Application Note - Traco Electronic AG

Application Note
TEP 160 Series
TEP 160-Series
160W, Wide Input, 16.5-75 VDC, Single Output DC/DC Converters
FEATURES
►INDUSTRY STANDARD HALF-BRICK FOOTPRINT
2.40Î2.28Î0.50 INCH ( 61.0Î57.9Î12.7 mm )
►ROHS DIRECTIVE COMPLIANT
►SIX-SIDED CONTINUOUS SHIELD
►SOFT-START
►HIGH POWER DENSITY OF 71.6W / INCH3
►2:1 WIDE INPUT VOLTAGE RANGE
►HIGH EFFICIENCY UP TO 93%
►INPUT TO OUTPUT BASIC INSULATION: 2250 VDC
►OUTPUT CURRENT UP TO 45A
►ADJUSTABLE OUTPUT VOLTAGE
►NO MINIMUM LOAD REQUIRED
Applications
►Wireless Network
►Telecom/ Datacom
►Industry Control System
►Distributed Power Architectures
►Semiconductor Equipment
OPTIONS
►HEAT-SINK AVAILABLE FOR EXTENDED
OPERATION
►POSITIVE LOGIC REMOTE ON/OFF
►CASE PIN
►SYNCHRONOUS
►TERMINAL BLOCK
General Description
The TEP 160 series DC/DC converters provide up to 196 watts of output power in an industry standard half-brick
package and footprint. All models feature a wide input range, adjustable output voltage.
Table of contents
Output Specification
Input Specification
General Specification
Environmental Specification
EMC characteristic
Characteristic Curves
Testing Configurations
EMI Considerations
EMS Considerations
Output Voltage Adjustment
Remote Sense
Input Source Impedance
Output Over Current Protection
Short Circuitry Protection
http://www.tracopower.com
P2
P4
P5
P6
P6
P7
P51
P54
P56
P57
P59
P59
P60
P60
Output Over Voltage Protection
Over Temperature Protection
Thermal Considerations
Heat-Sink Considerations
Remote ON/OFF Control
Synchronous Pin
Mechanical Data
Recommended Pad Layout
Soldering Considerations
Packaging Information
Part Number Structure
Safety and Installation Instruction
MTBF and Reliability
P60
P60
P61
P63
P64
P65
P66
P68
P69
P70
P71
P71
P71
Page 1 of 71
Application Note
TEP 160 Series
Output Specification
Parameter
Device
Min
Typ
Max
Unit
TEP 160-xx12
TEP 160-xx15
TEP 160-xx24
TEP 160-xx28
TEP 160-xx48
TEP 160-48153
11.88
14.85
23.76
27.72
47.52
52.47
12
15
24
28
48
53
12.12
15.15
24.24
28.28
48.48
53.53
VDC
Voltage Adjustability (see page 57)
All
-20
+10
%
Output Regulation
Line (Vin(min) to Vin(max) at Full Load)
Load (0% to 100% of Full Load)
All
-0.1
-0.1
+0.1
+0.1
%
Output Voltage
(Vin = Vin(nom) , Full Load , Ta = 25°C)
Output Ripple & Noise
With a 1μF/25V X7R MLCC and a 22μF/25V POS-CAP
With a 1μF/25V X7R MLCC and a 22μF/25V POS-CAP
With a 4.7μF/50V X7R MLCC
With a 4.7μF/50V X7R MLCC
With a 2.2μF/100V X7R MLCC
With a 2.2μF/100V X7R MLCC
(Vin = Vin(nom) , Full Load, Ta = 25°C).
Peak to Peak (5Hz to 20MHz bandwidth)
TEP 160-xx12
TEP 160-xx15
TEP 160-xx24
TEP 160-xx28
TEP 160-xx48
TEP 160-48153
100
100
200
200
300
300
Temperature Coefficient
All
Output Voltage Overshoot
(Vin = Vin(min) to Vin(max) , Full Load , Ta=25°C).
All
0
TEP 160-xx12
TEP 160-xx15
TEP 160-xx24
TEP 160-xx28
TEP 160-xx48
TEP 160-48153
700
800
900
1000
1800
2000
All
250
Dynamic Load Response
Peak Deviation
(Vin = Vin(nom) , Ta=25°C)
Load step change between 75% to 100% of Full Load
Setting Time (Vout<10% peak deviation)
http://www.tracopower.com
-0.02
125
125
250
250
350
350
mVp-p
+0.02
%/°C
5
% Vout
mV
μs
Page 2 of 71
Application Note
TEP 160 Series
Output Specification (continued)
Parameter
Output Current
Output Capacitor Load
Output Over Voltage Protection (Hiccup Mode)
Device
Min
TEP 160-2412
0
Typ
Max
13
TEP 160-2413
0
10
TEP 160-2415
0
6.5
TEP 160-2416
0
5.5
TEP 160-2418
0
3.3
TEP 160-4812
0
16
TEP 160-4813
0
13
TEP 160-4815
0
8
TEP 160-4816
0
7
TEP 160-4818
0
4
TEP 160-48153
0
3.7
TEP 160-2412
10800
TEP 160-2413
6600
TEP 160-2415
2700
TEP 160-2416
1900
TEP 160-2418
680
TEP 160-4812
13300
TEP 160-4813
8600
TEP 160-4815
3300
TEP 160-4816
2500
TEP 160-4818
830
TEP 160-48153
690
TEP 160-xx12
13.80
15.6
TEP 160-xx15
17.25
19.5
TEP 160-xx24
27.60
31.2
TEP 160-xx28
32.20
36.4
TEP 160-xx48
55.20
62.4
TEP 160-48153
60.95
68.9
Output Over Current Protection (Hiccup Mode)
All
120
150
Output Short Circuit Protection (Hiccup Mode)
All
http://www.tracopower.com
Unit
A
μF
VDC
% FL
Automatics recovery
Page 3 of 71
Application Note
TEP 160 Series
Input Specification
Parameter
Operating Input Voltage
Continuous
Device
Min
Typ
Max
TEP 160-24xx
TEP 160-48xx
16.5
33
24
48
36
75
Transient (1sec maximum)
TEP 160-24xx
TEP 160-48xx
50
100
Under Voltage Lockout Turn-on Threshold
TEP 160-24xx
18
TEP 160-48xx
34
Under Voltage Lockout Turn-off Threshold
Input Standby Current (Vin = Vin(nom) , No Load , Ta=25°C)
TEP 160-24xx
15.5
16.3
TEP 160-48xx
31.6
32.5
TEP 160-2412
35
TEP 160-2413
35
TEP 160-2415
35
TEP 160-2416
50
TEP 160-2418
50
TEP 160-4812
25
TEP 160-4813
25
TEP 160-4815
25
TEP 160-4816
25
TEP 160-4818
25
TEP 160-48153
25
All
50
Start Up Time
Power up
Remote ON/OFF
(Vin = Vin(nom) and constant resistive load)
All
75
75
Remote ON/OFF (see page 65)
Negative logic: Device code without Suffix or “-L”
DC-DC ON
(Short)
DC-DC OFF (Open)
Positive logic: Device code with Suffix “-P” or “-S”
DC-DC ON
(Open)
DC-DC OFF (Short)
(The CTRL pin voltage is referenced to -INPUT)
All
Input reflected ripple current (see page 51)
(5 to 20MHz, 10μH source impedance)
Remote Off state Input Current
Input Current of Remote Control Pin
SYNC pin output signal (see page 66)
http://www.tracopower.com
All
100
100
3
0
12
1.2
-0.3
VDC
VDC
mAp-p
1.2
12
3
VDC
mA
0
3
-0.5
Unit
ms
VDC
1
mA
6
V
Page 4 of 71
Application Note
TEP 160 Series
General Specification
Parameter
Efficiency (Vin = Vin(nom) , Full Load , Ta=25°C)
Device
Min
Typ
TEP 160-2412
92
TEP 160-2413
92
TEP 160-2415
93
TEP 160-2416
93
TEP 160-2418
91
TEP 160-4812
92
TEP 160-4813
93
TEP 160-4815
92
TEP 160-4816
92
TEP 160-4818
92
TEP 160-48153
92
Max
Unit
%
Isolation Voltage (Basic Insulation) (1 minute)
Input to Output
All
Input (Output) to Case
VDC
1600
Isolation Resistance
All
Isolation Capacitance
All
Switching Frequency
All
Weight
2250
All
1
225
GΩ
250
2500
pF
275
kHz
105
(3.70)
g
(oz)
MTBF
BELLCORE TR-NWT-000332 Case 1:
50% Stress, Ta=40°C.
