V23990-P629-L59-PM Maximum Ratings

V23990-P629-L59-PM
preliminary datasheet
flowBOOST
1200V/40A
Features
flow0 17mm housing
● High efficiency dual boost
● Ultra fast switching frequency
● Low Inductance Layout
● 1200V IGBT and 1200V Si diode
Target Applications
Schematic
● solar inverter
Types
● V23990-P629-L59-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
Bypass Diode ( D7 , D8 )
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms
sin 180°
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
Tjmax
34
40
A
220
A
240
A2s
42
63
W
150
°C
1200
V
40
45
A
120
A
113
171
W
±20
V
10
800
µs
V
175
°C
Boost IGBT ( T1 , T2 )
Collector-emitter break down voltage
DC collector current
Pulsed collector current
VCE
Tj=25°C
IC
Tj=Tjmax
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
copyright Vincotech
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Tc=80°C
Revision: 1
V23990-P629-L59-PM
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
10
13
A
21
A
26
39
W
150
°C
1200
V
39
53
A
270
A
Boost IGBT Protection Diode ( D9 , D10 )
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Th=80°C
Tj=Tjmax
Tc=80°C
Surge forward current
IFSM
tp=10ms, sin 180°, Tj=Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Tjmax
Boost FWD (D1 , D4 )
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Th=80°C
Tc=80°C
Tj=Tjmax
Surge forward current
IFSM
tp=10ms, sin 180°, Tj=25°C
Power dissipation
Ptot
Tj=Tjmax
Th=80°C
89
Tc=80°C
134
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Thermal Properties
Insulation Properties
Insulation voltage
copyright Vincotech
Vis
t=2s
DC voltage
2
Revision: 1
V23990-P629-L59-PM
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,7
1,15
1,11
0,92
0,82
0,009
0,012
1,4
Bypass Diode ( D7 , D8 )
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
24
Slope resistance (for power loss calc. only)
rt
24
Reverse current
Ir
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
25
1600
V
Ω
0,05
Thermal grease
thickness≤50um
λ = 1 W/mK
V
mA
1,67
K/W
1,10
Boost IGBT ( T1 , T2 )
Gate emitter threshold voltage
Collector-emitter saturation voltage
VGE(th)
VGE=VCE
VCE(sat)
0,0015
40
15
Collector-emitter cut-off
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
tr
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
5,2
5,8
6,4
1,7
2,10
2,48
2,6
0,25
200
Rgoff=4 Ω
Rgon=4 Ω
700
15
24
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
none
td(on)
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
22
21
35
68
225
293
35
68
1,09
1,82
1,01
1,61
ns
mWs
2300
f=1MHz
25
0
150
Tj=25°C
pF
135
600
15
40
Tj=25°C
185
Thermal grease
thickness≤50um
λ = 1 W/mK
nC
0,84
K/W
0,56
Boost IGBT Protection Diode ( D9 , D10 )
Diode forward voltage
VF
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
3
Tj=25°C
Tj=125°C
0,7
Thermal grease
thickness≤50um
λ = 1 W/mK
1,66
1,58
2,4
V
2,72
K/W
1,80
Boost FWD ( D1 , D4 )
Forward voltage
Reverse leakage current
VF
Irm
Peak recovery current
IRRM
Reverse recovery time
trr
Reverse recovery charge
Qrr
Reverse recovered energy
Erec
Peak rate of fall of recovery current
1200
Rgon=4 Ω
700
15
di(rec)max
/dt
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
copyright Vincotech
50
Thermal grease
thickness≤50um
λ = 1 W/mK
24
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,5
2,28
2,36
2,8
60
63
78
83
208
2,25
5,02
0,98
2,42
5304
3201
V
µA
A
ns
µC
mWs
A/µs
1,07
K/W
0,71
3
Revision: 1
V23990-P629-L59-PM
preliminary datasheet
Characteristic Values
Parameter
Value
