RENESAS HA1630S04CM

HA1630S04/05/06 Series
Ultra-Small Low Voltage Operation CMOS Single Operational
Amplifier
REJ03D0799-0100
Rev.1.00
Mar 10, 2006
Description
The HA1630S04/05/06 are high slew rate single CMOS Operational Amplifiers realizing low voltage operation, low
input offset voltage and low supply current. In addition to a low operating voltage from 1.8V, these device output can
achieve full swing output voltage capability extending to either supply. Available in an ultra-small CMPAK-5 package
that occupies only 1/8 the area of the SOP-8 package.
Features
• Low power and single supply operation
• Low input offset voltage
• Low supply current
• High slew rate
• Maximum output voltage
• Low input bias current
VDD = 1.8 to 5.5 V
VIO = 4.0 mV Max
IDD = 200 µA Typ (HA1630S04)
IDD = 400 µA Typ (HA1630S05)
IDD = 800 µA Typ (HA1630S06)
SR = 2 V/µs Typ (HA1630S04)
SR = 4 V/µs Typ (HA1630S05)
SR = 8 V/µs Typ (HA1630S06)
VOH = 2.9 V Min (at VDD = 3.0 V)
IIB = 1 pA Typ
Ordering Information
Type No.
Package Name
Package Code
HA1630S04CM
HA1630S04LP
CMPAK-5
MPAK-5
PTSP0005ZC-A
PLSP0005ZB-A
HA1630S05CM
HA1630S05LP
CMPAK-5
MPAK-5
PTSP0005ZC-A
PLSP0005ZB-A
HA1630S06CM
HA1630S06LP
CMPAK-5
MPAK-5
PTSP0005ZC-A
PLSP0005ZB-A
Rev.1.00 Mar 10, 2006 page 1 of 23
HA1630S04/05/06 Series
Pin Arrangement
VDD
5
VOUT
4
+ −
1
2
3
VIN(+) VSS VIN(–)
Equivalent Circuit
VDD
VIN(–)
VIN(+)
VSS
Rev.1.00 Mar 10, 2006 page 2 of 23
VOUT
HA1630S04/05/06 Series
Absolute Maximum Ratings
(Ta = 25°C)
Items
Supply voltage
Symbol
Ratings
7
Unit
V
VDD
Differential input voltage
Input voltage
VIN(diff)
VIN
–VDD to +VDD
–0.3 to +VDD
V
V
Power dissipation
Operating temp. Range
PT
Topr
200
–40 to +85
mW
°C
Storage temp. Range
Tstg
–55 to +125
Note: 1. Do not apply Input Voltage exceeding VDD or 7 V.
°C
Note
1
Electrical Characteristics
(VDD = 3.0 V, Ta = 25°C)
Min
Typ
Max
Unit
Input offset voltage
Input offset current
Items
VIO
IIO
—
—
—
(1.0)
4.0
—
mV
pA
Vin = 1.5 V
Vin = 1.5 V
Input bias current
Output high voltage
IIB
VOH
—
2.9
(1.0)
—
—
—
pA
V
Vin = 1.5 V
RL = 100 kΩ
Output source current
IO SOURCE
100
200
200
400
—
—
µA
VOH = 2.5 V (HA1630S04)
VOH = 2.5 V (HA1630S05)
Output low voltage
VOL
400
—
800
—
—
0.1
Output sink current
IO SINK
—
—
(5.0)
(6.0)
—
—
Common mode input voltage
range
VCM
—
–0.05 to 2.1
(6.5)
—
—
—
V
Slew rate
SR
0 to 1.9
—
—
(2.0)
—
—
V/µs
—
—
(4.0)
(8.0)
—
—
60
—
90
(2.1)
—
—
—
—
(3.3)
(3.6)
—
—
Voltage gain
Gain bandwidth product
Symbol
AV
BW
V
mA
dB
MHz
VOL = 0.5 V (HA1630S04)
VOL = 0.5 V (HA1630S05)
VOL = 0.5 V (HA1630S06)
(HA1630S04, HA1630S05)
(HA1630S06)
CL = 20 pF (HA1630S04)
CL = 20 pF (HA1630S04)
CL = 20 pF (HA1630S05)
CL = 20 pF (HA1630S06)
PSRR
CMRR
50
50
70
70
—
—
dB
dB
Supply current
IDD
—
—
200
400
400
800
µA
—
800
1700
Rev.1.00 Mar 10, 2006 page 3 of 23
VOH = 2.5 V (HA1630S06)
RL = 100 kΩ
CL = 20 pF (HA1630S05)
CL = 20 pF (HA1630S06)
Power supply rejection ratio
Common mode rejection ratio
Notes: 1. In the case of continuous current flow, use a sink current of under 4 mA.