1.010×106
All
MIL-HDBK-217F:
hours
7.416×10
4
Ta=25°C, Full load (G/B, controlled environment)
Dimensions
All
2.40×2.28×0.50
(61.0×57.9×12.7)
Case Material
All
Metal
Base Material
All
FR4 PCB
Potting Material
All
Silicon (UL94-V0)
Design Meet Safety Standard
All
IEC60950-1, UL60950-1, EN60950-1
http://www.tracopower.com
Inch
(mm)
Page 5 of 71
Application Note
TEP 160 Series
Environmental Specification
Model
Min
Operating Case Temperature
Parameter
All
-40
Over Temperature Protection (see page 60)
All
Storage Temperature Range
All
Typ
Max
Unit
+115
°C
120
-55
°C
+125
°C
Thermal Impedance*
Module without assembly option
6.1
Heat-sink type with 0.24” Height
5.1
Heat-sink type with 0.45” Height
Terminal block type
4.6
All
°C/Watt
4.4
Only mount on the iron base-plate
2.8
(Test condition with vertical direction by natural convection
20FLM)
Relative Humidity
All
5
95
Thermal Shock
MIL-STD-810F
Vibration
MIL-STD-810F
% RH
EMC characteristic**
EMI
EN55022
ESD
EN61000-4-2
Air ±8kV and Contact ±6kV
Perf. Criteria A
Radiated Immunity
EN61000-4-3
20V/m
Perf. Criteria A
Fast Transient (see page 56)
EN61000-4-4
±2kV
Perf. Criteria A
Surge (see page 57)
EN61000-4-5
EN55024 ±2kV
Perf. Criteria A
Conducted Immunity
EN61000-4-6
10Vr.m.s
Perf. Criteria A
http://www.tracopower.com
Class A
Page 6 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25↑8C.The figures are identical for TEP 160-1210
30
90
25
EFFICIENCY(%)
Power Dissipation(W)
96
84
78
72
Vin= 9V
Vin= 12V
Vin= 22V
66
60
10
20
30
40
50
60
70
% of FULL LOAD
80
90
20
15
10
0
10
100
Efficiency versus Output Current
100
84
78
72
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
9
10
12
14
16
18
INPUT VOLTAGE(V)
20
OUTPUT POWER(%)
90
EFFICIENCY(%)
120
60
40
20
0
-40
OUTPUT POWER(%)
100
OUTPUT POWER(%)
100
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
80
90
100
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
120
Derating Output Current Versus Ambient Temperature
With 0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
50
60
70
% of FULL LOAD
Derating Output Current versus Ambient Temperature
With Airflow, Vin = Vin(nom)
120
0
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
120
20
30
80
22
Efficiency versus Input Voltage
40
20
Power Dissipation versus Output Current
96
66
Vin= 9V
Vin= 12V
Vin= 22V
5
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature
With 0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 7 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-1210 (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load ; Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 8 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-1211
30
90
25
EFFICIENCY(%)
Power Dissipation(W)
96
84
78
72
Vin= 9V
Vin= 12V
Vin= 22V
66
60
10
20
30
40
50
60
70
% of FULL LOAD
80
90
20
15
10
0
10
100
Efficiency versus Output Current
100
84
78
72
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
9
10
12
14
16
18
INPUT VOLTAGE(V)
20
OUTPUT POWER(%)
90
EFFICIENCY(%)
120
60
40
20
0
-40
OUTPUT POWER(%)
100
OUTPUT POWER(%)
100
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
80
90
100
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
120
Derating Output Current Versus Ambient Temperature
With 0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
50
60
70
% of FULL LOAD
Derating Output Current versus Ambient Temperature
With Airflow, Vin = Vin(nom)
120
0
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
120
20
30
80
22
Efficiency versus Input Voltage
40
20
Power Dissipation versus Output Current
96
66
Vin= 9V
Vin= 12V
Vin= 22V
5
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature
With 0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 9 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-1211 (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load ; Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 10 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-1212
30
90
25
EFFICIENCY(%)
Power Dissipation(W)
96
84
78
72
Vin= 8.5V
Vin= 12V
Vin= 22V
66
60
10
20
30
40
50
60
70
% of FULL LOAD
80
90
20
15
10
0
100
10
Efficiency versus Output Current
100
84
78
72
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
8.5
10
12
14
16
18
INPUT VOLTAGE(V)
20
OUTPUT POWER(%)
90
EFFICIENCY(%)
120
60
40
20
0
-40
OUTPUT POWER(%)
100
OUTPUT POWER(%)
100
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
80
90
100
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
120
Derating Output Current Versus Ambient Temperature
With 0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
50
60
70
% of FULL LOAD
Derating Output Current versus Ambient Temperature
With Airflow , Vin = Vin(nom)
120
0
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
120
20
30
80
22
Efficiency versus Input Voltage
40
20
Power Dissipation versus Output Current
96
66
Vin= 8.5V
Vin= 12V
Vin= 22V
5
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature
With 0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 11 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°.The figures are identical for TEP 160-1212 (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load ; Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 12 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-1213
30
90
25
EFFICIENCY(%)
Power Dissipation(W)
96
84
78
72
Vin= 8.5V
Vin= 12V
Vin= 22V
66
60
10
20
30
40
50
60
70
% of FULL LOAD
80
90
20
15
10
0
100
10
Efficiency versus Output Current
100
84
78
72
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
8.5
10
12
14
16
18
INPUT VOLTAGE(V)
20
OUTPUT POWER(%)
90
EFFICIENCY(%)
120
60
40
20
0
-40
OUTPUT POWER(%)
100
OUTPUT POWER(%)
100
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
80
90
100
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
120
Derating Output Current Versus Ambient Temperature
With 0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
50
60
70
% of FULL LOAD
Derating Output Current Versus Ambient Temperature
With Airflow , Vin = Vin(nom)
120
0
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
120
20
30
80
22
Efficiency versus Input Voltage
40
20
Power Dissipation versus Output Current
96
66
Vin= 8.5V
Vin= 12V
Vin= 22V
5
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature
With 0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 13 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-1213 (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load ; Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 14 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-1215
30
90
25
EFFICIENCY(%)
Power Dissipation(W)
96
84
78
72
Vin= 8.5V
Vin= 12V
Vin= 22V
66
60
10
20
30
40
50
60
70
% of FULL LOAD
80
90
20
15
10
0
100
10
Efficiency versus Output Current
100
84
78
72
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
8.5
10
12
14
16
18
INPUT VOLTAGE(V)
20
OUTPUT POWER(%)
90
EFFICIENCY(%)
120
60
40
20
0
-40
OUTPUT POWER(%)
100
OUTPUT POWER(%)
100
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
80
90
100
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
120
Derating Output Current Versus Ambient Temperature
With 0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
50
60
70
% of FULL LOAD
Derating Output Current versus Ambient Temperature
With Airflow , Vin = Vin(nom)
120
0
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
120
20
30
80
22
Efficiency versus Input Voltage
40
20
Power Dissipation versus Output Current
96
66
Vin= 8.5V
Vin= 12V
Vin= 22V
5
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
Derating Output Current Versus Ambient Temperature
With 0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 15 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-1215 (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load ; Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 16 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-1216
30
90
25
EFFICIENCY(%)
Power Dissipation(W)
96
84
78
72
Vin= 8.5V
Vin= 12V
Vin= 22V
66
60
10
20
30
40
50
60
70
% of FULL LOAD
80
90
20
15
10
0
100
10
Efficiency versus Output Current
100
84
78
72
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
8.5
10
12
14
16
18
INPUT VOLTAGE(V)
20
OUTPUT POWER(%)
90
EFFICIENCY(%)
120
60
40
20
0
-40
OUTPUT POWER(%)
100
OUTPUT POWER(%)
100
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
80
90
100
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