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
Unit
Max
Thermistor
Rated resistance
R
Tj=25°C
Deviation of R25
∆R/R
Power dissipation
P
Tj=25°C
B-value
B(25/50)
B-value
B(25/100) Tol. ±1%
Tj=25°C
R100=1486Ω
Tc=100°C
Power dissipation constant
Vincotech NTC Reference
copyright Vincotech
Ω
21511
-4,5
+4,5
%
210
mW
Tj=25°C
3,5
mW/K
Tj=25°C
3884
K
3964
K
F
4
Revision: 1
V23990-P629-L59-PM
preliminary datasheet
Boost IGBT Protection Diode
Boost IGBT Protection Diode
Figure 1
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
Boost IGBT Protection Diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
20
IF (A)
101
ZthJC (K/W)
Tj = 25°C
15
100
Tj = Tjmax-25°C
10
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
5
0
0
At
tp =
1
2
3
V F (V)
10-2
4
µs
250
Boost IGBT Protection Diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-5
10-4
10-3
At
D=
RthJH =
tp / T
2,72
K/W
10-2
100
t p (s)
10110
Boost IGBT Protection Diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
20
IF (A)
Ptot (W)
60
10-1
45
15
30
10
15
5
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
Th ( o C)
0
200
At
Tj =
ºC
5
50
150
100
150
Th ( o C)
200
ºC
Revision: 1
V23990-P629-L59-PM
preliminary datasheet
INPUT BOOST
BOOST IGBT
Figure 3
Typical output characteristics
IC = f(VCE)
BOOST FWD
Figure 4
Typical output characteristics
IC = f(VCE)
120
IC(A)
IC (A)
120
90
90
60
60
30
30
0
0
0
At
tp =
Tj =
VGS from
1
2
3
4
V CE (V)
0
5
At
tp =
Tj =
VGS from
µs
250
25
°C
7 V to 17 V in steps of 1 V
BOOST IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
BOOST FWD
Figure 4
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
150
IC (A)
IF (A)
40
V CE (V)
Tj = Tjmax-25°C
Tj = 25°C
120
30
90
20
60
10
30
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
At
tp =
VDS =
2
250
10
copyright Vincotech
4
6
8
10
V GE (V)
12
0
At
tp =
µs
V
6
1
250
2
3
4
5
V F (V)
6
µs
Revision: 1
V23990-P629-L59-PM
preliminary datasheet
INPUT BOOST
BOOST IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
BOOST IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
8
E (mWs)
E (mWs)
8
Eon High T
Eon High T
6
6
Eoff High T
Eon Low T
4
4
Eon Low T
Eoff Low T
Eoff High T
2
2
0
Eoff Low T
0
0
20
40
60
I C (A)
80
0
With an inductive load at
Tj =
°C
25/125
VDS =
700
V
VGS =
15
V
Rgon =
4
Ω
Rgoff =
4
Ω
16
32
48
64
RG (Ω )
80
With an inductive load at
Tj =
25/125
°C
VDS =
700
V
VGS =
15
V
ID =
A
24
BOOST IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector (drain) current
Erec = f(IC)
BOOST IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
5
E (mWs)
E (mWs)
5
Erec High T
4
4
3
3
Erec Low T
2
2
Erec High T
1
1
Erec Low T
0
0
0
20
40
60
I C (A)
0
80
With an inductive load at
Tj =
°C
25/125
VDS =
700
V
VGS =
15
V
Rgon =
4
Ω
copyright Vincotech
16
32
48
64
R G( Ω )
80
With an inductive load at
Tj =
25/125
°C
VDS =
700
V
VGS =
15
V
ID =
24
A
7
Revision: 1
V23990-P629-L59-PM
preliminary datasheet
INPUT BOOST
BOOST IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
BOOST IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
10
t ( µs)
t ( µs)
10
1
tdoff
1
tdoff
tdon
tf
0,1
0,1
tr
tf
tdon
0,01
0,01
tr
0,001
0,001
0
20
40
60
I C (A)
80
0
With an inductive load at
Tj =
°C
125
VDS =
700
V
VGS =
15
V
Rgon =
4
Ω
Rgoff =
4
Ω
16
32
48
64
R G( Ω )
80
With an inductive load at
Tj =
125
°C
VDS =
700
V
VGS =
15
V
IC =
A
24
BOOST FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
BOOST FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,6
trr High T
