : Cob (pF)
BASER SATURATION VOLTAGE : VBE (sat) (mV)
Ta=125°C
100
1
100
10000
IC/IB=20
Pulsed
10
TRANSITION FREQUENCY : IC (A)
COLLECTOR SATURATION VOLTAGE : VCE (sat) (V)
Fig.1 Grounded emitter propagation
characteristics
1000
Fig.3 Collector-emitter saturation voltage
vs. collector current ( Ι )
Ta=−40°C
100
1
0
Fig.2 DC current gain vs.
collector current
Ta=25°C
1000
TRANSITION FREQUENCY : fT (MHz)
DC CURRENT GAIN : hFE
C
Ta= −40°
C
Ta=25°
5°C
1
VCE=2V
Pulsed
Ta=125°C
100
10
COLLECTOR CURRENT : IC (mA)
1000
VCE=2V
Pulsed
Ta=12
COLLECTOR CURRENT : IC (mA)
1000
COLLECTOR SATURATION VOLTAGE : VCE(sat) (mV)
!Electrical characteristic curves
Tr1
Ta=25°C
Single Pulsed
1
10ms
100ms
1ms
DC
0.1
0.01
0.001
0.01
0.1
1
10
100
EMITTER CURRENT : VCE (V)
Fig.8 Safe operation area
3/5
UMF6N
Transistors
0.15
200m
3V
3.5V
0.1
2.5V
0.05
2V
50m
20m
10m
5m
2m
0.5m
0.2m
3
4
0.1m
0
5
1
10
50
VGS=4V
Pulsed
Ta=125°C
75°C
25°C
−25°C
5
2
1
0.5
0.001 0.002
0.005 0.01 0.02
0.05 0.1
0.2
0.5
20
5
2
1
0.5
0.001 0.002
0.05
0.1
0.2
0.5
ID=100mA
6
ID=50mA
4
3
2
0.1
0.05
VDS=3V
Pulsed
0.01
0
−50 −25
0.001
0.0001 0.0002
0
25
50
75
100 125
150
CHANNEL TEMPERATURE : Tch (°C)
Fig.15 Static drain-source on-state
resistance vs. channel temperature
Ta=−25°C
25°C
75°C
125°C
0.005
0.002
0.0005 0.001 0.002
0.005 0.01 0.02
50
75
100
125 150
10
5
ID=0.1A
ID=0.05A
5
10
15
20
GATE-SOURCE VOLTAGE : VGS (V)
0.02
1
25
Ta=25°C
Pulsed
0
0
0.5
Fig.13 Static drain-source on-state
resistance vs. drain current ( ΙΙ )
FORWARD TRANSFER
ADMITTANCE : |Yfs| (S)
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : RDS(on) (Ω)
0.005 0.01 0.02
0
15
0.2
5
0
−50 −25
Fig.11 Gate threshold voltage vs.
channel temperature
10
VGS=4V
Pulsed
7
0.5
DRAIN CURRENT : ID (A)
Fig.12 Static drain-source on-state
resistance vs. drain current ( Ι )
8
1
CHANNEL TEMPERATURE : Tch (°C)
VGS=2.5V
Pulsed
Ta=125°C
75°C
25°C
−25°C
DRAIN CURRENT : ID (A)
9
VDS=3V
ID=0.1mA
Pulsed
1.5
Fig.10 Typical transfer characteristics
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : RDS(on) (Ω)
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : RDS(on) (Ω)
20
4
2
GATE-SOURCE VOLTAGE : VGS (V)
Fig.9 Typical output characteristics
50
3
2
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : RDS(on) (Ω)
2
DRAIN-SOURCE VOLTAGE : VDS (V)
0.05 0.1 0.2
Fig.14 Static drain-source on-state
resistance vs. gate-source
voltage
REVERSE DRAIN CURRENT : IDR (A)
1
Ta=125°C
75°C
25°C
−25°C
1m
VGS=1.5V
0
0
VDS=3V
Pulsed
100m
Ta=25°C
Pulsed
DRAIN CURRENT : ID (A)
DRAIN CURRENT : ID (A)
4V
GATE THRESHOLD VOLTAGE : VGS(th) (V)
Tr2
0.5
DRAIN CURRENT : ID (A)
Fig.16 Forward transfer admittance vs.
drain current
200m
VGS=0V
Pulsed
100m
50m
20m
Ta=125°C
75°C
25°C
−25°C
10m
5m
2m
1m
0.5m
0.2m
0.1m
0
0.5
1
1.5
SOURCE-DRAIN VOLTAGE : VSD (V)
Fig.17 Reverse drain current vs.
source-drain voltage ( Ι )
4/5
UMF6N
50
Ta=25°C
Pulsed
100m
20
50m
20m
VGS=4V
10m
0V
5m
2m
1m
0.5m
1000
Ta=25°C
f=1MHZ
VGS=0V
Ciss
10
5
Coss
Crss
2
1
Ta=25°C
VDD=5V
VGS=5V
RG=10Ω
Pulsed
tf
500
SWITHING TIME : t (ns)
200m
CAPACITANCE : C (pF)
REVERSE DRAIN CURRENT : IDR (A)
Transistors
td(off)
200
100
50
20
tr
td(on)
10
5
0.2m
0.1m
0
0.5
1
1.5
SOURCE-DRAIN VOLTAGE : VSD (V)
Fig.18 Reverse drain current vs.
source-drain voltage ( ΙΙ )
0.5
0.1
0.2
0.5
1
2
5
10
20
50
2
0.1 0.2
0.5
1
2
5
10
20
50
100
DRAIN-SOURCE VOLTAGE : VDS (V)
DRAIN CURRENT : ID (mA)
Fig.19 Typical capacitance vs.
drain-source voltage
Fig.20 Switching characteristics
5/5
Appendix
Notes
No technical content pages of this document may be reproduced in any form or transmitted by any
means without prior permission of ROHM CO.,LTD.
The contents described herein are subject to change without notice. The specifications for the
product described in this document are for reference only. Upon actual use, therefore, please request
that specifications to be separately delivered.
Application circuit diagrams and circuit constants contained herein are shown as examples of standard
use and operation. Please pay careful attention to the peripheral conditions when designing circuits
and deciding upon circuit constants in the set.
Any data, including, but not limited to application circuit diagrams information, described herein
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of
whatsoever nature in the event of any such infringement, or arising from or connected with or related
to the use of such devices.
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
otherwise dispose of the same, no express or implied right or license to practice or commercially
exploit any intellectual property rights or other proprietary rights owned or controlled by
ROHM CO., LTD. is granted to any such buyer.
Products listed in this document use silicon as a basic material.
Products listed in this document are no antiradiation design.
The products listed in this document are designed to be used with ordinary electronic equipment or devices
(such as audio visual equipment, office-automation equipment, communications devices, electrical
appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of
reliability and the malfunction of with would directly endanger human life (such as medical instruments,
transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other
safety devices), please be sure to consult with our sales representative in advance.
About Export Control Order in Japan
Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control
Order in Japan.
In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause)
on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.
Appendix1-Rev1.0