2. ( ) : Design specification
Test Condition
RL = ∞ (HA1630S04)
RL = ∞ (HA1630S05)
RL = ∞ (HA1630S06)
HA1630S04/05/06 Series
Table of Graphs
Electrical Characteristics
HA1630S04
Figure
HA1630S05
Figure
HA1630S06
Figure
Test
Circuit
Supply current
IDD
vs Supply voltage
vs Ambient temperature
1-1
1-2
2-1
2-2
3-1
3-2
2
Output high voltage
VOH
vs Output source current
vs Supply voltage
1-3
1-4
2-3
2-4
3-3
3-4
4
Output source current
Output low voltage
IO SOURCE
VOL
vs Ambient temperature
vs Output sink current
1-5
1-6
2-5
2-6
3-5
3-6
6
5
Output sink current
Input offset voltage
IO SINK
VIO
vs Ambient temperature
Distribution
1-7
1-8
2-7
2-8
3-7
3-8
6
1
vs Supply voltage
vs Ambient temperature
1-9
1-10
2-9
2-10
3-9
3-10
Common mode input
voltage range
Power supply rejection
ratio
VCM
vs Ambient temperature
1-11
2-11
3-11
7
PSRR
vs Frequency
1-12
2-12
3-12
1
Common mode rejection
ratio
Voltage gain & phase
angle
CMRR
vs Frequency
1-13
2-13
3-13
7
AV
vs Frequency
1-14
2-14
3-14
10
Input bias current
IIB
vs Ambient temperature
vs Input voltage
1-15
1-16
2-15
2-16
3-15
3-16
3
Slew Rate (rising)
Slew Rate (falling)
SRr
SRf
vs Ambient temperature
vs Ambient temperature
1-17
1-18
2-17
2-18
3-17
3-18
9
Large signal transient
response
Small signal transient
response
1-19
2-19
3-19
1-20
2-20
3-20
vs. Output voltage p-p
vs. Output voltage p-p
1-21
1-22
2-21
2-22
3-21
3-22
vs Frequency
1-23
2-23
3-23
vs Frequency
1-24
2-24
3-24
Slew rate
Total harmonic distortion +
noise
(0 dB)
(40 dB)
Maximum p-p output
voltage
Voltage noise density
Rev.1.00 Mar 10, 2006 page 4 of 23
8
HA1630S04/05/06 Series
Main Characteristics (HA1630S04)
Figure 1-1. HA1630S04
Supply Current vs. Supply Voltage
400
Ta = 25°C
Supply Current IDD (µA)
Supply Current IDD (µA)
400
Figure 1-2. HA1630S04
Supply Current vs. Ambient Temperature
300
200
100
0
1
2
3
4
5
Supply Voltage VDD (V)
VDD = 5.5 V
VDD = 3.0 V
300
VDD = 1.8 V
200
100
0
−40
6
6
Ta = 25°C
5 VDD = 5.5 V
4
3
VDD = 3.0 V
2
VDD = 1.8 V
1
0
6
Ta = 25°C
VDD = 3.0 V
RL = 100 kΩ
5
4
3
2
1
0
100
200
300
Output Source Current IOSOURCE (µA)
Figure 1-5. HA1630S04
Output Source Current vs. Ambient Temperature
400
Output Source Current
IOSOURCE (µA)
100
Figure 1-4. HA1630S04
Output High Voltage vs. Supply Voltage
Output High Voltage VOH (V)
Output High Voltage VOH (V)
Figure 1-3. HA1630S04
Output High Voltage vs. Output Source Current
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
300
VDD = 5.5 V
VDD = 3.0 V
VDD = 1.8 V
200
100
0
−40
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
Rev.1.00 Mar 10, 2006 page 5 of 23
100
1
2
3
4
5
Supply Voltage VDD (V)
6
HA1630S04/05/06 Series
Figure 1-7. HA1630S04
Output Sink Current vs. Ambient Temperature
1.5
10
VDD = 5.5 V
Output Sink Current
IOSINK (mA)
Output Low Voltage VOL (V)
Figure 1-6. HA1630S04
Output Low Voltage vs. Output Sink Current
VDD = 3.0 V
1.0
VDD = 1.8 V
0.5
0
0
2
4
Output Sink Current IOSINK (mA)
VDD = 5.5 V
VDD = 3.0 V
8
VDD = 1.8 V
6
4
2
0
−40
6
Percentage (%)
40
Ta = 25°C
VDD = 3.0 V
30
20
10
0
−4
−3 −2 −1 0
1
2
3
Input Offset Voltage VIO (mV)
4
4
Ta = 25°C
VIN = 0.5 V
3
2
1
0
−1
−2
−3
−4
1
2
Common Mode
Input Voltage VCM (V)
Input Offset Voltage VIO (mV)
6
3.0
4
VDD = 1.8 V, VIN = 0.9 V
2
VDD = 3.0 V, VIN = 1.5 V
1
0
−1
VDD = 5.5 V, VIN = 2.75 V
−2
−3
−4
−40
3
4
5
Supply Voltage VDD (V)
Figure 1-11. HA1630S04
Common Mode Input Voltage vs.