120
Derating Output Current Versus Ambient Temperature
With 0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
50
60
70
% of FULL LOAD
Derating Output Current versus Ambient Temperature
With Airflow , Vin = Vin(nom)
120
0
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
120
20
30
80
22
Efficiency versus Input Voltage
40
20
Power Dissipation versus Output Current
96
66
Vin= 8.5V
Vin= 12V
Vin= 22V
5
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature
With 0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 17 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-1216 (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load ; Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 18 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-1218
30
90
25
EFFICIENCY(%)
Power Dissipation(W)
96
84
78
72
Vin= 8.5V
Vin= 12V
Vin= 22V
66
60
10
20
30
40
50
60
70
% of FULL LOAD
80
90
20
15
10
0
100
10
Efficiency versus Output Current
100
84
78
72
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
8.5
10
12
14
16
18
INPUT VOLTAGE(V)
20
OUTPUT POWER(%)
90
EFFICIENCY(%)
120
60
40
20
0
-40
OUTPUT POWER(%)
100
OUTPUT POWER(%)
100
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
80
90
100
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
120
Derating Output Current Versus Ambient Temperature
With 0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
50
60
70
% of FULL LOAD
Derating Output Current versus Ambient Temperature
With Airflow , Vin = Vin(nom)
120
0
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
120
20
30
80
22
Efficiency versus Input Voltage
40
20
Power Dissipation versus Output Current
96
66
Vin= 8.5V
Vin= 12V
Vin= 22V
5
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature
With 0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 19 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-1218 (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load ; Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 20 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-2410
90
25
84
78
72
Vin= 16.5V
Vin= 24V
Vin= 36V
66
60
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
30
EFFICIENCY(%)
96
20
15
10
0
10
100
Efficiency versus Output Current
100
84
78
72
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
16.5
18
20
22
24
26
28
30
INPUT VOLTAGE(V)
32
34
OUTPUT POWER(%)
90
EFFICIENCY(%)
120
60
40
20
0
-40
OUTPUT POWER(%)
100
OUTPUT POWER(%)
100
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
80
90
100
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
120
Derating Output Current Versus Ambient Temperature
With 0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
50
60
70
% of FULL LOAD
Derating Output Current versus Ambient Temperature
With Airflow , Vin = Vin(nom)
120
0
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
120
20
30
80
36
Efficiency versus Input Voltage
40
20
Power Dissipation versus Output Current
96
66
Vin= 16.5V
Vin= 24V
Vin= 36V
5
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature
With 0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 21 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-2410 (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load ; Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 22 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-2411
90
25
84
78
72
Vin= 16.5V
Vin= 24V
Vin= 36V
66
60
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
30
EFFICIENCY(%)
96
20
15
10
0
10
100
Efficiency versus Output Current
100
84
78
72
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
16.5
18
20
22
24
26
28
30
INPUT VOLTAGE(V)
32
34
OUTPUT POWER(%)
90
EFFICIENCY(%)
120
60
40
20
0
-40
OUTPUT POWER(%)
100
OUTPUT POWER(%)
100
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
80
90
100
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
120
Derating Output Current Versus Ambient Temperature
With 0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
50
60
70
% of FULL LOAD
Derating Output Current versus Ambient Temperature
With Airflow , Vin = Vin(nom)
120
0
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
120
20
30
80
36
Efficiency versus Input Voltage
40
20
Power Dissipation versus Output Current
96
66
Vin= 16.5V
Vin= 24V
Vin= 36V
5
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature
With 0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 23 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-2411 (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load ; Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 24 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-2412
90
25
84
78
72
Vin= 16.5V
Vin= 24V
Vin= 36V
66
60
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
30
EFFICIENCY(%)
96
20
15
10
0
100
10
Efficiency versus Output Current
100
84
78
72
Vin= 16.5V
Vin= 24V
Vin= 36V
10
20
30
40
50
60
70
% of FULL LOAD
80
90
OUTPUT POWER(%)
90
EFFICIENCY(%)
120
60
40
20
0
-40
OUTPUT POWER(%)
100
OUTPUT POWER(%)
100
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
80
90
100
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
120
Derating Output Current Versus Ambient Temperature
With 0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
50
60
70
% of FULL LOAD
Derating Output Current versus Ambient Temperature
With Airflow , Vin = Vin(nom)
120
0
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
120
20
30
80
100
Efficiency versus Input Voltage
40
20
Power Dissipation versus Output Current
96
66
Vin= 16.5V
Vin= 24V
Vin= 36V
5
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature
With 0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 25 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-2412 (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load ; Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 26 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-2413
90
25
84
78
72
Vin= 16.5V
Vin= 24V
Vin= 36V
66
60
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
30
EFFICIENCY(%)
96
20
15
10
0
100
10
Efficiency versus Output Current
100
84
78
72
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
16.5
18
20
22
24
26
28
30
INPUT VOLTAGE(V)
32
34
OUTPUT POWER(%)
90
EFFICIENCY(%)
120
60
40
20
0
-40
OUTPUT POWER(%)
100
OUTPUT POWER(%)
100
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
80
90
100
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
120
Derating Output Current Versus Ambient Temperature
With 0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
50
60
70
% of FULL LOAD
Derating Output Current versus Ambient Temperature
With Airflow , Vin = Vin(nom)
120
0
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
120
20
30
80
36
Efficiency versus Input Voltage
40
20
Power Dissipation versus Output Current
96
66
Vin= 16.5V
Vin= 24V
Vin= 36V
5
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature
With 0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 27 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-2413 (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load ; Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 28 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-2415
90
25
84
78
72
Vin= 16.5V
Vin= 24V
Vin= 36V
66
60
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
30
EFFICIENCY(%)
96
20
15
10
0
100
10
Efficiency versus Output Current
100
84
78
72
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
16.5
18
20
22
24
26
28
30
INPUT VOLTAGE(V)
32
34
OUTPUT POWER(%)
90
EFFICIENCY(%)
120
60
40
20
0
-40
OUTPUT POWER(%)
100
OUTPUT POWER(%)
100
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
80
90
100
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
120
Derating Output Current Versus Ambient Temperature
With 0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
50
60
70
% of FULL LOAD
Derating Output Current versus Ambient Temperature
With Airflow , Vin = Vin(nom)
120
0
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
120
20
30
80
36
Efficiency versus Input Voltage
40
20
Power Dissipation versus Output Current
96
66
Vin= 16.5V
Vin= 24V
Vin= 36V
5
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature
With 0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 29 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-2415 (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load ; Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 30 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-2416
