V23990-K229-A40-PM Maximum Ratings

V23990-K229-A40-PM
MiniSKiiP® 2 PIM
1200V / 25A
Features
MiniSKiiP® 2 housing
● Solderless interconnection
● Trench Fieldstop IGBT4 technology
Target Applications
Schematic
● Industrial Motor Drives
Types
● V23990-K229-A40-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
40
40
A
270
A
360
A2s
D8,D9,D10,D11,D12,D13
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
Tj=Tjmax
tp=10ms
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Th=80°C
Tc=80°C
Tj=150°C
Tj=Tjmax
Th=80°C
56
Tc=80°C
85
W
Tjmax
150
°C
VCE
1200
V
33
40
A
75
A
89
135
W
±20
V
T1,T2,T3,T4,T5,T6,T7
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
tSC
Tj≤150°C
10
VCC
VGE=15V
800
µs
V
175
°C
Tjmax
1
Revision: 4.1
V23990-K229-A40-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
25
32
A
160
A
D1,D2,D3,D4,D5,D6,D7
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Th=80°C
Tj=Tjmax
Tc=80°C
Repetitive peak forward current
IFRM
tp=10ms half sine
Power dissipation per Diode
Ptot
Tj=Tjmax
Th=80°C
62
Tc=80°C
95
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12.7
mm
Clearance
min 12.7
mm
Maximum Junction Temperature
Thermal Properties
Insulation Properties
Insulation voltage
copyright Vincotech
Vis
t=2s
DC voltage
2
Revision: 4.1
V23990-K229-A40-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,8
1,08
1,03
0,9
0,78
18
21
1,35
D8,D9,D10,D11,D12,D13
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
Slope resistance (for power loss calc. only)
rt
Reverse current
Ir
Thermal resistance chip to heatsink per chip
25
1500
RthJH
Thermal grease
thickness≤50µm
λ=1W/mK
VGE(th)
VCE=VGE
V
V
mΩ
0,01
1,1
mA
K/W
1,25
T1,T2,T3,T4,T5,T6,T7
Gate emitter threshold voltage
Collector-emitter saturation voltage
VCE(sat)
0,00085
15
25
Collector-emitter cut-off current incl. diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
tr
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Rgoff=32Ω
Rgon=32Ω
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Vcc=960V
RthJH
Thermal grease
thickness≤50µm
λ=1W/mK
Thermal resistance chip to heatsink per chip
5
5,8
6,5
1,35
1,88
2,2
2,15
0,05
300
600
±15
25
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
-
td(on)
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
112
113
29,3
34,7
231
303
91
137
1,87
2,77
1,49
2,43
ns
mWs
1430
f=1MHz
25
0
Tj=25°C
115
pF
85
40
15
Tj=25°C
120
nC
1,2
K/W
D1,D2,D3,D4,D5,D6,D7
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
25
IRRM
trr
Qrr
Rgon=32Ω
600
±15
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
25
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,5
Thermal grease
thickness≤50µm
λ=1W/mK
2,47
2,49
13,5
18,3
319
544
1,48
3,69
174
64
0,52
1,44
2,75
V
A
ns
µC
A/µs
mWs
1,52
K/W
1000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
R100
T=25°C
R100=1670 Ω
T=100°C
P
T=100°C
-3
3
T=25°C
Power dissipation constant
%
Ω
1670,313
mW/K
A-value
B(25/50) Tol. %
T=25°C
7,635*10-3
1/K
B-value
B(25/100) Tol. %
T=25°C
1,731*10-5
1/K²
Vincotech NTC Reference
copyright Vincotech
E
3
Revision: 4.1
V23990-K229-A40-PM
T1,T2,T3,T4,T5,T6,T7/D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
75
IC (A)
IC (A)
75
60
60
45
45
30
30
15
15
0
0
0
At
tp =
Tj =
VGE from
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
4
V CE (V)
5
250
µs
150
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
D1,D2,D3,D4,D5,D6,D7 FWD
75
IC (A)
IF (A)
25
3
20
60
15
45
Tj = 25°C
Tj = Tjmax-25°C
Tj = Tjmax-25°C
10
30
Tj = 25°C
5
15
0
0
0
2
4
At
tp =
VCE =
250
10
µs
V
copyright Vincotech
6
8
10
V GE (V)
12
0
At
tp =
4
1
250
2
3
4
V F (V)
5
µs
Revision: 4.1
V23990-K229-A40-PM
T1,T2,T3,T4,T5,T6,T7/D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
8
E (mWs)
E (mWs)
8
Eon High T
Eon High T
6
6
Eon Low T
Eon Low T
4
4
Eoff High T
Eoff High T
Eoff Low T
2
2
Eoff Low T
0
0
0
10
20
30
40
I C (A)
50
0
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
32
Ω
Rgoff =
32
Ω