t rr( µs)
t rr( µs)
0,6
0,5
0,5
trr Low T
trr High T
0,4
0,4
0,3
0,3
trr Low T
0,2
0,2
0,1
0,1
0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
700
15
4
copyright Vincotech
40
60
I C (A)
80
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
8
16
25/125
700
24
15
32
48
64
R Gon ( Ω )
80
°C
V
A
V
Revision: 1
V23990-P629-L59-PM
preliminary datasheet
INPUT BOOST
BOOST FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
BOOST FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
10
Qrr ( µC)
Qrr ( µC)
10
Qrr High T
8
8
6
6
Qrr Low T
Qrr High T
4
4
2
2
Qrr Low T
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
20
40
60
I C (A)
80
16
VR =
IF =
VGS =
25/125
700
24
15
At
Tj =
°C
V
V
Ω
25/125
700
15
4
0
BOOST FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
32
48
64
80
°C
V
A
V
BOOST FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
100
IrrM (A)
100
R Gon ( Ω)
IRRM High T
80
80
IRRM Low T
60
60
40
40
20
20
IRRM High T
IRRM Low T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
700
15
4
copyright Vincotech
40
60
I C (A)
0
80
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
9
16
25/125
700
24
15
32
48
64
R Gon ( Ω )
80
°C
V
A
V
Revision: 1
V23990-P629-L59-PM
preliminary datasheet
INPUT BOOST
BOOST FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
8000
direc / dt (A/ µs)
direc / dt (A/ µs)
8000
dI0/dt
dIrec/dt
dI0/dt
dIrec/dt
6000
6000
4000
4000
2000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
700
15
4
40
I C (A)
60
80
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
BOOST IGBT
Figure 19
IGBT/MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
16
25/125
700
24
15
32
48
R Gon ( Ω)
64
80
°C
V
A
V
BOOST FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
100
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
BOOST FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
10
-5
At
D=
RthJH =
10
-4
10
-3
10
-2
10
-1
10
0
t p (s)
1
10 10
-2
10
-5
At
D=
RthJH =
tp / T
0,84
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
-2
10
0
K/W
10
-4
10
R (C/W)
0,107
0,391
0,223
0,092
0,030
R (C/W)
0,027
0,098
0,284
0,405
0,171
10
-2
10
-1
10
0
t p (s)
1
10 10
K/W
FWD thermal model values
copyright Vincotech
10
tp / T
1,07
IGBT thermal model values
Tau (s)
1,413
0,188
0,056
0,011
0,001
-3
Tau (s)
8,145
1,332
0,228
0,069
0,014
Revision: 1
V23990-P629-L59-PM
preliminary datasheet
INPUT BOOST
BOOST IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
BOOST IGBT
Figure 22
Collector/Drain current as a
function of heatsink temperature
IC = f(Th)
250
IC (A)
Ptot (W)
50
200
40
150
30
100
20
50
10
0
0
0
At
Tj =
50
100
150
Th ( o C)
200
0
At
Tj =
VGS =
ºC
175
BOOST FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
Th ( o C)
200
ºC
V
BOOST FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
70
IF (A)
Ptot (W)
200
60
150
50
40
100
30
20
50
10
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
0
200
At
Tj =
ºC
11
50
175
100
150
T h ( o C)
200
ºC
Revision: 1
V23990-P629-L59-PM
preliminary datasheet
INPUT BOOST
BOOST IGBT
Figure 25
Safe operating area as a function
of drain-source voltage
IC = f(VCE)
VGE = f(Qg)
103
VGE (V)
18
IC (A)
10
BOOST IGBT
Figure 26
Gate voltage vs Gate charge
16
14
2
240V
10uS
12
10mS
960V
100uS
1mS
10
10
100mS
1
8
DC
6
10
0
4
2
1
0
0
10
At
D=
Th =
VGS =
Tj =
1
10
2
10
3
100
150
200
250
Qg (nC)
At
ID =
single pulse
80
ºC
V
15
Tjmax
ºC
copyright Vincotech
50
V CE (V)
12
24
A
Revision: 1
V23990-P629-L59-PM
preliminary datasheet
Bypass Diode
