10-FZ06NRA041FS02-P965F68 10-PZ06NRA041FS02

10-FZ06NRA041FS02-P965F68
10-PZ06NRA041FS02-P965F68Y
flowNPC 0
600V/30A
Features
flow0 12mm housing
● neutral point clamped inverter
● reactive power capability
● low inductance layout
Target Applications
Schematic
● solar inverter
● UPS
Types
● 10-FZ06NRA041FS02-P965F68
● 10-PZ06NRA041FS02-P965F68Y
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Boost Inv. Diode
Repetitive peak reverse voltage
VRRM
Forward current per diode
IFAV
DC current
Maximum repetitive forward current
IFRM
Tjmax
Th=80°C
Tc=80°C
17
17
A
20
A
I2t-value
I2t
tp=10ms
Tj=25°C
9,5
A2s
Power dissipation per Diode
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
44
61
W
Tjmax
175
°C
VRRM
600
V
19
24
A
66
A
32
49
W
150
°C
Maximum Junction Temperature
Buck Diode
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright by Vincotech
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 1
10-FZ06NRA041FS02-P965F68
10-PZ06NRA041FS02-P965F68Y
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Tc=80°C
29
35
A
tp limited by Tjmax
Tc=25°C
272
A
Tj=Tjmax
Th=80°C
Tc=80°C
78
118
W
Buck MOSFET
Drain to source breakdown voltage
DC drain current
Pulsed drain current
VDS
ID
ID pulse
Th=80°C
Tj=Tjmax
Power dissipation
Ptot
Gate-source peak voltage
VGS
±20
V
Tjmax
150
°C
VCE
600
V
58
77
A
tp limited by Tjmax
225
A
Tj≤175°C
VCE<=VCES
225
A
Maximum Junction Temperature
Boost IGBT
Collector-emitter break down voltage
DC collector current
Pulsed collector current
IC
ICpuls
Turn off safe operating area
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Th=80°C
Tc=80°C
Tj=Tjmax
Th=80°C
Tc=80°C
93
141
W
±20
V
6
360
µs
V
Tjmax
175
°C
VRRM
1200
V
17
23
A
36
A
33
50
W
Tjmax
150
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Tj≤150°C
VGE=15V
Boost Diode
Peak Repetitive Reverse Voltage
DC forward current
IF
Th=80°C
Tc=80°C
Tj=Tjmax
Repetitive peak surge current
IFRM
20kHz Square Wave
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 1
10-FZ06NRA041FS02-P965F68
10-PZ06NRA041FS02-P965F68Y
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,25
1,88
1,22
1,37
0,70
0,04
0,04
1,95
Boost Inv. Diode
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
10
Slope resistance (for power loss calc. only)
rt
10
Reverse current
Ir
Thermal resistance chip to heatsink per chip
RthJH
10
600
V
Ω
0,027
Thermal grease
thickness≤50um
λ = 1 W/mK
V
2,17
mA
K/W
Buck Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
10
Ir
600
IRRM
trr
Qrr
Rgon=8 Ω
10
350
20
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,61
1,88
1,7
320
10
10
12
23
0,11
0,12
2333
1808
0,02
0,02
Thermal grease
thickness≤50um
λ = 1 W/mK
V
µA
A
ns
µC
A/µs
mWs
2,16
K/W
Buck MOSFET
Static drain to source ON resistance
Rds(on)
Gate threshold voltage
V(GS)th
10
30
VDS=VGS
0,00296
Gate to Source Leakage Current
Igss
20
0
Zero Gate Voltage Drain Current
Idss
0
600
Turn On Delay Time
Rise Time
Turn off delay time
td(ON)
tr
td(OFF)
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge
Qg
Gate to source charge
Qgs
Gate to drain charge
Qgd
Input capacitance
Ciss
Output capacitance
Coss
Thermal resistance chip to heatsink per chip
RthJH
Rgoff=8 Ω
Rgon=8 Ω
20
2,4
41
82
3
mΩ
3,6
100
5
34
32
11
12
270
293
0,13
0,15
0,07
0,07
V
nA
uA
ns
mWs
290
10
480
44,4
Tj=25°C
36
nC
150
6530
f=1MHz
