10-FY12NMA080SH-M427F 10-PY12NMA080SH

10-FY12NMA080SH-M427F
10-PY12NMA080SH-M427FY
preliminary datasheet
flowMNPC 1
1200V/80A
Features
flow0 12mm housing
● mixed voltage NPC topology
● reactive power capability
● low inductance layout
● Split output
● Common collector neutral connection
Target Applications
Schematic
● solar inverter
● UPS
● Active frontend
Types
● 10-FY12NMA080SH-M427F
● 10-PY12NMA080SH-M427FY
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
12
17
A
14
A
27
42
W
Halfbridge IGBT Inverse Diode
VRRM
Tj=25°C
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp=10ms
Maximum Junction Temperature
Ptot
Maximum Junction Temperature
Tjmax
150
°C
VDS
1200
V
62
80
A
240
A
133
201
W
±20
V
10
800
μs
V
175
°C
Repetitive peak reverse voltage
DC forward current
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Halfbridge IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
ID
IDpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
copyright by Vincotech
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Tc=80°C
Revision: 1
10-FY12NMA080SH-M427F
10-PY12NMA080SH-M427FY
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
NP Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Th=80°C
Tc=80°C
50
67
A
Tc=100°C
120
A
Th=80°C
61
92
W
Tjmax
175
°C
VCE
600
V
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Tc=80°C
NP IGBT
Collector-emitter break down voltage
DC collector current
IC
Tj=Tjmax
Repetitive peak collector current
ICpuls
tp limited by Tjmax
Power dissipation per IGBT
Ptot
Tj=Tjmax
Gate-emitter peak voltage
VGE
Short circuit ratings
Maximum Junction Temperature
tSC
VCC
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Tjmax
51
71
A
225
A
76
116
W
±20
V
6
360
μs
V
175
°C
600
V
19
25
A
30
A
29
44
W
185
°C
1200
V
31
41
A
200
A
62
94
W
175
°C
NP Inverse Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tc=25°C
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tjmax
Halfbridge Diode
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
Power dissipation per Diode
Maximum Junction Temperature
copyright by Vincotech
VRRM
IF
IFRM
Ptot
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Tjmax
2
Th=80°C
Tc=80°C
Revision: 1
10-FY12NMA080SH-M427F
10-PY12NMA080SH-M427FY
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
630
V
DC link Capacitor
Max.DC voltage
VMAX
Tc=25°C
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Comparative tracking index
copyright by Vincotech
Vis
t=2s
DC voltage
CTI
>200
3
Revision: 1
10-FY12NMA080SH-M427F
10-PY12NMA080SH-M427FY
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
Unit
Max
Halfbridge IGBT Inverse Diode
Forward voltage
Vf
7
Threshold voltage (for power loss calc. only)
Vto
7
Slope resistance (for power loss calc. only)
rt
7
Reverse current
Ir
1200
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Thermal grease
thickness≤50um
λ = 1 W/mK
VGE(th)
VCE=VGE
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,03
1,67
1,35
1,00
0,10
0,10
V
V
Ω
0,25
mA
2,55
K/W
1,68
Halfbridge IGBT
Gate emitter threshold voltage
0,0015
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(ON)
Collector-emitter saturation voltage
Rise time
Turn-off delay time
Fall time
80
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coos
Reverse transfer capacitance
Crrs
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
5,2
5,8
6,4
1,7
2,05
2,37
2,4
0,01
240
Rgoff=8 Ω
Rgon=8 Ω
±15
f=1MHz
0
±15
350
50
25
960
80
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Thermal grease