Ambient Temperature
Figure 1-10. HA1630S04
Input Offset Voltage vs. Ambient Temperature
3
100
Figure 1-9. HA1630S04
Input Offset Voltage vs. Supply Voltage
Input Offset Voltage VIO (mV)
Figure 1-8. HA1630S04
Input Offset Voltage Distribution
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
Rev.1.00 Mar 10, 2006 page 6 of 23
100
2.0
VDD = 3.0 V
1.0
0
−1.0
−40
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
100
HA1630S04/05/06 Series
Power Supply Rejection Ratio
PSRR (dB)
Figure 1-12. HA1630S04
Power Supply Rejection Ratio vs. Frequency
100
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
80
60
40
20
0
10
100
1k
10k
100k
1M
10M
Frequency f (Hz)
Common Mode Rejection Ratio
CMRR (dB)
Figure 1-13. HA1630S04
Common Mode Rejection Ratio vs. Frequency
100
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
80
60
40
20
0
10
100
1k
10k
100k
1M
10M
Frequency f (Hz)
Figure 1-14. HA1630S04
Open Loop Voltage Gain and Phase Angle vs. Frequency
225
80
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
Open Loop Voltage Gain
60
40
20
135
90
Phase Angle
45
0
Phase Margin: 57 deg
−20
−40
10
180
0
−45
100
1k
10k
Frequency f (Hz)
Rev.1.00 Mar 10, 2006 page 7 of 23
100k
1M
−90
10M
Phase Angle (deg)
Open Loop Voltage Gain
AVOL (dB)
100
HA1630S04/05/06 Series
200
VDD = 3.0 V
100
0
−100
−200
0
Figure 1-16. HA1630S04
Input Bias Current vs. Input Voltage
Input Bias Current IIB (pA)
Input Bias Current IIB (pA)
Figure 1-15. HA1630S04
Input Bias Current vs. Ambient Temperature
25
50
75
Ambient Temperature Ta (°C)
200
100
0
−100
−200
100
Figure 1-17. HA1630S04
Slew Rate (rising) vs. Ambient Temperature
Slew Rate SRf (V/µs)
Slew Rate SRr (V/µs)
0.5
1.0
1.5
2.0
Input Voltage VIN (V)
2.5
3.0
5
VDD = 5.5 V
4
VDD = 3.0 V
VDD = 1.8 V
2
1
0
−40
0
Figure 1-18. HA1630S04
Slew Rate (falling) vs. Ambient Temperature
5
3
Ta = 25°C
VDD = 3.0 V
−20
0
20
40
60
80
100
VDD = 5.5 V
VDD = 3.0 V
VDD = 1.8 V
4
3
2
1
0
−40
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
Ambient Temperature Ta (°C)
Figure 1-19. HA1630S04
Large Signal Transient Response
Figure 1-20. HA1630S04
Small Signal Transient Response
2.0 V
Vin = 2.1 Vp-p, 250 kHz
Ta = 25°C
VDD = 3.0 V
RL = 100 kΩ
CL = 20 pF
1.6 V
Vin = 0.2 Vp-p, 250 kHz
0V
1.4 V
2.0 V
1.6 V
0V
1.4 V
Rev.1.00 Mar 10, 2006 page 8 of 23
100
Ta = 25°C
VDD = 3.0 V
RL = 100 kΩ
CL = 20 pF
HA1630S04/05/06 Series
Figure 1-21. HA1630S04
Total Harmonic Distortion + Noise vs.
Output Voltage p-p
10
VDD = 3.0 V
Ta = 25°C
Gain = 0 dB
1
T.H.D. + Noise (%)
T.H.D. + Noise (%)
10
Figure 1-22. HA1630S04
Total Harmonic Distortion + Noise vs.