copyright by Vincotech
350
10
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0
100
Tj=25°C
pF
360
Thermal grease
thickness≤50um
λ = 1 W/mK
0,90
3
K/W
Revision: 1
10-FZ06NRA041FS02-P965F68
10-PZ06NRA041FS02-P965F68Y
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,05
1,22
1,29
1,85
Boost IGBT
Gate emitter threshold voltage
VGE(th)
VCE=VGE
0,0012
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
30
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
0,0038
600
Rgoff=4 Ω
Rgon=4 Ω
±15
350
30
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
none
tr
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
84
84
7
8
204
242
55
90
0,26
0,39
0,99
1,36
ns
mWs
4620
f=1MHz
0
25
15
480
Tj=25°C
pF
288
137
75
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
470
nC
1,02
K/W
Boost Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
Reverse recovery time
trr
Qrr
Reverse recovery energy
Thermal resistance chip to heatsink per chip
600
IRRM
Reverse recovered charge
Peak rate of fall of recovery current
18
Rgon=4 Ω
±15
350
di(rec)max
/dt
Erec
RthJH
30
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,23
2,04
3,3
100
59
67
21
102
2,53
4,72
9919
5374
0,75
1,45
Thermal grease
thickness≤50um
λ = 1 W/mK
V
µA
A
ns
µC
A/µs
mWs
2,11
K/W
21511
Ω
Thermistor
Rated resistance
R
Tj=25°C
Deviation of R25
∆R/R
Tj=25°C
Power dissipation
P
Tj=25°C
210
mW
Tj=25°C
4
mW/K
Power dissipation constant
-4,5
+4,5
%
B-value
B(25/50)
Tj=25°C
3884
K
B-value
B(25/100)
Tj=25°C
3964
K
F
Vincotech NTC Reference
copyright by Vincotech
4
Revision: 1
10-FZ06NRA041FS02-P965F68
10-PZ06NRA041FS02-P965F68Y
Buck
MOSFET
Figure 1
Typical output characteristics
IC = f(VCE)
MOSFET
Figure 2
Typical output characteristics
IC = f(VCE)
90
IC (A)
IC (A)
90
75
75
60
60
45
45
30
30
15
15
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
0 V to 20 V in steps of 2 V
MOSFET
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
250
µs
125
°C
0 V to 20 V in steps of 2 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
50
IC (A)
IF (A)
50
5
40
40
30
30
20
20
Tj = 25°C
Tj = Tjmax-25°C
10
10
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
1
250
10
copyright by Vincotech
2
3
4
5
V GE (V)
6
0
At
tp =
µs
V
5
1
250
2
3
V F (V)
4
µs
Revision: 1
10-FZ06NRA041FS02-P965F68
10-PZ06NRA041FS02-P965F68Y
Buck
MOSFET
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
MOSFET
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
0,5
E (mWs)
E (mWs)
0,4
Eon High T
Eon High T
Eon Low T
0,4
0,3
Eon Low T
Eoff High T
0,3
Eoff Low T
Eoff High T
0,2
Eoff Low T
0,2
0,1
0,1
0,0
0,0
0
10
20
30
I C (A)
40
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
10
V
Rgon =
8
Ω
Rgoff =
8
Ω
16
24
32
RG( Ω )
40
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
10
V
IC =
20
A
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,030
0,04
E (mWs)
E (mWs)
8
Erec LowT
0,025
Erec High T
0,03
Erec Low T
0,020
Erec High T
0,015
0,02
0,010
0,01
0,005
0,000
0,00
0
10
20
30
I C (A)
40
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
10
V
Rgon =
8
Ω
copyright by Vincotech
8
16
24
32
RG( Ω )
40
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
10
V
IC =
20
A
6
Revision: 1
10-FZ06NRA041FS02-P965F68
10-PZ06NRA041FS02-P965F68Y
Buck
MOSFET
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
MOSFET