thickness≤50um
λ = 1 W/mK
V
V
mA
nA
Ω
none
tr
td(OFF)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
125
127
23
26
215
271
38
72
0,97
1,64
1,28
2,00
ns
mWs
4600
300
pF
270
370
nC
0,71
K/W
0,47
*additional value stands for built-in capacitor
NP Diode
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
trr
Qrr
Rgon=8 Ω
±15
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
copyright by Vincotech
50
IRRM
Thermal grease
thickness≤50um
λ = 1 W/mK
4
350
50
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,97
1,46
38
56
30
118
0,83
2,73
4124
2769
0,10
0,41
2,74
V
A
ns
μC
A/μs
mWs
1,56
K/W
1,03
Revision: 1
10-FY12NMA080SH-M427F
10-PY12NMA080SH-M427FY
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
Unit
Max
NP IGBT
VCE=VGE
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
0,0012
75
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
5
5,8
6,5
1,05
1,45
1,60
1,85
0,0038
600
Rgoff=8 Ω
Rgon=8 Ω
±15
350
50
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
none
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
145
151
22
24
212
250
151
119
1,12
1,39
1,71
2,32
ns
mWs
4620
f=1MHz
0
Tj=25°C
25
pF
288
137
±15
480
75
nC
470
Thermal grease
thickness≤50um
λ = 1 W/mK
1,25
K/W
0,82
NP Inverse Diode
Diode forward voltage
VF
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
15
Tj=25°C
Tj=125°C
1,3
Thermal grease
thickness≤50um
λ = 1 W/mK
1,6
1,5
2,0
V
3,24
K/W
2,14
Halfbridge Diode
Diode forward voltage
VF
Reverse leakage current
Ir
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
60
600
IRRM
trr
Qrr
Rgon=8 Ω
±15
di(rec)max
/dt
Reverse recovery energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
350
50
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
2,49
3,02
1,68
50
52
61
52
286
3,26
6,56
1921
4562
0,75
1,72
Thermal grease
thickness≤50um
λ = 1 W/mK
V
μA
A
ns
μC
A/μs
mWs
1,54
K/W
1,02
DC link Capacitor
C value
100
C
nF
Thermistor
Rated resistance
R
Deviation of R25
ΔR/R
Power dissipation
P
Tj=25°C
R100=1486 Ω
Power dissipation constant
Tc=100°C
+5
200
mW
Tj=25°C
2
mW/K
K
B(25/50)
Tol. ±3%
Tj=25°C
3950
B-value
B(25/100)
Tol. ±3%
Tj=25°C
3996
copyright by Vincotech
Tj=25°C
5
%
Tj=25°C
B-value
Vincotech NTC Reference
Ω
22000
-5
K
B
Revision: 1
10-FY12NMA080SH-M427F
10-PY12NMA080SH-M427FY
preliminary datasheet
Half Bridge
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
350
IC (A)
IC (A)
350
300
300
250
250
200
200
150
150
100
100
50
50
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
5 V (V)
CE
6
0
At
tp =
Tj =
VGE from
250
μs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
5
6
250
μs
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
90
V CE (V)
IF (A)
IC (A)
250
75
200
60
150
45
100
Tj = Tjmax-25°C
30
Tj = 25°C
50
15
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
Tj =
2
250
10
25/125
copyright by Vincotech
4
6
8
10
V GE (V)
12
0
At
tp =
Tj =
μs
V
°C
6
1
250
25/125
2
3
V F (V)
4
μs
°C
Revision: 1
10-FY12NMA080SH-M427F
10-PY12NMA080SH-M427FY
preliminary datasheet
Half Bridge
half bridge IGBT and NP FWD
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
4
4
E (mWs)
E (mWs)
Eon High T
Eoff High T
3
Eon High T
3
Eon Low T
Eon Low T
Eoff High T
Eoff Low T
2
2
Eoff Low T
1
1
0
0
0
20
40
60
80
0
100
I C (A)
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
10
20
30
R G (Ω)
40
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
50
A
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
0,6
E (mWs)
0,6
Erec High T
0,5
0,5
0,4
0,4
0,3
0,3