Bypass Diode
Figure 1
Typical Diode forward current as
a function of forward voltage
IF= f(VF)
Bypass Diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
35
ZthJC (K/W)
IF (A)
101
30
Tj = 25°C
Tj = Tjmax-25°C
25
100
20
15
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
5
0
10-2
0
0,3
At
tp =
0,6
0,9
1,2
V F (V)
1,5
10-5
At
D=
RthJH =
µs
250
10-4
Bypass Diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-3
10-2
10-1
100
10110
tp / T
1,674
K/W
Bypass Diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
50
Ptot (W)
IF (A)
100
t p (s)
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
ºC
13
50
150
100
150
T h ( o C)
200
ºC
Revision: 1
V23990-P629-L59-PM
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
25000
20000
15000
10000
5000
0
25
copyright Vincotech
50
75
100
T (°C)
125
14
Revision: 1
V23990-P629-L59-PM
preliminary datasheet
Switching Definitions BOOST IGBT
General conditions
= 125 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
Boost IGBT
Figure 1
Boost IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
125
500
tdoff
%
%
VCE
400
100
VGE 90%
IC
VCE 90%
300
75
IC
200
50
tEoff
VCE
VGE
100
25
tdon
IC 1%
VGE10%
IC 10%
0
0
VCE 3%
tEon
VGE
-25
-0,2
0
0,2
0,4
0,6
-100
2,95
0,8
3
3,05
3,1
3,15
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
0
15
700
24
0,29
0,42
Boost IGBT
Figure 3
3,2
time(us)
0
15
700
24
0,02
0,14
V
V
V
A
µs
µs
Boost IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
125
500
fitted
%
VCE
%
IC
IC
400
100
IC 90%
300
75
IC 60%
200
50
IC 40%
IC 90%
VCE
100
25
tr
IC10%
IC 10%
0
0
tf
-100
-25
0,1
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,2
700
24
0,06
0,3
time (us)
3
0,4
3,025
3,05
3,075
3,1
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
15
700
24
0,01
V
A
µs
Revision: 1
V23990-P629-L59-PM
preliminary datasheet
Switching Definitions BOOST IGBT
Boost IGBT
Figure 5
Boost IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
%
350
%
Eoff
Pon
300
100
Poff
250
80
200
60
150
Eon
40
100
IC 1%
20
50
VGE 90%
VGE
0
tEoff
-20
-0,2
0
VCE 3%
10%
tEon
0
0,2
0,4
-50
2,95
0,6
3
3,05
3,1
3,15
Poff (100%) =
Eoff (100%) =
tEoff =
16,97
1,55
0,42
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Boost IGBT
Figure 7
Gate voltage vs Gate charge (measured)
3,2
time(us)
time (us)
16,97
1,85
0,14
kW
mJ
µs
Boost FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
20
200
VGE (V)
%
100
15
trr
Id
0
Vd
fitted
10
IRRM 10%
-100
5
-200
0
-300
-400
2,95
-5
-50
0
50
100
150
IRRM 90%
IRRM 100%
3,1
3,25
Qg (nC)
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright Vincotech
0
15
700
24
144,01
3,4
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
16
700
24
-76
0,21
V
A
A
µs
Revision: 1
V23990-P629-L59-PM
preliminary datasheet
Switching Definitions BOOST FWD
Boost FWD
Figure 9
Boost FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
200
150
%
%
Qrr
125
100
tQrr
Erec
100
0
tErec
75
Id
-100
50
-200
25
Prec
-300
-400
2,95
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
0
3,1
3,25
24
4,94
0,43
3,4
time(us)
-25
2,95
3,55
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
17
3,1
3,25
16,97
2,36
0,43
3,4
time(us)
3,55
kW
mJ
µs
Revision: 1
V23990-P629-L59-PM
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 17mm housing
Ordering Code
V23990-P629-L59-PM
in DataMatrix as
P629-L59-PM
in packaging barcode as
P629-L59-PM
Outline
Pinout
copyright Vincotech
18
Revision: 1
V23990-P629-L59-PM
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
19
Revision: 1