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
tdoff
t (ms)
t (ms)
1,00
tdoff
0,10
0,10
tdon
tr
tdon
tr
0,01
0,01
0,00
0,00
0
10
20
30
40
I C (A)
0
With an inductive load at
Tj =
°C
125
VCE =
350
V
VGE =
10
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
40
RG( Ω )
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
10
V
IC =
20
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of MOSFET turn on gate resistor
trr = f(Rgon)
0,08
t rr(ms)
t rr(ms)
0,03
0,025
trr High T
0,06
0,02
0,015
0,04
trr High T
trr Low T
trr Low T
0,01
0,02
0,005
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
10
8
copyright by Vincotech
20
30
I C (A)
0
40
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
7
8
25/125
350
20
10
16
24
32
R gon ( Ω )
40
°C
V
A
V
Revision: 1
10-FZ06NRA041FS02-P965F68
10-PZ06NRA041FS02-P965F68Y
Buck
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of MOSFET turn on gate resistor
Qrr = f(Rgon)
0,15
0,2
Qrr (mC)
Qrr (mC)
Qrr Low T
Qrr High T
0,12
Qrr High T
0,15
Qrr Low T
0,09
0,1
0,06
0,05
0,03
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
0
8
25/125
350
10
8
16
24
32
I C (A)
0
40
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
8
25/125
350
20
10
16
24
32
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of MOSFET turn on gate resistor
IRRM = f(Rgon)
12
40
R gon ( Ω)
30
IrrM (A)
IrrM (A)
IRRM Low T
IRRM High T
25
9
20
6
15
10
3
5
0
IRRM Low T
IRRM High T
0
0
At
Tj =
VCE =
VGE =
Rgon =
8
25/125
350
10
8
copyright by Vincotech
16
24
32
I C (A)
40
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
8
8
25/125
350
20
10
16
24
32
R gon (Ω)
40
°C
V
A
V
Revision: 1
10-FZ06NRA041FS02-P965F68
10-PZ06NRA041FS02-P965F68Y
Buck
FWD
FWD
Figure 18
Typical rate of fall of forward and reverse recovery current
as a function of MOSFET turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
3000
direc / dt (A/ms)
direc / dt (A/ms)
Figure 17
Typical rate of fall of forward and reverse recovery current
as a function of collector current
dI0/dt,dIrec/dt = f(Ic)
dIo/dt T
dIrec/dt T
2500
8000
dI0/dt T
dIrec/dt T
6000
2000
1500
4000
1000
2000
500
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
10
8
20
30
I C (A)
40
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
MOSFET
Figure 19
MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
-2
32
40
R gon (Ω)
°C
V
A
V
FWD
ZthJH (K/W)
ZthJH (K/W)
10
24
101
100
10
25/125
350
20
10
16
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
-1
8
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-5
10-4
At
D=
RthJH =
tp / T
R (C/W)
0,13
0,26
0,25
0,18
0,07
0,03
Tau (s)
4,5E+00
1,1E+00
2,4E-01
8,4E-02
1,5E-02
1,1E-03
10-3
10-2
10-1
100
t p (s)
10
10110
-2
10-5
0,90
K/W
MOSFET thermal model values
copyright by Vincotech
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-4
At
D=
RthJH =
tp / T
R (C/W)
0,08
0,13
0,62
0,67
0,32
0,25
0,09
Tau (s)
4,4E+00
8,2E-01
1,3E-01
4,6E-02
8,2E-03
1,9E-03
5,1E-04
10-3
10-2
10-1
100
t p (s)
10110
2,16
K/W
FWD thermal model values
9
Revision: 1
10-FZ06NRA041FS02-P965F68
10-PZ06NRA041FS02-P965F68Y
Buck
MOSFET
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
MOSFET
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
50
IC (A)
Ptot (W)
200
160
40
120
30
80
20
40
10
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
150