Erec High T
0,2
0,2
0,1
0,1
Erec Low T
Erec Low T
0
0
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
8
Ω
copyright by Vincotech
10
20
30
R G (Ω)
40
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
50
A
7
Revision: 1
10-FY12NMA080SH-M427F
10-PY12NMA080SH-M427FY
preliminary datasheet
Half Bridge
half bridge IGBT and NP FWD
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
tdoff
t (ms)
t (ms)
1,00
tdon
tdoff
tdon
0,10
tf
0,10
tf
tr
tr
0,01
0,01
0,00
0,00
0
20
40
60
80
100
I C (A)
0
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
10
20
30
R G (Ω)
40
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
50
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,20
0,25
t rr(ms)
t rr(ms)
trr High T
0,20
trr High T
0,15
0,15
0,10
0,10
0,05
trr Low T
0,05
trr Low T
0,00
0,00
0
20
At
Tj =
VCE =
VGE =
Rgon =
25/125
350
±15
8
copyright by Vincotech
40
60
80
I C (A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
8
10
25/125
350
50
±15
20
30
R gon (Ω)
40
°C
V
A
V
Revision: 1
10-FY12NMA080SH-M427F
10-PY12NMA080SH-M427FY
preliminary datasheet
Half Bridge
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of JFET turn on gate resistor
Qrr = f(Rgon)
5
Qrr (mC)
Qrr (mC)
4
Qrr High T
4
3
3
Qrr High T
2
2
Qrr Low T
1
1
Qrr Low T
0
0
0
20
At
At
Tj =
VCE =
VGE =
Rgon =
25/125
350
±15
8
40
60
80
100
I C (A)
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
10
25/125
350
50
±15
20
30
R g on ( Ω)
40
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of JFET turn on gate resistor
IRRM = f(Rgon)
125
IrrM (A)
60
IrrM (A)
IRRM High T
50
100
40
75
IRRM Low T
30
50
20
25
IRRM High T
10
IRRM Low T
0
0
0
20
At
Tj =
VCE =
VGE =
Rgon =
25/125
350
±15
8
copyright by Vincotech
40
60
80
I C (A)
0
100
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
9
10
25/125
350
50
±15
20
30
R gon (Ω)
40
°C
V
A
V
Revision: 1
10-FY12NMA080SH-M427F
10-PY12NMA080SH-M427FY
preliminary datasheet
Half Bridge
FWD
5000
15000
dIrec/dt T
di0/dtT
4000
dI0/dt T
dIrec/dt T
12000
3000
9000
2000
6000
1000
3000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
350
±15
8
40
60
I C (A)
80
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
JFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
10
25/125
350
50
±15
20
R gon (Ω)
30
40
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
100
100
10-1
10
10
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of JFET turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
direc / dt (A/ms)
direc / dt (A/ms)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-2
10
-5
At
D=
RthJH =
10
-4
-3
10
-2
10
-1
10
0
10
t p (s)
1
10
tp / T
0,71
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-3
10
-1
K/W
-3
10-5
10-4
At
D=
RthJH =
tp / T
1,56
10-3
FWD thermal model values
R (C/W)
0,11
0,23
0,22
0,08
0,06
0,02
R (C/W)
0,07
0,19
0,65
0,39
0,16
0,10
copyright by Vincotech
10
10-1
100
t p (s)
101
K/W
JFET thermal model values
Tau (s)
2,9E+00
6,9E-01
2,5E-01
6,2E-02
1,7E-02
2,5E-03
10-2
Tau (s)
5,9E+00
1,1E+00
2,3E-01
7,4E-02
1,4E-02
2,1E-03
Revision: 1
10-FY12NMA080SH-M427F
10-PY12NMA080SH-M427FY
preliminary datasheet
Half Bridge
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
100
IC (A)
Ptot (W)
250
200
80
150
60
100
40
50
20
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
200
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
80
IF (A)
Ptot (W)
120
100
60
80
60
40
40
20
20
0
0
0
At
Tj =
50
175
copyright by Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
11
50
175
100
150