90
25
84
78
72
Vin= 16.5V
Vin= 24V
Vin= 36V
66
60
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
30
EFFICIENCY(%)
96
20
15
10
0
100
10
Efficiency versus Output Current
100
84
78
72
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
16.5
18
20
22
24
26
28
30
INPUT VOLTAGE(V)
32
34
OUTPUT POWER(%)
90
EFFICIENCY(%)
120
60
40
20
0
-40
OUTPUT POWER(%)
100
OUTPUT POWER(%)
100
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
80
90
100
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
120
Derating Output Current Versus Ambient Temperature
With 0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
50
60
70
% of FULL LOAD
Derating Output Current versus Ambient Temperature
With Airflow , Vin = Vin(nom)
120
0
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
120
20
30
80
36
Efficiency versus Input Voltage
40
20
Power Dissipation versus Output Current
96
66
Vin= 16.5V
Vin= 24V
Vin= 36V
5
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature
With 0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 31 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-2416 (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load ; Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 32 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-2418
90
25
84
78
72
Vin= 16.5V
Vin= 24V
Vin= 36V
66
60
10
20
30
40
50
60
70
% of FULL LOAD
80
90
Power Dissipation(W)
30
EFFICIENCY(%)
96
20
15
10
0
100
10
Efficiency versus Output Current
100
84
78
72
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
16.5
18
20
22
24
26
28
30
INPUT VOLTAGE(V)
32
34
OUTPUT POWER(%)
90
EFFICIENCY(%)
120
60
40
20
0
-40
OUTPUT POWER(%)
100
OUTPUT POWER(%)
100
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
80
90
100
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
120
Derating Output Current Versus Ambient Temperature
With 0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
50
60
70
% of FULL LOAD
Derating Output Current versus Ambient Temperature
With Airflow , Vin = Vin(nom)
120
0
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
120
20
30
80
36
Efficiency versus Input Voltage
40
20
Power Dissipation versus Output Current
96
66
Vin= 16.5V
Vin= 24V
Vin= 36V
5
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature
With 0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 33 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-2418 (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load ; Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 34 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-4810
30
90
25
EFFICIENCY(%)
Power Dissipation(W)
96
84
78
72
Vin= 33V
Vin= 48V
Vin= 75V
66
60
10
20
30
40
50
60
70
% of FULL LOAD
80
90
20
15
10
0
10
100
Efficiency versus Output Current
100
84
78
72
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
33
36
40
44
48 52 56 60
INPUT VOLTAGE(V)
64
68
72
OUTPUT POWER(%)
90
EFFICIENCY(%)
120
60
40
20
0
-40
OUTPUT POWER(%)
100
OUTPUT POWER(%)
100
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
80
90
100
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
120
Derating Output Current Versus Ambient Temperature
With 0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
50
60
70
% of FULL LOAD
Derating Output Current versus Ambient Temperature
With Airflow , Vin = Vin(nom)
120
0
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
120
20
30
80
75
Efficiency versus Input Voltage
40
20
Power Dissipation versus Output Current
96
66
Vin= 33V
Vin= 48V
Vin= 75V
5
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature
With 0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 35 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-4810 (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load ; Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 36 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-4811
30
90
25
EFFICIENCY(%)
Power Dissipation(W)
96
84
78
72
Vin= 33V
Vin= 48V
Vin= 75V
66
60
10
20
30
40
50
60
70
% of FULL LOAD
80
90
20
15
10
0
100
10
Efficiency versus Output Current
100
84
78
72
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
33
36
40
44
48 52 56 60
INPUT VOLTAGE(V)
64
68
72
OUTPUT POWER(%)
90
EFFICIENCY(%)
120
60
40
20
0
-40
OUTPUT POWER(%)
100
OUTPUT POWER(%)
100
80
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
0
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
80
90
100
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
120
Derating Output Current Versus Ambient Temperature
With 0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
50
60
70
% of FULL LOAD
Derating Output Current versus Ambient Temperature
With Airflow , Vin = Vin(nom)
120
20
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
120
40
30
80
75
Efficiency versus Input Voltage
60
20
Power Dissipation versus Output Current
96
66
Vin= 33V
Vin= 48V
Vin= 75V
5
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature
With 0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 37 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-4811 (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load ; Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 38 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-4812
30
90
25
EFFICIENCY(%)
Power Dissipation(W)
96
84
78
72
Vin= 33V
Vin= 48V
Vin= 75V
66
60
10
20
30
40
50
60
70
% of FULL LOAD
80
90
20
15
10
0
100
10
Efficiency versus Output Current
100
84
78
72
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
33
36
40
44
48 52 56 60
INPUT VOLTAGE(V)
64
68
72
OUTPUT POWER(%)
90
EFFICIENCY(%)
120
60
40
20
0
-40
OUTPUT POWER(%)
100
OUTPUT POWER(%)
100
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
80
90
100
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
120
Derating Output Current Versus Ambient Temperature
With 0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
50
60
70
% of FULL LOAD
Derating Output Current versus Ambient Temperature
With Airflow , Vin = Vin(nom)
120
0
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
120
20
30
80
75
Efficiency versus Input Voltage
40
20
Power Dissipation versus Output Current
96
66
Vin= 33V
Vin= 48V
Vin= 75V
5
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature
With 0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 39 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-4812 (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load ; Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 40 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-4813
30
90
25
EFFICIENCY(%)
Power Dissipation(W)
96
84
78
72
Vin= 33V
Vin= 48V
Vin= 75V
66
60
10
20
30
40
50
60
70
% of FULL LOAD
80
90
20
15
10
0
100
10
Efficiency versus Output Current
100
84
78
72
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
33
36
40
44
48 52 56 60
INPUT VOLTAGE(V)
64
68
72
OUTPUT POWER(%)
90
EFFICIENCY(%)
120
60
40
20
0
-40
OUTPUT POWER(%)
100
OUTPUT POWER(%)
100
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
80
90
100
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
120
Derating Output Current Versus Ambient Temperature
With 0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
50
60
70
% of FULL LOAD
Derating Output Current versus Ambient Temperature
With Airflow , Vin = Vin(nom)
120
0
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
120
20
30
80
75
Efficiency versus Input Voltage
40
20
Power Dissipation versus Output Current
96
66
Vin= 33V
Vin= 48V
Vin= 75V
5
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature
With 0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 41 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-4813 (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load ; Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 42 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-4815
30
90
25
EFFICIENCY(%)
Power Dissipation(W)
96
84
78
72
Vin= 33V
Vin= 48V
Vin= 75V
66
60
10
20
30
40
50
60
70
% of FULL LOAD
80
90
20
15
10
0
100
10
Efficiency versus Output Current
100
84
78
72
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
33
36
40
44
48 52 56 60
INPUT VOLTAGE(V)
64
68
72
OUTPUT POWER(%)
90
EFFICIENCY(%)
120
60
40
20
0
-40
OUTPUT POWER(%)
100
OUTPUT POWER(%)
100
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
80
90
100