30
60
90
120
RG( Ω )
150
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
25
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
T1,T2,T3,T4,T5,T6,T7 IGBT
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
2
E (mWs)
2
Erec
Tj = Tjmax -25°C
1,6
1,6
1,2
1,2
Tj = Tjmax -25°C
0,8
Erec
0,8
Erec
Tj = 25°C
Tj = 25°C
Erec
0,4
0,4
0
0
0
10
20
30
40
I C (A)
50
0
With an inductive load at
Tj =
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
32
Ω
copyright Vincotech
30
60
90
120
RG( Ω )
150
With an inductive load at
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
25
A
5
Revision: 4.1
V23990-K229-A40-PM
T1,T2,T3,T4,T5,T6,T7/D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( µs)
1
t ( µs)
1
tdoff
tdoff
tdon
tf
0,1
tf
0,1
tdon
tr
tr
0,01
0,01
0,001
0,001
0
5
10
15
20
25
30
35
40
I C45(A)
50
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
32
Ω
Rgoff =
32
Ω
30
60
90
120
RG( Ω )
150
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
25
A
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
1
t rr( µs)
t rr( µs)
1
D1,D2,D3,D4,D5,D6,D7 FWD
0,8
trr
0,8
trr
Tj = Tjmax -25°C
Tj = Tjmax -25°C
0,6
0,6
trr
trr
Tj = 25°C
0,4
0,4
Tj = 25°C
0,2
0,2
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/150
600
±15
32
copyright Vincotech
20
30
40
I C (A)
50
°C
V
V
Ω
6
0
30
At
Tj =
VR =
IF =
VGE =
25/150
600
25
±15
60
90
120
R g on ( Ω )
150
°C
V
A
V
Revision: 4.1
V23990-K229-A40-PM
T1,T2,T3,T4,T5,T6,T7/D1,D2,D3,D4,D5,D6,D7
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
5
D1,D2,D3,D4,D5,D6,D7 FWD
5
Qrr( µC)
Qrr( µC)
Qrr
Tj = Tjmax -25°C
4
4
Tj = Tjmax -25°C
Qrr
3
3
Qrr
2
2
Tj = 25°C
Tj = 25°C
Qrr
1
1
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
10
25/150
600
±15
32
20
30
40
I C (A)
50
0
30
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
D1,D2,D3,D4,D5,D6,D7 FWD
25/150
600
25
±15
60
90
120
R g on ( Ω)
150
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
D1,D2,D3,D4,D5,D6,D7 FWD
50
IrrM (A)
IrrM (A)
25
40
20
Tj = Tjmax -25°C
IRRM
30
15
Tj = 25°C
IRRM
20
10
Tj = Tjmax - 25°C
10
5
Tj = 25°C
IRRM
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/150
600
±15
32
copyright Vincotech
20
30
40
I C (A)
50
°C
V
V
Ω
7
0
30
At
Tj =
VR =
IF =
VGE =
25/150
600
25
±15
60
90
120
R gon ( Ω )
150
°C
V
A
V
Revision: 4.1
V23990-K229-A40-PM
T1,T2,T3,T4,T5,T6,T7/D1,D2,D3,D4,D5,D6,D7
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
1800
direc / dt (A/ µs)
direc / dt (A/µ s)
1000
D1,D2,D3,D4,D5,D6,D7 FWD
dI0/dt
dIrec/dt
dI0/dt
dIrec/dt
1500
800
1200
dIo/dtLow T
600
900
di0/dtHigh T
400
600
200
300
dIrec/dtLow T
dIrec/dtHigh T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/150
600
±15
32
20
30
I C (A)
40
50
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25/150
600
25
±15
60
90
R gon ( Ω )
120
150
°C
V
A
V
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Zth-JH (K/W)
101
ZthJH (K/W)
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
30
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
101
10
10
At
D=
RthJH =
tp / T
1,20
-5
K/W
10
-4
10
-3
R (C/W)
0,03
0,14
0,51
0,27
0,17
0,07
R (C/W)
0,03
0,22
0,63
0,37
0,17
0,10
8
10
-1
10
0
t p (s)
1
10 10
K/W
FWD thermal model values
copyright Vincotech
-2
tp / T
1,52
IGBT thermal model values
Tau (s)
5,7E+00
8,1E-01
1,6E-01
4,9E-02
1,0E-02
9,8E-04
10
Tau (s)
9,3E+00
7,6E-01
1,5E-01
3,0E-02
4,4E-03
6,5E-04
Revision: 4.1
V23990-K229-A40-PM
T1,T2,T3,T4,T5,T6,T7/D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
40
IC (A)
Ptot (W)
160
120
30
80
20
40
10
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
T h ( o C)
200
°C
V
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
40
Ptot (W)
IF (A)
120
150
90
30
60
20
30
10
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C) 200
0
At
Tj =
°C
9
50
175
100
150
T h ( o C)
200
°C
Revision: 4.1
V23990-K229-A40-PM
T1,T2,T3,T4,T5,T6,T7/D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
103
VGE (V)
IC (A)