T h ( o C)
200
°C
Revision: 1
10-FY12NMA080SH-M427F
10-PY12NMA080SH-M427FY
preliminary datasheet
Half Bridge
IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
IC (A)
VGE (V)
16
14
3
10
240V
12
1mS
2
10
960V
100uS
10
100mS
10mS
8
101
6
DC
100
4
10-1
2
0
102
101
0
10
At
D=
103
0
V CE (V)
At
ID =
VDS=
Tj =
single pulse
80
ºC
V
0
Tjmax
ºC
Th =
VGE =
Tj =
50
20
600
25
100
150
Q g (nC)
200
A
V
ºC
IGBT
Figure 27
Reverse bias safe operating area
IC = f(VCE)
IC (A)
150
ICMAX
Ic MODULE
Ic CHIP
125
100
75
VCEMAX
50
25
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tjmax-25
Tj =
Uccminus=Uccplus
ºC
Switching mode :
3 level switching
copyright by Vincotech
12
Revision: 1
10-FY12NMA080SH-M427F
10-PY12NMA080SH-M427FY
preliminary datasheet
NP IGBT
neutral point IGBT and half bridge FWD
NP IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
NP IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
300
IC (A)
IC (A)
300
250
250
200
200
150
150
100
100
50
50
0
0
0
At
tp =
Tj =
VGE from
1
2
3
V CE (V)
4
5
0
1
At
tp =
Tj =
VGE from
250
μs
25
°C
7 V to 17 V in steps of 1 V
NP IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
2
3
4
V CE (V)
5
250
μs
150
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
120
IC (A)
IF (A)
75
100
60
80
45
60
30
40
15
20
Tj = 25°C
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
Tj =
2
250
10
25/125
copyright by Vincotech
4
6
8
10
V GE (V)
0
12
At
tp =
Tj =
μs
V
°C
13
1
250
25/125
2
3
V F (V)
4
μs
°C
Revision: 1
10-FY12NMA080SH-M427F
10-PY12NMA080SH-M427FY
preliminary datasheet
NP IGBT
neutral point IGBT and half bridge FWD
NP IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
NP IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
4
E (mWs)
E (mWs)
4
Eoff High T
Eon High T
Eon Low T
3
3
Eoff Low T
Eoff High T
Eon High T
Eoff Low T
2
2
Eon Low T
1
1
0
0
0
20
40
60
80
100
I C (A)
0
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
10
20
30
R G( Ω )
40
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
50
A
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
2,5
E (mWs)
E (mWs)
2,5
Erec High T
2,0
2,0
1,5
1,5
Erec High T
Erec Low T
1,0
1,0
0,5
0,5
Erec Low T
0,0
0,0
0
20
40
60
80
100
0
I C (A)
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
8
Ω
copyright by Vincotech
10
20
30
RG (Ω )
40
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
50
A
14
Revision: 1
10-FY12NMA080SH-M427F
10-PY12NMA080SH-M427FY
preliminary datasheet
NP IGBT
neutral point IGBT and half bridge FWD
NP IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
1
1
t ( μs)
tdoff
t ( μs)
0,1
NP IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
tf
tdoff
tf
tdon
0,1
tr
tdon
0,01
0,01
tr
0,001
0
20
40
60
80
0,001
100
0
I C (A)
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
10
20
30
R G( Ω )
40
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
50
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,8
t rr(ms)
t rr(ms)
0,4
trr High T
trr High T
0,3
0,6
0,2
0,4
0,1
0,2
trr Low T
trr Low T
0,0
0
0
20
40
60
80
100
0
I C (A)
At
Tj =
VCE =
VGE =
Rgon =
25/125
350
±15
8,0
copyright by Vincotech
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
15
10
25/125
350
50
±15
20
30
R gon (Ω)
40
°C
V
A
V
Revision: 1
10-FY12NMA080SH-M427F
10-PY12NMA080SH-M427FY
preliminary datasheet
NP IGBT
neutral point IGBT and half bridge FWD
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
10
Qrr (mC)
Qrr (mC)
8
Qrr High T
Qrr High T
8
6
6
Qrr Low T
4
4
Qrr Low T
2
2
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