Output Voltage p-p
f = 10 kHz
f = 1 kHz
f = 100 Hz
0.1
0.01
0.001
1
f = 10 kHz
f = 1 kHz
f = 100 Hz
0.1
0.01 V = 3.0 V
DD
Ta = 25°C
Gain = 40 dB
0.001
0
0.5
1.0
1.5
2.0
2.5
3.0
0
Output Voltage Vout p-p (V)
0.5
1.0
1.5
2.0
2.5
Output Voltage Vout p-p (V)
Voltage Output Vout p-p (V)
Figure 1-23. HA1630S04
Voltage Output p-p vs. Frequency
3.5
Ta = 25°C
VDD = 3.0 V
3.0
2.5
Gain = 40 dB,
VIN = 0.03 Vp-p
2.0
Gain = 0 dB,
VIN = 2.0 Vp-p
1.5
1.0
0.5
0
1k
Voltage Noise Density (nVms/√Hz)
Gain = 20 dB,
VIN = 0.3 Vp-p
10k
100k
Frequency f (Hz)
Figure 1-24. HA1630S04
Voltage Noise Density vs. Frequency
200
VDD = 3.0 V
Ta = 25°C
Gain = 40 dB
RS = 1 kΩ
160
120
80
40
0
100
1k
Frequency f (Hz)
Rev.1.00 Mar 10, 2006 page 9 of 23
10k
1M
10M
3.0
HA1630S04/05/06 Series
Main Characteristics (HA1630S05)
Figure 2-1. HA1630S05
Supply Current vs. Supply Voltage
Figure 2-2. HA1630S05
Supply Current vs. Ambient Temperature
800
Ta = 25°C
Supply Current IDD (µA)
Supply Current IDD (µA)
800
600
400
200
0
1
2
3
4
5
Supply Voltage VDD (V)
VDD = 5.5 V
VDD = 3.0 V
600
VDD = 1.8 V
400
200
0
−40
6
6
Ta = 25°C
VDD = 5.5 V
5
4
3
VDD = 3.0 V
2
VDD = 1.8 V
1
0
6
Ta = 25°C
VDD = 3.0 V
5
4
RL = 100 kΩ
RL = 20 kΩ
3
2
1
0
100
200
300
400
500
Output Source Current IOSOURCE (µA)
Figure 2-5. HA1630S05
Output Source Current vs. Ambient Temperature
800
Output Source Current
IOSOURCE (µA)
100
Figure 2-4. HA1630S05
Output High Voltage vs. Supply Voltage
Output High Voltage VOH (V)
Output High Voltage VOH (V)
Figure 2-3. HA1630S05
Output High Voltage vs. Output Source Current
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
VDD = 5.5 V
VDD = 3.0 V
600
VDD = 1.8 V
400
200
0
−40
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
Rev.1.00 Mar 10, 2006 page 10 of 23
100
1
2
3
4
5
Supply Voltage VDD (V)
6
HA1630S04/05/06 Series
Figure 2-7. HA1630S05
Output Sink Current vs. Ambient Temperature
1.5
10
Output Sink Current
IOSINK (mA)
Output Low Voltage VOL (V)
Figure 2-6. HA1630S05
Output Low Voltage vs. Output Sink Current
VDD = 5.5 V
VDD = 3.0 V
1.0
VDD = 1.8 V
0.5
0
0
2
4
6
Output Sink Current IOSINK (mA)
VDD = 5.5 V
VDD = 3.0 V
8
VDD = 1.8 V
6
4
2
0
−40
8
Percentage (%)
40
Ta = 25°C
VDD = 3.0 V
30
20
10
0
−4
−3 −2 −1
0
1
2
3
Input Offset Voltage VIO (mV)
4
4
Ta = 25°C
VIN = 0.5 V
3
2
1
0
−1
−2
−3
−4
1
2
Common Mode
Input Voltage VCM (V)
Input Offset Voltage VIO (mV)
6
3.0
4
VDD = 1.8 V, VIN = 0.5 V
2
VDD = 3.0 V, VIN = 1.5 V
1
0
−1
VDD = 5.5 V, VIN = 2.75 V
−2
−3
−4
−40
3
4
5
Supply Voltage VDD (V)
Figure 2-11. HA1630S05
Common Mode Input Voltage vs.