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
120
Derating Output Current Versus Ambient Temperature
With 0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
50
60
70
% of FULL LOAD
Derating Output Current versus Ambient Temperature
With Airflow , Vin = Vin(nom)
120
0
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
120
20
30
80
75
Efficiency versus Input Voltage
40
20
Power Dissipation versus Output Current
96
66
Vin= 33V
Vin= 48V
Vin= 75V
5
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature
With 0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 43 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-4815 (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load ; Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 44 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-4816
30
90
25
EFFICIENCY(%)
Power Dissipation(W)
96
84
78
72
Vin= 33V
Vin= 48V
Vin= 75V
66
60
10
20
30
40
50
60
70
% of FULL LOAD
80
90
20
15
10
0
100
10
Efficiency versus Output Current
100
84
78
72
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
33
36
40
44
48 52 56 60
INPUT VOLTAGE(V)
64
68
72
OUTPUT POWER(%)
90
EFFICIENCY(%)
120
60
40
20
0
-40
OUTPUT POWER(%)
100
OUTPUT POWER(%)
100
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
80
90
100
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
120
Derating Output Current Versus Ambient Temperature
With 0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
50
60
70
% of FULL LOAD
Derating Output Current versus Ambient Temperature
With Airflow , Vin = Vin(nom)
120
0
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
120
20
30
80
75
Efficiency versus Input Voltage
40
20
Power Dissipation versus Output Current
96
66
Vin= 33V
Vin= 48V
Vin= 75V
5
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature
With 0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 45 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-4816 (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load ; Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 46 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-4818
30
90
25
EFFICIENCY(%)
Power Dissipation(W)
96
84
78
72
Vin= 33V
Vin= 48V
Vin= 75V
66
60
10
20
30
40
50
60
70
% of FULL LOAD
80
90
20
15
10
0
100
10
Efficiency versus Output Current
100
84
78
72
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
33
36
40
44
48 52 56 60
INPUT VOLTAGE(V)
64
68
72
OUTPUT POWER(%)
90
EFFICIENCY(%)
120
60
40
20
0
-40
OUTPUT POWER(%)
100
OUTPUT POWER(%)
100
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
80
90
100
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
120
Derating Output Current Versus Ambient Temperature
With 0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
50
60
70
% of FULL LOAD
Derating Output Current versus Ambient Temperature
With Airflow , Vin = Vin(nom)
120
0
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
120
20
30
80
75
Efficiency versus Input Voltage
40
20
Power Dissipation versus Output Current
96
66
Vin= 33V
Vin= 48V
Vin= 75V
5
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature
With 0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 47 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-4818 (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load ; Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 48 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-4812
30
90
25
EFFICIENCY(%)
Power Dissipation(W)
96
84
78
72
Vin= 33V
Vin= 48V
Vin= 75V
66
60
10
20
30
40
50
60
70
% of FULL LOAD
80
90
20
15
10
0
100
10
Efficiency versus Output Current
100
84
78
72
Iout= 100% F.L
Iout= 50% F.L
Iout= 25% F.L
33
36
40
44
48 52 56 60
INPUT VOLTAGE(V)
64
68
72
OUTPUT POWER(%)
90
EFFICIENCY(%)
120
60
40
20
0
-40
OUTPUT POWER(%)
100
OUTPUT POWER(%)
100
80
60
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
80
90
100
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
80
60
40
20LFM (natural convection)
100LFM
200LFM
300LFM
400LFM
500LFM
20
0
100
120
Derating Output Current Versus Ambient Temperature
With 0.24” Heat-Sink and Airflow , Vin = Vin(nom)
http://www.tracopower.com
50
60
70
% of FULL LOAD
Derating Output Current versus Ambient Temperature
With Airflow , Vin = Vin(nom)
120
0
40
Mount on 2U iron base-plate
(dimension 19” X 3.5” X 0.063”)
20LFM (natural convection)
Terminal block
20LFM (natural convection)
DC/DC module only
100LFM
200LFM
300LFM
400LFM
500LFM
60
120
20
30
80
75
Efficiency versus Input Voltage
40
20
Power Dissipation versus Output Current
96
66
Vin= 33V
Vin= 48V
Vin= 75V
5
-40
-20
0
20
40
60
80
AMBIENT TEMPERATURE,TA(℃)
100
120
Derating Output Current Versus Ambient Temperature
With 0.45” Heat-Sink and Airflow , Vin = Vin(nom)
Page 49 of 71
Application Note
TEP 160 Series
Characteristic Curves
All test conditions are at 25°C.The figures are identical for TEP 160-48153 (Continued)
Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load
Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load ; Vin = Vin(nom)
Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load
Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class A
Vin = Vin(nom), Full Load
Conduction Emission of EN55022 Class B
Vin = Vin(nom), Full Load
http://www.tracopower.com
Page 50 of 71
Application Note
TEP 160 Series
Testing Configurations
Input reflected-ripple current measurement test up
TEP 160-121x, TEP 160-241x
Component
Value
Voltage
L1
10μH
----
Reference
C1, C2
330μF
50V
NipponKY-500E00331MJ25S
Component
Value
Voltage
Reference
L1
10μH
----
C1, C2
220μF
100V
TEP 160-481x
Nippon KY-101E00221MK25S
Peak to peak output ripple & noise measurement test up
C1 C2
DC-DC
CONVERTER
-OUTPUT
+OUTPUT
C1 C2
DC-DC
CONVERTER
LOAD
DC-DC
CONVERTER
TO SCOPE
LOAD
+OUTPUT
LOAD
+OUTPUT
C1 C2
-OUTOUT
-OUTOUT
TO SCOPE
TO SCOPE
Right method
Probe contacts to the pins directly.
Wrong method
Ground ring is connected to the pin
by a wire that induces noise.
TEP 160-xx10, TEP 160-xx11, TEP 160-xx12, TEP 160-xx13
Component
Value
Voltage
Reference
C1
1μF
25V
TDK : C3216X7R1E105
C2
22µF
25V
SANYO:25TQC22MV
Component
Value
Voltage
Reference
C2
4.7μF
50V
Component
Value
Voltage
C2
2.2μF
100V
TEP 160-xx15, TEP 160-xx16
TDK : C4532X7R1H475M
TEP 160-xx18, TEP 160-xx153
http://www.tracopower.com
Reference
TDK : C4532X7R2A225M
Page 51 of 71
Application Note
TEP 160 Series
Testing Configurations
Output voltage and efficiency measurement setup
Voltage meters should connect to input or output terminals directly or voltage drop of contact and distribution losses causes the
measurement is not correct.
DC-DC CONVERTER
IIN
+INPUT
A
IOUT
+OUTPUT
A
+SENSE
DC
SOURCE
VIN
V
V
VOUT
LOAD
-SENSE
-INPUT
-OUTPUT
CONRACT AND DISTRIBUTION LOSSES
CONRACT AND DISTRIBUTION LOSSES
Note: All measurements are taken at the module terminals.
Input Voltage
Output Voltage
Volt. meter
Volt. meter
DC-DC CONVERTER
Input Current
+
INPUT
-
Amp. meter
Output Current
+
OUTPUT
-
Amp. meter
INPUT SOURCE
Output Voltage Accuracy =
DC-DC CONVERTER
LOAD
Vout − Vout,typ.
× 100%
Vout,typ.
 Vout(Low −Line ) − Vout(Nom.−Line )

Vout(High−Line ) − Vout(Nom.−Line )
× 100%
× 100% 
,
Line Regulation = Max.


Vout(Nom.−Line )
Vout(Nom.−Line )


Load Regulation =
Vout(Min.Load) − Vout(FullLoad)
Vout(FullLoad)
× 100%
Efficiency = Vout × Iout × 100%
Vin × Iin
http://www.tracopower.com
Page 52 of 71
Application Note
TEP 160 Series
Testing Configurations
Output voltage and efficiency measurement test up
http://www.tracopower.com
Page 53 of 71
Application Note
TEP 160 Series
EMI considerations
Suggested schematic for EN55011 and EN55022 conducted emission Class A limits
Recommended layout with input filter; Top layer
Recommended layout with input filter; Bottom layer
To meet conducted emissions EN55022 CLASS A needed the following components:
TEP 160-12xx, TEP 160-24xx
Component
Value
Voltage
Reference
C1,C2,C4
470 μF
50 V
Nippon Chemi-con: EKY-500E00471MK20S
C3,C6,C7
4.7 μF
50 V
TDK : C4532X7R1H475M
C8,C9,C10,
C11,C13
1000 pF
3 kV
1808 MLCC
C12
3300 pF
3 kV
1808 MLCC
L1
156μH±35%
---
Common Choke, P/N:TCK-086
Component
Value
Voltage
Reference
C1,C2,C4
220μF
100V
Nippon Chemi-con: EKY-101E00221MK25S
TEP 160-48xx
C3,C6,C7
2.2 μF
100 V
TDK : C4532X7R2A225M
C8,C9,C10,
C11,C13,C12
1000 pF
3 kV
1808 MLCC
L1
224μH±35%
---
Common Choke, P/N:TCK-087
Note:1. Common mode choke have been define and show on page 56.