350
±15
8,0
40
60
80
0
100
I C (A)
10
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
25/125
350
50
±15
20
30
R g on ( Ω)
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
100
40
IrrM (A)
IrrM (A)
120
100
80
IRRM High T
80
IRRM Low T
60
60
40
40
IRRM High T
IRRM Low T
20
20
0
0
0
20
40
60
80
100
0
I C (A)
At
Tj =
VCE =
VGE =
Rgon =
25/125
350
±15
8,0
copyright by Vincotech
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
16
10
25/125
350
50
±15
20
30
R gon (Ω)
40
°C
V
A
V
Revision: 1
10-FY12NMA080SH-M427F
10-PY12NMA080SH-M427FY
preliminary datasheet
NP IGBT
neutral point IGBT and half bridge FWD
FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
dIo/dt T
direc / dt (A/ms)
direc / dt (A/ms)
6000
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIrec/dt T
5000
10000
dI0/dt T
dIrec/dt T
8000
4000
6000
3000
4000
2000
2000
1000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
350
±15
8,0
40
60
80
I C (A)
0
100
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
NP IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
10
25/125
350
50
±15
20
30
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
40
R gon (Ω)
100
100
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-2
10
10-3
-3
10
10-5
At
D=
RthJH =
10-4
tp / T
1,25
10-3
10-2
10-1
100
t p (s)
101 1
K/W
10-5
10-4
10-3
At
D=
RthJH =
tp / T
1,54
K/W
IGBT thermal model values
FWD thermal model values
R (C/W)
0,13
0,28
0,48
0,20
0,13
R (C/W)
0,20
0,36
0,33
0,28
0,20
Tau (s)
4,53
1,03
0,25
0,07
0,02
copyright by Vincotech
17
10-2
10-1
100
t p (s)
101 1
Tau (s)
7,23
1,40
0,34
0,08
0,02
Revision: 1
10-FY12NMA080SH-M427F
10-PY12NMA080SH-M427FY
preliminary datasheet
NP IGBT
neutral point IGBT and half bridge FWD
NP IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
NP IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
150
IC (A)
Ptot (W)
100
120
80
90
60
60
40
30
20
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
ºC
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
200
ºC
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
50
IF (A)
Ptot (W)
120
100
40
80
30
60
20
40
10
20
0
0
0
At
Tj =
50
175
copyright by Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
18
50
175
100
150
Th ( o C)
200
ºC
Revision: 1
10-FY12NMA080SH-M427F
10-PY12NMA080SH-M427FY
preliminary datasheet
NP IGBT
neutral point IGBT
NP IGBT
Figure 25
Reverse bias safe operating area
IC = f(VCE)
IC (A)
1400
Ic MODULE
1000
VCEMAX
800
Ic CHIP
IC MAX
1200
600
400
200
0
0
100
200
300
400
500
600
700
V CE (V)
At
Tjmax-25
Tj =
Uccminus=Uccplus
ºC
Switching mode :
3 level switching
copyright by Vincotech
19
Revision: 1
10-FY12NMA080SH-M427F
10-PY12NMA080SH-M427FY
preliminary datasheet
NP IGBT Inverse Diode
NP Inverse Diode
Figure 25
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
NP Inverse Diode
Figure 26
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
70
1
ZthJC (K/W)
IF (A)
10
60
50
100
40
30
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
20
Tj = Tjmax-25°C
10
Tj = 25°C
0
0
At
tp =
0,5
1
1,5
2
2,5
V F (V)
-2
10
3
10-5
At
D=
RthJH =
μs
250
NP Inverse Diode
Figure 27
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-4
10-3
tp / T
3,24
10-2
100
t p (s)
1011
K/W
NP Inverse Diode
Figure 28
Forward current as a
function of heatsink temperature
IF = f(Th)
60
10-1
IF (A)
Ptot (W)
30
50
25
40
20
30
15
20
10
10
5
0
0
0
At
Tj =
50
175
copyright by Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
20
50
175
100
150
Th ( o C)