Ambient Temperature
Figure 2-10. HA1630S05
Input Offset Voltage vs. Ambient Temperature
3
100
Figure 2-9. HA1630S05
Input Offset Voltage vs. Supply Voltage
Input Offset Voltage VIO (mV)
Figure 2-8. HA1630S05
Input Offset Voltage Distribution
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
Rev.1.00 Mar 10, 2006 page 11 of 23
100
2.0
VDD = 3.0 V
1.0
0
−1.0
−40
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
100
HA1630S04/05/06 Series
Power Supply Rejection Ratio
PSRR (dB)
Figure 2-12. HA1630S05
Power Supply Rejection Ratio vs. Frequency
100
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
80
60
40
20
0
10
100
1k
10k
100k
1M
10M
Frequency f (Hz)
Common Mode Rejection Ratio
CMRR (dB)
Figure 2-13. HA1630S05
Common Mode Rejection Ratio vs. Frequency
100
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
80
60
40
20
0
10
100
1k
10k
100k
1M
10M
Frequency f (Hz)
Figure 2-14. HA1630S05
Open Loop Voltage Gain and Phase Angle vs. Frequency
225
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
Open Loop Voltage Gain
80
60
40
135
90
20
45
Phase Angle
0
0
Phase Margin: 55 deg
−20
−40
10
180
−45
100
1k
10k
Frequency f (Hz)
Rev.1.00 Mar 10, 2006 page 12 of 23
100k
1M
−90
10M
Phase Angle (deg)
Open Loop Voltage Gain
AVOL (dB)
100
HA1630S04/05/06 Series
200
VDD = 3.0 V
100
0
−100
−200
0
Figure 2-16. HA1630S05
Input Bias Current vs. Input Voltage
Input Bias Current IIB (pA)
Input Bias Current IIB (pA)
Figure 2-15. HA1630S05
Input Bias Current vs. Ambient Temperature
25
50
75
Ambient Temperature Ta (°C)
200
Ta = 25°C
VDD = 3.0 V
100
0
−100
−200
100
0
VDD = 5.5 V
8
Slew Rate SRf (V/µs)
Slew Rate SRr (V/µs)
2.5
3.0
10
10
VDD = 3.0 V
VDD = 1.8 V
4
2
0
−40
1.0
1.5
2.0
Input Voltage VIN (V)
Figure 2-18. HA1630S05
Slew Rate (falling) vs. Ambient Temperature
Figure 2-17. HA1630S05
Slew Rate (rising) vs. Ambient Temperature
6
0.5
−20
0
20
40
60
80
100
VDD = 5.5 V
8
6
VDD = 3.0 V
VDD = 1.8 V
4
2
0
−40
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
Ambient Temperature Ta (°C)
Figure 2-19. HA1630S05
Large Signal Transient Response
Figure 2-20. HA1630S05
Small Signal Transient Response
2.0 V
VIN = 2.1 Vp-p, 500 kHz
Ta = 25°C
VDD = 3.0 V
RL = 100 kΩ
CL = 20 pF
1.6 V
VIN = 0.2 Vp-p, 500 kHz
0V
1.4 V
2.0 V
1.6 V
0V
1.4 V
Rev.1.00 Mar 10, 2006 page 13 of 23
100
Ta = 25°C
VDD = 3.0 V
RL = 100 kΩ
CL = 20 pF
HA1630S04/05/06 Series
Figure 2-21. HA1630S05
Total Harmonic Distortion + Noise vs.
Output Voltage p-p
10
VDD = 3.0 V
Ta = 25°C
Gain = 0 dB
1
T.H.D. + Noise (%)
T.H.D. + Noise (%)
10
Figure 2-22. HA1630S05
Total Harmonic Distortion + Noise vs.
Output Voltage p-p
f = 10 kHz
f = 1 kHz
f = 100 Hz
0.1
0.01
0.001
0.1
0.01
0.001
0
0.5
1.0
1.5
2.0
2.5
3.0
f = 10 kHz
f = 1 kHz
f = 100 Hz
1
VDD = 3.0 V
Ta = 25°C
Gain = 40 dB
0
Output Voltage Vout p-p (V)
0.5
1.0
1.5
2.0
2.5
Output Voltage Vout p-p (V)
Voltage Output Vout p-p (V)
Figure 2-23. HA1630S05
Voltage Output p-p vs. Frequency
3.5
Ta = 25°C
VDD = 3.0 V
3.0
2.5
Gain = 40 dB,
VIN = 0.03 Vp-p
Gain = 20 dB,
VIN = 0.3 Vp-p
2.0
Gain = 0 dB,
VIN = 2.0 Vp-p
1.5
1.0
0.5
0
1k
10k
100k
Frequency f (Hz)
Figure 2-24. HA1630S05
Voltage Noise Density vs. Frequency
Voltage Noise Density
(nVms/√Hz)
200
VDD = 3.0 V
Ta = 25°C
Gain = 40 dB
RS = 1 kΩ
160
120
80
40
0
100
1k
Frequency f (Hz)
Rev.1.00 Mar 10, 2006 page 14 of 23
10k
1M
10M
3.0
HA1630S04/05/06 Series
Main Characteristics (HA1630S06)
Figure 3-1. HA1630S06
Supply Current vs. Supply Voltage
1600
Ta = 25°C
Supply Current IDD (µA)
Supply Current IDD (µA)
1600
Figure 3-2. HA1630S06
Supply Current vs. Ambient Temperature
1200
800
400
0
1
2
3
4
5
Supply Voltage VDD (V)
VDD = 5.5 V
VDD = 3.0 V
1200
VDD = 1.8 V
800
400
0
−40
6
6
Ta = 25°C
5 VDD = 5.5 V
4
VDD = 3.0 V
3
VDD = 1.8 V
2
1
0
6
Ta = 25°C
VDD = 3.0 V
5
RL = 100 kΩ
RL = 20 kΩ
4