2. While testing, connect four screw bolts to shield plane, the EMI could be reduced.
http://www.tracopower.com
Page 54 of 71
Application Note
TEP 160 Series
EMI considerations
Suggested schematic for EN55022 conducted emission Class B limits
Recommended layout with input filter; Top layer
Recommended layout with input filter; Bottom layer
To meet conducted emissions EN55022 CLASS B needed the following components:
TEP 160-12xx, TEP 160-24xx
Component
C1,C3,C6
C2,C4,C5,C7,C8
C9,C10,C13,C14
C11
C12
L1,L2
Value
470 μF
4.7 μF
10 nF
1000 pF
4700 pF
156μH±35%
Voltage
50 V
50V
2kV
3kV
3kV
---
Value
220μF
2.2 μF
10 nF
2200pF
4700pF
1000pF
224μH±35%
Voltage
100V
100V
2kV
3kV
3kV
2kV
----
Reference
Nippon Chemi-con: EKY-500E00471MK20S
TDK : C4532X7R1H475M
1812 MLCC
1808 MLCC
1812 MLCC
Common Choke, P/N: TCK-086
TEP 160-48xx
Component
C1,C3,C6
C2,C4,C5,C7,C8
C9,C10,C13,C14
C11
C12
C15
L1,L2
Reference
Nippon Chemi-con: EKY-101E00221MK25S
TDK : C4532X7R2A225M
1812 MLCC
1808 MLCC
1812 MLCC
1808 MLCC
Common Choke, P/N: TCK-087
Note:1. Common mode choke have been define and show on the next page.
2. While testing, connect four screw bolts to shield plane, the EMI could be reduced.
http://www.tracopower.com
Page 55 of 71
Application Note
TEP 160 Series
EMI considerations
The common mode choke and inductors have been defined as following.
TCK-086
TCK-087
Inductance:
Pin 1-2: 156μH±35%
Pin 3-4: 156μH±35%
2.5mΩ
25A
Φ2.0mm
Impedance:
Rated Current:
Recommended Through Hole:
Inductance:
Impedance:
Rated Current:
Recommended Through Hole:
TOP VIEW
SIDE VIEW
Pin 1-2: 224μH±35%
Pin 3-4: 224μH±35%
4.16mΩ
15.4A
Φ1.8mm
TOP VIEW
SIDE VIEW
A
A
G
G
3
B
F
2
1
E
3
1
2
FRONT VIEW
A
B
C
16.6±0.4
16.4±0.4
12.5 max.
F
6.1±0.5
E
FRONT VIEW
D
5.0±1.0
C
4
D
2
C
1
PIN 1 MARK
D
3
2
1
PIN 1 MARK
4
3
4
B
F
4
E
A
B
C
13.9±0.5
16.6±0.4
16.4±0.4
12.5 max.
G
F
Φ1.8 max
6.1±0.5
D
5.0±1.0
E
13.9±0.5
G
Φ1.6 max
All dimensions in mm
All dimensions in mm
EMS Considerations
The TEP 160 series can meet Fast Transient EN61000-4-4 and Surge EN61000-4-5 performance criteria A with external
components connected to the input terminals of the module. Please see the following schematics as below.
Fast Transient
EFT
+INPUT
DC
SOURCE
C2 C1
DC-DC
CONVERTER
-INPUT
TEP 160 series
Component
Value
Voltage
Reference
C1,C2
220μF
100V
Nippon Chemi-con: EKY-101E00221MK25S
http://www.tracopower.com
Page 56 of 71
Application Note
TEP 160 Series
EMC Considerations
SURGE
SURGE
+INPUT
DC
SOURCE
C2 C1
DC-DC
CONVERTER
-INPUT
TEP 160 series
Component
Value
Voltage
Reference
C1,C2
220μF
100V
Nippon Chemi-con: EKY-101E00221MK25S
Output Voltage Adjustment
Output voltage is adjustable for 10% trim up or -20% trim down of nominal output voltage by connecting an external resistor between
the TRIM pin and either the +SENSE or -SENSE pins. With an external resistor between the TRIM and -SENSE pin, the output
voltage set point decreases. With an external resistor between the TRIM and +SENSE pin, the output voltage set point increases.
Maximum output deviation is +10% inclusive of remote sense. (Please refer to page 59, remote sense) The value of external resistor
can be obtained by equation or trim table shown on next page. The external TRIM resistor needs to be at least 1/8W resistors.
+OUTPUT
+SENSE
TRIM
RU
+SENSE
TRIM
-SENSE
-SENSE
-OUTPUT
-OUTPUT
TRIM UP
http://www.tracopower.com
+OUTPUT
RD
TRIM DOWN
Page 57 of 71
Application Note
TEP 160 Series
Output Voltage Adjustment (continued)
TRIM EQUATION
(100 + ∆%
)
100 + 2∆% 
V
RU =  OUT
−
KΩ
1
.
225
∆
%
∆%



 100
RD = 
− 2 KΩ

 ∆%
TRIM TABLE
TEP 160-xx10
Trim up (%)
1
2
3
4
5
6
7
8
9
10
VOUT (Volts)=
RU (kΩ)=
3.333
170.082
3.366
85.388
3.399
57.156
3.432
43.041
3.465
34.571
3.498
28.925
3.531
24.892
3.564
21.867
3.597
19.515
3.630
17.633
Trim up (%)
1
2
3
4
5
6
7
8
9
10
VOUT (Volts)=
RU (kΩ)=
5.05
310.245
5.10
156.163
5.15
104.803
5.20
79.122
5.25
63.714
5.30
53.442
5.35
46.105
5.40
40.602
5.45
36.322
5.50
32.898
Trim up (%)
1
2
3
4
5
6
7
8
9
10
VOUT (Volts)=
RU (kΩ)=
12.12
887.388
12.24
447.592
12.36
300.993
12.48
227.694
12.60
183.714
12.72
154.395
12.84
133.452
12.96
117.745
13.08
105.528
13.20
95.755
Trim up (%)
1
2
3
4
5
6
7
8
9
10
VOUT (Volts)=
RU (kΩ)=
15.15
15.30
1134.735 572.490
15.45
385.075
15.60
291.367
15.75
235.143
15.90
197.660
16.05
170.886
16.20
150.806
16.35
135.188
16.50
122.694
3
4
5
6
7
8
9
10
24.72
637.320
24.96
482.388
25.20
389.429
25.44
327.456
25.68
283.190
25.92
249.990
26.16
224.168
26.40
203.510
TEP 160-xx11
TEP 160-xx12
TEP 160-xx13
TEP 160-xx15
Trim up (%)
1
VOUT (Volts)=
RU (kΩ)=
24.24
24.48
1876.776 947.184
2
TEP 160-xx16
Trim up (%)
1
2
VOUT (Volts)= 28.28
28.56
RU (kΩ)=
2206.571 1113.714
3
4
5
6
7
8
9
10
28.84
749.429
29.12
567.286
29.40
458.000
29.68
385.143
29.96
333.102
30.24
294.071
30.52
263.714
30.80
239.429
3
4
5
6
7
8
9
10
50.40
800.857
50.88
673.578
51.36
582.665
51.84
514.480
52.32
461.447
52.80
419.020
TEP 160-xx18
Trim up (%)
1
2
VOUT (Volts)= 48.48
RU (kΩ)=
3855.55
48.96
49.44
49.92
1946.367 1309.973 991.776
TEP 160-48153
Trim up (%)
1
2
VOUT (Volts)= 53.53
54.06
RU (kΩ)=
4267.796 2154.53
3
4
6
7
8
9
10
54.59
1450.11
55.12
55.65
1097.898 886.57
5
56.18
745.687
56.71
645.055
57.24
569.582
57.77
510.88
58.3
463.918
All
Trim down (%) 1
2
3
4
5
6
7
8
9
10
RD (kΩ)=
48.000
31.333
23.000
18.000
14.667
12.286
10.500
9.111
8.000
Trim down (%) 11
12
13
14
15
16
17
18
19
20
RD (kΩ)=
6.333
5.692
5.143
4.667
4.250
3.882
3.556
3.263
3.000
98.000
7.091
http://www.tracopower.com
Page 58 of 71
Application Note
TEP 160 Series
Remote Sense
To minimum the effects of distribution losses by regulating the voltage at the Remote Sense pin. The voltage between the SENSE
pin and OUTPUT pin must not exceed 10% of Vout, i.e.