16
100uS
14
1mS
10
2
240V
12
960V
10
10mS
100mS
10
8
1
DC
6
10
4
0
2
0
10-1 0
10
At
D=
Th =
VGE =
Tj =
10
1
10
2
V CE (V)
0
103
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
copyright Vincotech
10
20
25
40
60
80
100
Q g (nC)
120
A
Revision: 4.1
V23990-K229-A40-PM
D8,D9,D10,D11,D12,D13
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
D8,D9,D10,D11,D12,D13 diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
75
1
IF (A)
ZthJC (K/W)
10
D8,D9,D10,D11,D12,D13 diode
60
100
45
30
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
Tj = 25°C
Tj = Tjmax-25°C
15
0
0
0,5
1
V F (V)
10-2
1,5
10-5
At
tp =
At
D=
RthJH =
µs
250
D8,D9,D10,D11,D12,D13 diode
10-3
10-2
100
t p (s)
10110
tp / T
1,250
K/W
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
120
10-1
D8,D9,D10,D11,D12,D13 diode
40
IF (A)
Ptot (W)
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-4
100
30
80
60
20
40
10
20
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
o
120 T h ( C)
150
0
At
Tj =
ºC
11
30
150
60
90
120
T h ( o C)
150
ºC
Revision: 4.1
V23990-K229-A40-PM
Thermistor
Thermistor
Figure 1
Typical PTC characteristic
as a function of temperature
RT = f(T)
PTC-typical temperature characteristic
R/Ω
2000
1800
1600
1400
1200
1000
25
copyright Vincotech
50
75
100
T (°C)
125
12
Revision: 4.1
V23990-K229-A40-PM
Switching Definitions Output Inverter
General conditions
Tj
= 150 °C
Rgon
= 32 Ω
Rgoff
= 32 Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
180
130
%
%
tdoff
110
IC
VCE
VGE 90%
90
150
VCE 90%
120
VCE
70
90
IC
50
tEoff
VGE
tdon
60
30
IC 1%
10
30
VGE
-10
IC10%
VCE 3%
VGE10%
0
tEon
-30
-0,2
-0,05
0,1
0,25
0,4
0,55
0,7
-30
0,85
5,9
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
600
25
0,30
0,68
6
6,1
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
6,2
6,3
-15
15
600
25
0,11
0,42
6,4
6,6
6,7
time(us)
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
6,5
Turn-on Switching Waveforms & definition of tr
140
180
%
%
120
VCE
Ic
150
100
IC
120
IC 90%
VCE
80
90
IC90%
IC 60%
60
tr
60
IC 40%
40
30
20
IC10%
IC10%
tf
0
0
fitted
-20
0,2
0,25
0,3
0,35
0,4
0,45
0,5
-30
0,55
6,1
time (us)
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
600
25
0,14
6,2
6,3
6,4
6,5
6,6
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
13
600
25
0,03
V
A
µs
Revision: 4.1
V23990-K229-A40-PM
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
180
%
Poff
Pon
%
Eoff
100
140
80
Eon
100
60
40
60
20
VGE 10%
20
0
VCE 3%
tEoff
tEon
VGE 90%
-20
-0,2
IC 1%
0
0,2
0,4
0,6
0,8
-20
5,85
1
6
6,15
6,3
6,45
6,6
Poff (100%) =
Eoff (100%) =
tEoff =
14,95
2,43
0,68
6,75
time(us)
time (us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
14,95
2,77
0,42
kW
mJ
µs
Output inverter FWD
Figure 7
Turn-off Switching Waveforms & definition of trr
120
%
Id
80
trr
40
Vd
0
IRRM10%
-40
IRRM90%
IRRM100%
-80
fitted
-120
6
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
14
6,2
6,4
600
25
18
0,54
6,6
6,8
time(us)
7
V
A
A
µs
Revision: 4.1
V23990-K229-A40-PM
Switching Definitions Output Inverter
Output inverter FWD
Figure 8
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
Erec
%
%
Qrr
100
100
Id
80
50
tErec
60
tQrr
40
0
20
Prec
-50
0
-100
-20
6
6,2
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
6,4
6,6
25
3,69
0,90
A
µC
µs
6,8
7
time(us)
7,2
6
Prec (100%) =
Erec (100%) =
tErec =
15
6,2
6,4
6,6
14,95
1,44
0,90
kW
mJ
µs
6,8
7
time(us)
7,2
Revision: 4.1
V23990-K229-A40-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
with std lid (black V23990-K12-T-PM)
with std lid (black V23990-K12-T-PM) and P12
with thin lid (white V23990-K13-T-PM)
with thin lid (white V23990-K13-T-PM) and P12
Ordering Code
in DataMatrix as
V23990-K229-A40-/0A/-PM
V23990-K229-A40-/1A/-PM
V23990-K229-A40-/0B/-PM
V23990-K229-A40-/1B/-PM
K229A40
K229A40
K229A40
K229A40
in packaging barcode as
K229A40-/0A/
K229A40-/1A/
K229A40-/0B/
K229A40-/1B/
Outline
Pinout
copyright Vincotech
16
Revision: 4.1