3
2
1
0
200
400
600
800
1000
Output Source Current IOSOURCE (µA)
Figure 3-5. HA1630S06
Output Source Current vs. Ambient Temperature
1600
Output Source Current
IOSOURCE (µA)
100
Figure 3-4. HA1630S06
Output High Voltage vs. Supply Voltage
Output High Voltage VOH (V)
Output High Voltage VOH (V)
Figure 3-3. HA1630S06
Output High Voltage vs. Output Source Current
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
VDD = 5.5 V
VDD = 3.0 V
1200
VDD = 1.8 V
800
400
0
−40
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
Rev.1.00 Mar 10, 2006 page 15 of 23
100
1
2
3
4
5
Supply Voltage VDD (V)
6
HA1630S04/05/06 Series
Figure 3-7. HA1630S06
Output Sink Current vs. Ambient Temperature
1.5
12
Output Sink Current
IOSINK (mA)
Output Low Voltage VOL (V)
Figure 3-6. HA1630S06
Output Low Voltage vs. Output Sink Current
VDD = 5.5 V
VDD = 3.0 V
1.0
VDD = 1.8 V
0.5
VDD = 5.5 V
10
8
VDD = 3.0 V
6
4
VDD = 1.8 V
2
0
0
2
4
6
8
Output Sink Current IOSINK (mA)
0
−40
10
Percentage (%)
40
Ta = 25°C
VDD = 3.0 V
30
20
10
0
−4
−3 −2 −1
0
1
2
3
Input Offset Voltage VIO (mV)
4
4
Ta = 25°C
VIN = 0.5 V
3
2
1
0
−1
−2
−3
−4
1
2
Common Mode
Input Voltage VCM (V)
Input Offset Voltage VIO (mV)
6
3.0
4
VDD = 1.8 V, VIN = 0.5 V
2
VDD = 3.0 V, VIN = 1.5 V
1
0
−1
VDD = 5.5 V, VIN = 2.75 V
−2
−3
−4
−40
3
4
5
Supply Voltage VDD (V)
Figure 3-11. HA1630S06
Common Mode Input Voltage vs.
Ambient Temperature
Figure 3-10. HA1630S06
Input Offset Voltage vs. Ambient Temperature
3
100
Figure 3-9. HA1630S06
Input Offset Voltage vs. Supply Voltage
Input Offset Voltage VIO (mV)
Figure 3-8. HA1630S06
Input Offset Voltage Distribution
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
Rev.1.00 Mar 10, 2006 page 16 of 23
100
2.0
VDD = 3.0 V
1.0
0
−1.0
−40
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
100
HA1630S04/05/06 Series
Power Supply Rejection Ratio
PSRR (dB)
Figure 3-12. HA1630S06
Power Supply Rejection Ratio vs. Frequency
100
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
VRIP = 0.1 Vp
80
60
40
20
0
10
100
1k
10k
100k
1M
10M
Frequency f (Hz)
Common Mode Rejection Ratio
CMRR (dB)
Figure 3-13. HA1630S06
Common Mode Rejection Ratio vs. Frequency
100
Ta = 25°C
VDD = 3.0 V
RL = 1 MΩ
CL = 20 pF
80
60
40
20
0
10
100
1k
10k
100k
1M
10M
Frequency f (Hz)
Figure 3-14. HA1630S06
Open Loop Voltage Gain and Phase Angle vs. Frequency
225
Ta = 25°C
VDD = 3.0 V 180
RL = 1 MΩ
CL = 20 pF 135
Open Loop Voltage Gain
80
60
40
90
Phase Angle
20
45
0
Phase Margin: 65 deg
−20
−40
10
0
−45
100
1k
10k
Frequency f (Hz)
Rev.1.00 Mar 10, 2006 page 17 of 23
100k
1M
−90
10M
Phase Angle (deg)
Open Loop Voltage Gain
AVOL (dB)
100
HA1630S04/05/06 Series
200
VDD = 3.0 V
100
0
−100
−200
0
25
50
75
Ambient Temperature Ta (°C)
Figure 3-16. HA1630S06
Input Bias Current vs. Input Voltage
Input Bias Current IIB (pA)
Input Bias Current IIB (pA)
Figure 3-15. HA1630S06
Input Bias Current vs. Ambient Temperature
200
100
0
−100
−200
100
Figure 3-17. HA1630S06
Slew Rate (rising) vs. Ambient Temperature
0.5
1.0
1.5
2.0
Input Voltage VIN (V)
2.5
3.0
14
12
Slew Rate SRf (V/µs)
Slew Rate SRr (V/µs)
0
Figure 3-18. HA1630S06
Slew Rate (falling) vs. Ambient Temperature
14
VDD = 5.5 V
VDD = 3.0 V
10
VDD = 1.8 V
8
6
4
−40
Ta = 25°C
VDD = 3.0 V
−20
0
20
40
60
80
100
VDD = 5.5 V
12
10
VDD = 3.0 V
VDD = 1.8 V
8
6
4
−40
−20
0
20
40
60
80
Ambient Temperature Ta (°C)
Ambient Temperature Ta (°C)
Figure 3-19. HA1630S06
Large Signal Transient Response
Figure 3-20. HA1630S06
Small Signal Transient Response
2.0 V
VIN = 1.9 Vp-p, 500 kHz
Ta = 25°C
VDD = 3.0 V
RL = 100 kΩ
CL = 20 pF
1.6 V
VIN = 0.2 Vp-p, 500 kHz
0V
1.4 V
2.0 V
1.6 V
0V
1.4 V
Rev.1.00 Mar 10, 2006 page 18 of 23
100
Ta = 25°C
VDD = 3.0 V
RL = 100 kΩ
CL = 20 pF
HA1630S04/05/06 Series
Figure 3-21. HA1630S06
Total Harmonic Distortion + Noise vs.