[ +OUTPUT to –OUTPUT ] – [ +SENSE to –SENSE ] = 10% Vout
The voltage between +OUTPUT and –OUTPUT terminals must not exceed the minimum output overvoltage protection threshold.
This limit includes any increase in voltage due to remote sense compensation and trim function.
If not using the remote sense feature to regulate the output at the point of load, then connect +SENSE to +OUTPUT and –SENSE
to –OUTPUT.
DC-DC CONVERTER
+OUTPUT
LOAD
+SENSE
-SENSE
-OUTPUT
Remote Sense circuit configuration
Input Source Impedance
The power modules will operate as specifications without external components, assuming that the source voltage has a very low
impedance and reasonable input voltage regulation. Highly inductive source impedances can affect the stability of the power module.
Since real-world voltage source has finite impedance, performance can be improved by adding external filter capacitor
The TEP 160-24xx and TEP 160-48xx recommended Nippon Chemi-con: EKY-101E00101MK16S
http://www.tracopower.com
Page 59 of 71
Application Note
TEP 160 Series
Output Over Current Protection
When excessive output currents occur in the system, circuit protection is required on all power supplies. Normally, overload current
is maintained at approximately 120~150 percent of rated current for TEP 160 series.
Hiccup-mode is a method of operation in a power supply whose purpose is to protect the power supply from being damaged during
an over-current fault condition. It also enables the power supply to restart when the fault is removed. There are other ways of
protecting the power supply when it is over-loaded, such as the maximum current limiting or current foldback methods.
One of the problems resulting from over current is that excessive heat may be generated in power devices, especially MOSFET and
Schottky diodes and the temperature of those devices may exceed their specified limits. A protection mechanism has to be used to
prevent those power devices from being damaged.
The operation of hiccup is as follows. When the current sense circuit sees an over-current event, the controller shuts off the power
supply for a given time and then tries to start up the power supply again. If the over-load condition has been removed, the power
supply will start up and operate normally, otherwise, the controller will see another over-current event and shut off the power supply
again, repeating the previous cycle. Hiccup operation has none of the drawbacks of the other two protection methods, although its
circuit is more complicated because it requires a timing circuit. The excess heat due to overload lasts for only a short duration in the
hiccup cycle, hence the junction temperature of the power devices is much lower.
The hiccup operation can be done in various ways. For example, one can start hiccup operation any time an over-current event is
detected, or prohibit hiccup during a designated start-up is usually larger than during normal operation and it is easier for an overcurrent event is detected, or prohibit hiccup during a designated start-up interval (usually a few milliseconds). The reason for the
latter operation is that during start-up, the power supply needs to provide extra current to charge up the output capacitor. Thus the
current demand during start-up is usually larger than during normal operation and it is easier for an over-current event to occur. If the
power supply starts to hiccup once there is an over-current, it might never start up successfully. Hiccup mode protection will give the
best protection for a power supply against over current situations, since it will limit the average current to the load at a low level, so
reducing power dissipation and case temperature in the power devices.
Short Circuitry Protection
Continuous, hiccup and auto-recovery mode.
During short circuit, converter still shut down. The average current during this condition will be very low and the device can be safety
in this condition.
Output Over Voltage Protection
The output over-voltage protection consists of circuitry that monitors the voltage on the output terminals. If the voltage on the output
terminals exceeds the over-voltage protection threshold, then the module enter the non-latch hiccup mode.
Over Temperature Protection
Sufficient cooling is needed for the power module and provides more reliable operation of the unit. If a fault condition occurs, the
temperature of the unit will be higher. And will damage the unit. For protecting the power module, the unit includes over-temperature
protection circuit. When the temperature of the case is to the protection threshold, the unit enters “Hiccup” mode. And it will auto
restart when the temperature is down.
http://www.tracopower.com
Page 60 of 71
Application Note
TEP 160 Series
Thermal Consideration
The TEP 160 series is a high power density product, it operates in a variety of thermal environments. However, sufficient cooling
should be provided to ensure reliable operation of the unit. Heat is removed by conduction, convection, and radiation to the
surrounding environment.
Proper cooling can be verified by measuring the point as the figure below. The case temperature at this location is -40 ~115°C. When
operating, although the maximum point temperature of the power modules is 115°C, we suggest to keep the test point temperature
at or below 80°C for extremely high reliability, so the module can be in stable operation and get better lifecycle.
Temp. Test Point
Measurement shown in inch (mm)
TOP VIEW
The suggested heat dissipation modes as below:
1. Add the heat-sink
The main function of heat-sink is to add the touch surface of heat source for air. Under the suitable air convection condition
(including natural convection), that can reduce the heat resistance θca apparently.
After combination of the heat resistance θca, it’s the sub-total of θcp, θph and θha. Because the air gets big heat resistance
under no air convection, the θha which touch the air is the main heat resistance.
Suggestions as below:
(1) θca=θcp+θph+θha. In order to let the heat-sink reducing the θha in big range, we suggest to use the thermal pad with good
heat conduction and flushing performance.
(2) The best layout for heat sink is to put the fin of the heat-sink vertical to the air, and this will cause a good “stack effect”. So, we
can have the best natural air convection condition. When there’s no force air to help the heat dissipation, this point is critical.
http://www.tracopower.com
Page 61 of 71
Application Note
TEP 160 Series
Thermal Consideration
2. Force Air
Normally, we use the fan for the force air. By the air movement rapidly, it can bring the heat energy from the case surface. This
is a good solution to reduce the heat resistance θca of the module. When the air speed is bigger, the heat resistance is smaller,
and the heat dissipation performance is better. We need to note, the air direction not to be in vertical with the module’s frame.
Or, the heat dissipation performance will be worse.
If there’s heat-sink and force air in the same system, the direction for heat-sink and force air should be followed as illustrate in
below left chart. So we can get the best performance of heat dissipation.
In below right chart, it’s wrong direction. The air can’t go through, the performance is not good.
Vertical type heat-sink
http://www.tracopower.com
Horizontal type heat-sink
Page 62 of 71
Application Note
TEP 160 Series
Heat-Sink Considerations
0.95
(11.4)
(24.2)
0.45
Equip heat-sink for lower temperature and higher reliability of the module.