200
ºC
Revision: 1
10-FY12NMA080SH-M427F
10-PY12NMA080SH-M427FY
preliminary datasheet
Half bridge Inverse Diode
Halfbridge JFET Inverse Diode
Figure 1
Typical FWD forward current as
a function of forward voltage
IF= f(VF)
Halfbridge JFET Inverse Diode
Figure 2
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
35
ZthJC (K/W)
IF (A)
101
30
25
100
20
15
Tj = Tjmax-25°C
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
Tj = 25°C
5
0
0
At
tp =
1
2
3
V F (V)
-2
4
10
10-5
At
D=
RthJH =
μs
250
Halfbridge JFET Inverse Diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-4
10-3
10-2
100
t p (s)
1011
tp / T
2,548
K/W
Halfbridge JFET Inverse Diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
60
10-1
IF (A)
Ptot (W)
25
50
20
40
15
30
10
20
5
10
0
0
0
At
Tj =
50
150
copyright by Vincotech
100
150
T h ( o C)
0
200
At
Tj =
ºC
21
50
150
100
150
T h ( o C)
200
ºC
Revision: 1
10-FY12NMA080SH-M427F
10-PY12NMA080SH-M427FY
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
copyright by Vincotech
50
75
100
T (°C)
125
22
Revision: 1
10-FY12NMA080SH-M427F
10-PY12NMA080SH-M427FY
preliminary datasheet
Switching Definitions half bridge IGBT
General conditions
= 125 °C
Tj
= 8Ω
Rgon
Rgoff
= 8Ω
half bridge IGBT
Figure 1
half bridge IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
125
250
tdoff
%
%
100
IC
200
VGE 90%
75
150
IC
VGE
VCE 90%
VCE
50
100
tEoff
VGE
tdon
VCE
25
50
0
-25
-0,2
VCE 5%
IC 10%
tEon
VGE 10%
0
IC 1%
-50
0
0,2
0,4
0,6
0,8
3,9
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
700
50
0,27
0,61
4
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
half bridge IGBT
Figure 3
4,1
-15
15
700
50
0,13
0,28
4,2
4,3
4,4
V
V
V
A
μs
μs
half bridge IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
time(us)
Turn-on Switching Waveforms & definition of tr
125
250
%
%
fitted
IC
Ic
200
100
IC 90%
150
75
IC 60%
100
50
IC 90%
IC 40%
tr
VCE
50
25
VCE
IC10%
0
IC 10%
0
tf
-50
-25
0,1
0,15
VC (100%) =
IC (100%) =
tf =
copyright by Vincotech
0,2
700
50
0,07
0,25
0,3
4
0,35
0,4
time (us)
4,05
4,1
4,15
4,2
4,25
4,3
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
μs
23
700
50
0,03
V
A
μs
Revision: 1
10-FY12NMA080SH-M427F
10-PY12NMA080SH-M427FY
preliminary datasheet
Switching Definitions half bridge IGBT
half bridge IGBT
Figure 5
half bridge IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
%
%
IC 1%
Eoff
100
Eon
100
Pon
75
75
50
50
25
25
Poff
VGE 90%
VGE10%
0
tEoff
-25
-0,2
VCE3%
0
tEon
-25
0
0,2
0,4
0,6
0,8
3,9
4
4,1
4,2
4,3
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
35,18
2,00
0,61
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
half bridge IGBT
Figure 7
Gate voltage vs Gate charge (measured)
35,18
1,64
0,28
time(us)
4,4
kW
mJ
μs
neutral point FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
20
VGE (V)
150
%
Id
15
100
10
trr
50
5
Vd
fitted
0
0
IRRM 10%
-5
-50
-10
-100
IRRM 90%
IRRM 100%
-15
-20
-100
-150
0
100
200
300
400
500
4,1
600
4,15
4,2
4,25
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright by Vincotech
-15
15
700
50
546,28
4,3
4,35
time(us)
Qg (nC)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
24
700
50
-56
0,12
V
A
A
μs
Revision: 1
10-FY12NMA080SH-M427F
10-PY12NMA080SH-M427FY
preliminary datasheet
Switching Definitions half bridge FWD
neutral point FWD
Figure 9
neutral point FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
125
%
%
Qrr
Id
100
Erec
100
tQrr
50
75
0
50
-50
25
tErec
Prec
-100
0
-150
-25
4,1
4,15
4,2
4,25
4,3
4,35
4,4
4,1
4,15
4,2