Output Voltage p-p
10
VDD = 3.0 V
Ta = 25°C
Gain = 0 dB
1
T.H.D. + Noise (%)
T.H.D. + Noise (%)
10
Figure 3-22. HA1630S06
Total Harmonic Distortion + Noise vs.
Output Voltage p-p
f = 10 kHz
f = 1 kHz
f = 100 Hz
0.1
0.01
1
f = 10 kHz
f = 1 kHz
f = 100 Hz
0.1
0.01 VDD = 3.0 V
Ta = 25°C
Gain = 40 dB
0.001
0.001
0
0.5
1.0
1.5
2.0
2.5
3.0
0
Output Voltage Vout p-p (V)
0.5
1.0
1.5
2.0
2.5
Output Voltage Vout p-p (V)
Voltage Output Vout p-p (V)
Figure 3-23. HA1630S06
Voltage Output p-p vs. Frequency
3.5
Ta = 25°C
VDD = 3.0 V
3.0
2.5
Gain = 40 dB,
VIN = 0.03 Vp-p
Gain = 20 dB,
VIN = 0.3 Vp-p
10k
100k
Frequency f (Hz)
1.5
1.0
0.5
0
1k
Figure 3-24. HA1630S06
Voltage Noise Density vs. Frequency
Voltage Noise Density
(nVms/√Hz)
200
VDD = 3.0 V
Ta = 25°C
Gain = 40 dB
RS = 1 kΩ
160
120
80
40
0
100
Gain = 0 dB,
VIN = 2.0 Vp-p
2.0
1k
Frequency f (Hz)
Rev.1.00 Mar 10, 2006 page 19 of 23
10k
1M
10M
3.0
HA1630S04/05/06 Series
Test Circuits
1. Power Supply Rejection Ratio, PSRP & Voltage Offset, VIO
VIO
VDD
VIO = VO −
RF = 680 kΩ
VDD
2
×
RS
R S + RF
RS = 6.8 kΩ
PSRR
−
+
VO
RS = 6.8 kΩ
VDD
PSRR = −20log
2
VDD1 − VDD2
VO1 − VO2
×
RS
R S + RF
Measure VO corresponding to VDD1 = 2.95 V and VDD2 = 3.05 V
2. Supply Current, IDD
3. Input Bias Current, IIB
VDD
VDD
A
−
+
−
+
VDD
VDD
2
2
4. Output High Voltage, VOH
VOH
VDD
VIN1 = VDD / 2 − 0.05 V
VIN2 = VDD / 2 + 0.05 V
−
+
VIN1
VO
VIN2
RL = 100 kΩ
5. Output Low Voltage, VOL
VOL
VDD
VIN1 = VDD / 2 + 0.05 V
VIN2 = VDD / 2 − 0.05 V
−
+
VIN1
RL = 100 kΩ
VIN2
Rev.1.00 Mar 10, 2006 page 20 of 23
VO
A
HA1630S04/05/06 Series
6. Output Source Current, IOSOURCE & Output Sink Current, IOSINK
VDD
IOSOURCE
VO = VDD − 0.5 V
VIN1 = VDD / 2 − 0.05 V
VIN2 = VDD / 2 + 0.05 V
−
+
VIN1
A
IOSINK
VIN2
VO = + 0.5 V
VIN1 = VDD / 2 + 0.05 V
VIN2 = VDD / 2 − 0.05 V
VO
7. Common Mode Input Voltage, VCM & Common Mode Rejection Ratio, CMRR
VDD
CMRR
RF = 680 kΩ
RS = 6.8 kΩ
VIN1 − VIN2
VO1 − VO2
CMRR = −20log
−
+
VO
RS = 6.8 kΩ
×
RS
RS + RF
Measure VO corresponding to VIN1 = 1.45 V and VIN2 = 1.55 V
VDD
VIN
2
RF = 680 kΩ
8. Total Harmonic Distortion, THD
VDD
THD
RF
Gain Variable
RS
−
+
VO
Gain Variable
RF / RS = 20log (100 kΩ / 1 kΩ) = 40 dB
RF / RS = 20log (100 kΩ / 100 kΩ) = 0 dB
freq = 100 Hz, 1 kHz, 10 kHz
30 kHz LPF ON
VIN
VSS
9. Slew Rate, SR
10. Gain, AV & Phase, GBW
VDD
VDD
RF = 680 kΩ
RS = 6.8 kΩ
−
+
VO
1 MΩ
−
+
20 pF
VSS
Rev.1.00 Mar 10, 2006 page 21 of 23
VO
1 MΩ
RS = 6.8 kΩ VSS
20 pF
HA1630S04/05/06 Series
Package Dimensions
JEITA Package Code
SC-74A
Package Name
MPAK-5
RENESAS Code
PLSP0005ZB-A
Previous Code
MPAK-5 / MPAK-5V
MASS[Typ.]