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
150
15
100
150
T h ( o C)
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
35
Ptot (W)
IF (A)
80
200
30
60
25
20
40
15
10
20
5
0
0
0
At
Tj =
50
150
copyright by Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
10
50
150
100
150
T h ( o C)
200
°C
Revision: 1
10-FZ06NRA041FS02-P965F68
10-PZ06NRA041FS02-P965F68Y
Buck
IGBT
Figure 25
IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
Safe operating area as a function of collector-emitter voltage
IC = f(VCE)
103
IC (A)
VGE (V)
16
14
100uS1
102
100mS
1mS
10mS
10
120V
12
480V
10
8
1
DC
6
10
4
0
2
0
10-1
10
At
D=
Th =
VGE =
Tj =
0
10
1
10
2
V CE (V)
10
0
3
100
150
Q g (nC)
200
At
IG(REF)=1mA, RL=15Ω
single pulse
80
ºC
15
V
Tjmax
ºC
copyright by Vincotech
50
11
Revision: 1
10-FZ06NRA041FS02-P965F68
10-PZ06NRA041FS02-P965F68Y
Boost
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
300
IC (A)
IC (A)
300
250
250
200
200
150
150
100
100
50
50
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
80
V CE (V)
IC (A)
IF (A)
75
60
60
45
40
30
20
15
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
copyright by Vincotech
4
6
8
V GE (V)
0
10
At
tp =
µs
V
12
1
250
2
3
4
V F (V)
5
µs
Revision: 1
10-FZ06NRA041FS02-P965F68
10-PZ06NRA041FS02-P965F68Y
Boost
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
2,5
Eoff High T
E (mWs)
E (mWs)
1,5
Eoff High T
2,0
1,2
Eon High T
Eoff Low T
Eoff Low T
1,5
0,9
1,0
0,6
Eon Low T
Eon High T
0,5
0,3
Eon Low T
0,0
0,0
0
10
20
30
40
50
60
I C (A)
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
30
A
IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
2
E (mWs)
2
E (mWs)
Erec High T
1,5
1,5
Erec High T
1
1
Erec Low T
Erec Low T
0,5
0,5
0
0
0
10
20
30
40
50
I C (A)
60
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
copyright by Vincotech
4
8
12
16
R G (Ω)
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
30
A
13
Revision: 1
10-FZ06NRA041FS02-P965F68
10-PZ06NRA041FS02-P965F68Y
Boost
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( µs)
1
t ( µs)
1
tdoff
tdoff
tdon
tf
0,1
tf
0,1
tdon
tr
tr
0,01
0,01
0,001
0,001
0
10
20
30
40
50
60
I C (A)
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
20
R G (Ω)
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
30
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,35
t rr(ms)
t rr(ms)
0,15
trr High T
0,30
trr High T
0,12
0,25
trr Low T
0,09
0,20
0,15
0,06
0,10
0,03
trr Low T
0,05
0,00
0,00
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
±15
4
copyright by Vincotech
20
30
40
50
I C (A)
60
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
14
4
25/125
350
30
±15
8
12
16
R gon (Ω)
20
°C
V
A
V
Revision: 1
10-FZ06NRA041FS02-P965F68
10-PZ06NRA041FS02-P965F68Y
Boost
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
6
Qrr (mC)
Qrr (mC)
8
Qrr High T
5
Qrr High T
6
4
3
4
Qrr Low T
Qrr Low T
2
2
1
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
±15
4
20
30
40
50
I C (A)
60
0
4
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
8
25/125
350
30
±15
12
R gon ( Ω)
16
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
100
IrrM (A)
80
20
IrrM (A)
IRRM High T
IRRM Low T
80
60
60
40
40
IRRM High T
IRRM Low T
20
20
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
±15
4
copyright by Vincotech
20
30
40
50
I C (A)
60
