IRF3205 IRF3205 - Thinki Semiconductor Co.,Ltd.

IRF3205
®
Pb
IRF3205
Pb Free Plating Product
N-Channel Trench Process Power MOSFET Transistor
General Description
The IRF3205 is N-channel MOS Field Effect Transistor
designed for high current switching applications. Rugged
EAS capability and ultra low RDS(ON) is suitable for PWM,
load switching .
Features
G
● VDS=55V; ID=105A@ VGS=10V;
D
S
RDS(ON)<6.0mΩ @ VGS=10V
● Ultra Low On-Resistance
● High UIS and UIS 100% Test
Schematic Diagram
TO-220CB Top View
Application
VDS = 55 V
● Hard Switched and High Frequency Circuits
● Uninterruptible Power Supply
● Inverter Application
ID = 105 A
RDS(ON) = 5.0 mΩ
Table 1. Absolute Maximum Ratings (TA=25℃)
Symbol
Parameter
Value
Unit
VDS
Drain-Source Voltage (VGS=0V)
55
V
VGS
Gate-Source Voltage (VDS=0V)
±25
V
ID (DC)
Drain Current (DC) at Tc=25℃
105
A
ID (DC)
Drain Current (DC) at Tc=100℃
100
A
420
A
Peak Diode Recovery Voltage
30
V/ns
Maximum Power Dissipation(Tc=25℃)
139
W
0.926
W/℃
625
mJ
-55 To 175
℃
IDM (pluse)
dv/dt
PD
Drain Current-Continuous@ Current-Pulsed
(Note 1)
Derating Factor
EAS
TJ,TSTG
Single Pulse Avalanche Energy
(Note 2)
Operating Junction and Storage Temperature Range
Notes 1.Repetitive Rating: Pulse width limited by maximum junction temperature
2.EAS condition:TJ=25℃,VDD=40V,VG=10V,RG=25Ω
B
B
Rev.05
© 2013 Thinki Semiconductor Co.,Ltd.
Page 1/5
http://www.thinkisemi.com/
IRF3205
®
Table 2. Thermal Characteristic
Symbol
Parameter
RJC
Thermal Resistance,Junction-to-Case
Table 3. Electrical Characteristics (TA=25℃unless otherwise noted)
Symbol
Parameter
Conditions
Min
Value
Unit
1.08
℃/W
Typ
Max
Unit
On/Off States
BVDSS
Drain-Source Breakdown Voltage
VGS=0V ID=250μA
55
V
IDSS
Zero Gate Voltage Drain Current(Tc=25℃)
VDS=55V,VGS=0V
1
μA
IDSS
Zero Gate Voltage Drain Current(Tc=125℃)
VDS=55V,VGS=0V
1
μA
IGSS
Gate-Body Leakage Current
VGS=±20V,VDS=0V
±100
nA
VGS(th)
Gate Threshold Voltage
VDS=VGS,ID=250μA
4
V
RDS(ON)
Drain-Source On-State Resistance
6.0
mΩ
2
VGS=10V, ID=40A
5.0
Dynamic Characteristics
gFS
Forward Transconductance
Ciss
Input Capacitance
VDS=25V,ID=40A
VDS=25V,VGS=0V,
f=1.0MHz
25
S
5905
PF
905
PF
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
548
PF
Qg
Total Gate Charge
94
nC
Qgs
Gate-Source Charge
18
nC
Qgd
Gate-Drain Charge
25
nC
15
nS
18
nS
31
nS
38
nS
VDS=30V,ID=30A,
VGS=10V
Switching Times
td(on)
Turn-on Delay Time
tr
Turn-on Rise Time
td(off)
tf
VDD=30V,ID=2A,RL=15Ω
VGS=10V,RG=2.5Ω
Turn-Off Delay Time
Turn-Off Fall Time
Source-Drain Diode Characteristics
ISD
Source-drain Current(Body Diode)
105
A
ISDM
Pulsed Source-Drain Current(Body Diode)
420
A
VSD
(Note 1)
Forward On Voltage
TJ=25℃,ISD=40A,VGS=0V
(Note 1)
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
ton
Forward Turn-on Time
(Note 1)
TJ=25℃,IF=75A
di/dt=100A/μs
0.87
0.95
V
56
nS
113
nC
Intrinsic turn-on time is negligible(turn-on is dominated by LS+LD)
Notes 1.Pulse Test: Pulse Width ≤ 300μs, Duty Cycle ≤ 1.5%, RG=25Ω, Starting TJ=25℃
Rev.05
© 2013 Thinki Semiconductor Co.,Ltd.
Page 2/5
http://www.thinkisemi.com/
IRF3205
®
Test Circuit
1) EAS Test Circuits
2) Gate Charge Test Circuit:
3) Switch Time Test Circuit:
Rev.05
© 2013 Thinki Semiconductor Co.,Ltd.
Page 3/5
http://www.thinkisemi.com/
IRF3205
®
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS (Curves)
Figure2. Transfer Characteristics
ID-Drain Current (A)
ID-Drain Current (A)
Figure1. Output Characteristics
VDS Drain-Source Voltage (V)
VGS Gate-Source Voltage (V)
ID- Drain Current (A)
Figure5. Gate Charge
VGS Gate-Source Voltage (V)
Figure4. Rdson Vs Junction
Normalized On-Resistance
RDS(ON) On-Resistance (mΩ)
Figure3. Rdson Vs Drain Current
TJ-Junction Temperature(℃)
Figure6. Source- Drain Diode Forward
10
8
6
4
2
0
VSD Source-Drain Voltage (V)
Rev.05
© 2013 Thinki Semiconductor Co.,Ltd.
Page 4/5
http://www.thinkisemi.com/
IRF3205
®
Figure7. Capacitance vs Vds
Figure8. Safe Operation Area
Ciss
6000
ID-Drain Current (A)
C Capacitance (pF)
7000
5000
4000
3000
2000
Coss
1000
Crss
0
0
5
10
15
20
25
VDS Drain-Source Voltage (V)
VDS Drain-Source Voltage (V)
Figure10. VGS(th) vs Junction Temperature
Normalized BVDSS
Figure9. BVDSS vs Junction Temperature
TJ-Junction Temperature(℃)
TJ-Junction Temperature(℃)
R(t), Normalized Effective
Transient Thermal Impedance
Figure11. Normalized Maximum Transient Thermal Impedance
Rev.05
© 2013 Thinki Semiconductor Co.,Ltd.
Page 5/5
http://www.thinkisemi.com/