0.015g
D
A
e
Q
E
HE
LP
L
A
c
Reference Dimension in Millimeters
Symbol
Min
Nom Max
L1
A3
A
x M S
b
A
e
A2
A
e1
A1
y S
S
b
b1
I1
c1
c
b2
A-A Section
JEITA Package Code
Pattern of terminal position areas
RENESAS Code
SC-88A
Previous Code
PTSP0005ZC-A
D
CMPAK-5 / CMPAK-5V
A
A1
A2
A3
b
b1
c
c1
D
E
e
HE
L
L1
LP
x
y
b2
e1
I1
Q
1.0
0
1.0
0.35
0.1
2.8
1.5
2.5
0.3
0.1
0.2
1.1
0.25
0.42
0.4
0.13
0.11
2.95
1.6
0.95
2.8
1.3
0.1
1.2
0.5
0.15
3.1
1.8
3.0
0.7
0.5
0.6
0.05
0.05
0.55
2.15
0.85
0.3
MASS[Typ.]
0.006g
A
e
Q
c
E
HE
LP
L
A
A
x M
L1
S
Reference
Symbol
A3
b
A
A
A1
A2
A3
b
b1
c
c1
D
E
e
e
A2
A
A1
y S
S
e1
b
b1
c1
l1
c
b2
A-A Section
Rev.1.00 Mar 10, 2006 page 22 of 23
Pattern of terminal position areas
HE
L
L1
LP
x
y
Dimension in Millimeters
Min
0.8
0
0.8
0.15
0.1
1.8
1.15
1.8
0.3
0.1
0.2
Nom
0.9
0.25
0.22
0.2
0.13
0.11
2.0
1.25
0.65
2.1
b2
e1
1.5
l1
Q
0.25
Max
1.1
0.1
1.0
0.3
0.15
2.2
1.35
2.4
0.7
0.5
0.6
0.05
0.05
0.35
0.9
HA1630S04/05/06 Series
Taping & Reel Specification
[Taping]
Package Code
MPAK-5
CMPAK-5
W
8
8
P
4
4
Ao
3.3
2.25
Bo
3.3
2.45
Ko
1.5
1.1
E
1.75
1.75
F
3.5
3.5
D1
1.05
1.05
Maximum Storage No.
3,000 pcs/reel
3,000 pcs/reel
4.0
φ 1.5
Unit: mm
E
2.0
Cover
tape
B0
W
F
A0
D1
P
Tape withdraw direction
[Ordering Information]
Ordering Unit
3,000 pcs
9.0
Mark Indication
Index band
Marking
1
D
= Contorol code
(  or blank)
Rev.1.00 Mar 10, 2006 page 23 of 23
1D
: HA1630S04
1E
: HA1630S05
1F
: HA1630S06
φ178 ± 2
2.0 ± 0.5
W2
9
9
4 ± 0.5
W1
11.4
11.4
0°
Tape width
8
8
12
[Reel]
Package
MPAK-5
CMPAK-5
11.4
φ13 ± 0.5
K0
Sales Strategic Planning Div.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Keep safety first in your circuit designs!
1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble
may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary
circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's
application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data,
diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of
publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is
therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product
information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor
home page (http://www.renesas.com).
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to
evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes
no responsibility for any damage, liability or other loss resulting from the information contained herein.
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life
is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a
product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater
use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and
cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.
http://www.renesas.com
RENESAS SALES OFFICES
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.
Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898
Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071
Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001
Renesas Technology Korea Co., Ltd.
Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145
Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: <603> 7955-9390, Fax: <603> 7955-9510
© 2006. Renesas Technology Corp., All rights reserved. Printed in Japan.
Colophon .6.0