2.28 (57.9)
2.40 (61.0)
Order code: TEP-HS1
Includes heatsink with termal pad and mounting screws
To order modules with mounted heatsink ask factory.
Top view
Weight: 142g (5.01oz)
(Heatsink + Converter)
http://www.tracopower.com
Dimensions in Inch, () = mm
Tolerances ±0.02 (±0.5)
Pin pich tolerances ±0.01 (±0.25)
Mounting hole pich tolerances ±0.01 (±0.25)
Page 63 of 71
Application Note
TEP 160 Series
Remote ON/OFF Control
The CTRL pin is controlled DC/DC power module to turn on and off, the user must use a switch to control the logic voltage high
or low level of the pin referenced to -INPUT. The switch can be open collector transistor, FET and Photo-Couple. The switch must
be capable of sinking up to 1 mA at low-level logic voltage. High-level logic of the CTRL pin signal maximum voltage is allowable
leakage current of the switch at 12V is 0.5 mA.
Standard remote control is, positive logic.
a. The Positive logic structure turned on of the DC/DC module when the CTRL pin is at high-level logic and turned off when at
low-level logic.
DC-DC CONVERTER
DC-DC CONVERTER
+INPUT
+INPUT
CTRL
CTRL
SW
SW
-INPUT
-INPUT
On
Off
Negative logic rmote control available on demand
b. The Negative logic structure turned on of the DC/DC module when the CTRL pin is at low-level logic and turned off when at
high-level logic.
DC-DC CONVERTER
DC-DC CONVERTER
+INPUT
+INPUT
CTRL
CTRL
SW
SW
-INPUT
-INPUT
On
Off
Remote ON/OFF Implementation Circuits
DC-DC CONVERTER
+INPUT
SIGNAL
ISOLATION
IO
CTRL
VCTRL
-INPUT
Isolated-Closure Remote ON/OFF
DC-DC CONVERTER
+INPUT
TTL
VCC
IO
SIGNAL
CTRL
VCTRL
-INPUT
Level Control Using TTL Output
DC-DC CONVERTER
+INPUT
IO
CTRL
VCTRL
-INPUT
Level Control Using Line Voltage
http://www.tracopower.com
Page 64 of 71
Application Note
TEP 160 Series
Synchronous Pin
1. Multiple TEP 160 series module can be synchronized together simply by connecting the module SYNC pins together.
Synchronous Circuits
Recommended Layout
NOTE:
(1) Care should be taken to ensure the ground potential differences between modules are minimized.
(2) In this configuration all of the modules will be synchronized to the highest frequency module.
(3) Up to three modules can be synchronized using this technique.
http://www.tracopower.com
Page 65 of 71
Application Note
TEP 160 Series
Mechanical Data Of The Standard Product
Metal Case Mechanical Drawing
PIN CONNECTION
PIN
Define
Diameter
1
-INPUT
0.04 inch
2
CASE(Option)
0.04 inch
3
CTRL
0.04 inch
4
+INPUT
0.04 inch
5
-OUTPUT
0.08 inch
6
-SENSE
0.04 inch
7
TRIM
0.04 inch
8
+SENSE
0.04 inch
9
+OUTPUT
0.08 inch
10
SYNC(option)
0.04 inch
1. All dimensions in inch (mm)
2. Tolerance :x.xx±0.02 (x.x±0.5)
x.xxx±0.01 (x.xx±0.25)
3. Pin pitch tolerance ±0.01 (0.25)
4. Pin dimension tolerance ±0.004(0.1)
http://www.tracopower.com
Page 66 of 71
Application Note
TEP 160 Series
Mechanical Data Of The Standard Product
1. Terminal Block without EMC Filter, Suffix: -CM
1. All dimensions in inch (mm)
2. Tolerance :x.xx±0.02 (x.x±0.5)
x.xxx±0.01 (x.xx±0.25)
TRMINAL CONNECTION
2. Terminal Block with EMC Filter (EN55022 Class A), Suffix: -CMF
http://www.tracopower.com
PIN
Define
Wire range
1
-INPUT
8AWG to 9AWG
2
NC
NA
3
CTRL
14AWG to 18AWG
4
+INPUT
8AWG to 9AWG
5
-OUTPUT
4AWG to 5AWG
6
-SENSE
14AWG to 18AWG
7
TRIM
14AWG to 18AWG
8
+SENSE
14AWG to 18AWG
9
+OUTPUT
4AWG to 5AWG
EXTERNAL OUTPUT TRIMMING
Output can be externally trimmed by using the
method shown below.
Page 67 of 71
Application Note
TEP 160 Series
Recommended Pad Layout
All dimensions in inch (mm)
Tolerances : x.xxx ± 0.010 (x.xx ± 0.25 )
PAD SIZE (LEAD FREE RECOMMENDED)
+/- OUTPUT :
THROUGH HOLE : Ø 2.3mm
TOP VIEW PAD : Ø 2.9mm
BOTTOM VIEW PAD : Ø 3.6mm
OTHERS :
THROUGH HOLE : Ø 1.3mm
TOP VIEW PAD : Ø 1.9mm
BOTTOM VIEW PAD : Ø 2.6mm
http://www.tracopower.com
Page 68 of 71
Application Note
TEP 160 Series
Soldering Considerations
Lead free wave solder profile for TEP 160 series
TEMPERATURE (¢ J)
50 100 150 200 250 300
T1+T2
First wave
260¢ JMax.
Second wave
0
Preheat zone
0
100
Zone
Preheat zone
200
Reference Parameter
Rise temp. speed : 3C°/sec max.
Preheat temp. : 100~130C°
Actual heating
Peak temp. : 250~260C°
Peak time (T1+T2 time) : 4~6 sec
Reference Solder : Sn-Ag-Cu , Sn-Cu
Hand Welding :
Soldering iron : Power 90W
Welding Time : 2~4 sec
Temp. : 380~400C°
http://www.tracopower.com
Page 69 of 71
Application Note
TEP 160 Series
Packaging Information
Dimensions shown in millimeters
http://www.tracopower.com
Page 70 of 71
Application Note
TEP 160 Series
Part Number Structure
TEP 160-2412
Max. Output Power
196W
Input Voltage
24: 24V
48: 48V
Output Mode
1: Single
2: Dual (±)
Output Voltage
2: 12V
3: 15V
5: 24V
6: 28V
8: 48V
Safety and Installation Instruction
Fusing Consideration
Caution: This power module is not internally fused. An input line fuse must always be used.
This encapsulated power module can be used in a wide variety of applications, ranging from simple stand-alone operation to an
integrated part of sophisticated power architecture. To maximum flexibility, internal fusing is not included, however, to achieve
maximum safety and system protection, always use an input line fuse. The safety agencies require a fast blow fuse with maximum
rating of 20A for TEP 160–12xx, 12A for TEP 160–24xx and 8A for TEP 160–48xx. Based on the information provided in this data
sheet on Inrush energy and maximum dc input current, the same type of fuse with lower rating can be used. Refer to the fuse
manufacturer’s data for further information.
MTBF and Reliability
The MTBF of TEP 160 series DC/DC converters has been calculated using
Bellcore TR-NWT-000332 Case I: 50% stress, Operating Temperature at 40° (Ground fixed and controlled environment). The
resulting figure for MTBF is 1.010×106 hours.
MIL-HDBK 217F NOTICE2 FULL LOAD, Operating Temperature at 25C°. The resulting figure for MTBF is 7.416×104 hours.
Specifications can be changed without notice
Rev. 01/13
Jenatschstrasse 1 · CH-8002 Zurich · Switzerland
Tel. +41 43 311 45 11 · Fax +41 43 311 45 45 · info@traco.ch · www.tracopower.com
Page 71 of 71