4,25
Id (100%) =
Qrr (100%) =
tQrr =
50
2,73
0,23
4,3
4,35
4,4
time(us)
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
μC
μs
35,18
0,41
0,23
kW
mJ
μs
half bridge switching measurement circuit
Figure 111
copyright by Vincotech
half bridge IGBT
25
Revision: 1
10-FY12NMA080SH-M427F
10-PY12NMA080SH-M427FY
preliminary datasheet
Switching Definitions neutral point IGBT
General conditions
= 125 °C
Tj
= 8Ω
Rgon
Rgoff
= 8Ω
neutral point IGBT
Figure 1
neutral point IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
250
125
tdoff
%
%
100
200
VGE 90%
IC
IC
75
150
VGE
50
100
VCE
tEoff
VGE
90%
tdon
VCE
25
50
VGE 10%
VCE
0
IC
-25
-0,2
IC 10%
0
VCE 3%
tEon
1%
-50
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,2
-15
15
700
50
0,10
0,17
0,4
0,6
time (us)
0,8
3,9
4
4,1
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
neutral point IGBT
Figure 3
-15
15
700
50
0,15
0,12
4,2
4,3
V
V
V
A
μs
μs
neutral point IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
time(us)
Turn-on Switching Waveforms & definition of tr
250
125
fitted
%
%
IC
Ic
100
200
IC 90%
75
150
IC 60%
50
100
IC 90%
IC 40%
tr
VCE
25
50
IC 10%
VCE
0
IC 10%
0
tf
-25
-50
0,0
0,1
VC (100%) =
IC (100%) =
tf =
copyright by Vincotech
0,2
700
50
0,119
0,3
0,4
time (us)
0,5
4,1
VC (100%) =
IC (100%) =
tr =
V
A
μs
26
4,15
4,2
700
50
0,024
4,25
time(us)
4,3
V
A
μs
Revision: 1
10-FY12NMA080SH-M427F
10-PY12NMA080SH-M427FY
preliminary datasheet
Switching Definitions neutral point IGBT
neutral point IGBT
Figure 5
neutral point IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
130
125
%
Eon
%
IC 1%
100
Eoff
100
75
70
50
40
Poff
25
Pon
Uge90%
10
0
Uge10%
tEoff
tEon
-25
-0,2
0
0,2
0,4
0,6
3,9
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
34,87
2,32
0,17
4
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
neutral point IGBT
Figure 7
4,1
34,8684
0,38
0,12
4,2
time(us)
4,3
kW
mJ
μs
half bridge FWD
Figure 8
Gate voltage vs Gate charge (measured)
Uge (V)
UCE 3%
-20
Turn-off Switching Waveforms & definition of trr
20
150
%
15
100
10
50
5
0
0
-50
-5
-100
Id
trr
Ud
fitted
IRRM 10%
IRRM 90%
IRRM 100%
-10
-15
-200
-150
-200
0
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright by Vincotech
200
-15
15
700
50
3441,54
400
600
800
1000
Qg (nC)
4,1
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
27
4,2
4,3
700
50
-61
0,04
4,4
time(us)
4,5
V
A
A
μs
Revision: 1
10-FY12NMA080SH-M427F
10-PY12NMA080SH-M427FY
preliminary datasheet
Switching Definitions neutral point IGBT
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr= integrating time for Qrr)
half bridge FWD
Figure 10
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
half bridge FWD
125
%
Id
Erec
%
Qrr
100
100
tQint
50
75
0
50
-50
25
-100
0
tErec
Prec
-150
-25
4,1
4,2
Id (100%) =
Qrr (100%) =
tQint =
4,3
50
6,56
0,09
4,4
4,5
time(us)
4,6
4,1
Prec (100%) =
Erec (100%) =
tErec =
A
μC
μs
4,2
4,3
34,87
1,72
0,09
4,4
4,5
time(us)
4,6
kW
mJ
μs
neutral point IGBT switching measurement circuit
Figure 11
copyright by Vincotech
28
Revision: 1
10-FY12NMA080SH-M427F
10-PY12NMA080SH-M427FY
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
without thermal paste 12mm housing with pressfit pin
Ordering Code
10-FY12NMA080SH-M427F
10-PY12NMA080SH-M427FY
in DataMatrix as
M427F
M427FY
in packaging barcode as
M427F
M427FY
Outline
Pinout
copyright by Vincotech
29
Revision: 1
10-FY12NMA080SH-M427F
10-PY12NMA080SH-M427FY
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright by Vincotech
30
Revision: 1