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
15
4
25/125
350
30
±15
8
12
16
R gon (Ω)
20
°C
V
A
V
Revision: 1
10-FZ06NRA041FS02-P965F68
10-PZ06NRA041FS02-P965F68Y
Boost
FWD
Figure 17
Typical rate of fall of forward and reverse recovery current
as a function of collector current
dI0/dt,dIrec/dt = f(Ic)
direc / dt (A/ms)
direc / dt (A/ms)
12000
dIrec/dt T
di0/dt T
10000
24000
dI0/dt T
dIrec/dt T
20000
8000
16000
6000
12000
4000
8000
2000
4000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
±15
4
20
30
40
50
I C (A)
60
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
4
25/125
350
30
±15
8
12
16
R gon (Ω)
20
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
101
ZthJH (K/W)
101
100
10
FWD
Figure 18
Typical rate of fall of forward and reverse recovery current
as a and reverse recovery current
dI0/dt,dIrec/dt = f(Rgon)
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
10-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
10-5
At
D=
RthJH =
10-4
tp / T
1,02
10-3
10-2
10-1
100
t p (s)
101 10
K/W
10-5
10-4
10-3
At
D=
RthJH =
tp / T
2,11
K/W
IGBT thermal model values
FWD thermal model values
R (C/W)
0,08
0,12
0,47
0,26
0,08
R (C/W)
0,04
0,11
0,53
0,96
0,30
0,17
Tau (s)
4,30
1,00
0,15
0,05
0,01
copyright by Vincotech
16
10-2
10-1
100
t p (s)
101 10
Tau (s)
6,53
1,19
0,18
0,06
0,01
0,00
Revision: 1
10-FZ06NRA041FS02-P965F68
10-PZ06NRA041FS02-P965F68Y
Boost
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
100
Ptot (W)
IC (A)
200
80
150
60
100
40
50
20
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
ºC
175
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
ºC
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
30
Ptot (W)
IF (A)
80
200
25
60
20
15
40
10
20
5
0
0
0
At
Tj =
50
150
copyright by Vincotech
100
150
Th ( o C)
0
200
At
Tj =
ºC
17
50
150
100
150
Th ( o C)
200
ºC
Revision: 1
10-FZ06NRA041FS02-P965F68
10-PZ06NRA041FS02-P965F68Y
Boost Inverse Diode
IGBT Inverse Diode
Figure 25
Typical diode forward current as
a function of forward voltage
IF = f(VF)
IGBT Inverse Diode
Figure 26
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
30
IF (A)
101
ZthJC (K/W)
Tj = Tjmax-25°C
25
Tj = 25°C
20
10
0
15
10
10
-1
10
-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
5
0
0
At
tp =
0,5
1
1,5
2
2,5
V F (V)
3
µs
250
IGBT Inverse Diode
Figure 27
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-5
10-4
At
D=
RthJH =
tp / T
2,17
10-3
10-2
100
t p (s)
1021
K/W
IGBT Inverse Diode
Figure 28
Forward current as a
function of heatsink temperature
IF = f(Th)
20
Ptot (W)
IF (A)
100
10-1
80
15
60
10
40
5
20
0
0
0
50
100
150
Th ( o C)
200
0
At
Tj =
50
100
150
Th ( o C)
200
At
175
copyright by Vincotech
Tj =
ºC
18
175
ºC
Revision: 1
10-FZ06NRA041FS02-P965F68
10-PZ06NRA041FS02-P965F68Y
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
R(T ) = R25 ⋅ e
NTC-typical temperature characteristic



 B25/100⋅ 1 − 1  
 T T 

25  


[Ω]
R/Ω
24000
Thermistor
Figure 2
Typical NTC resistance values
20000
16000
12000
8000
4000
0
25
50
copyright by Vincotech
75
100
T (°C)
125
19
Revision: 1
10-FZ06NRA041FS02-P965F68
10-PZ06NRA041FS02-P965F68Y
Switching Definitions BUCK
General conditions
= 125 °C
Tj
= 8Ω
Rgon IGBT
Rgoff IGBT
= 8Ω
BUCK MOSFET
Figure 1
BUCK MOSFET
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
150
125
%
tdoff
IC
%
125
100
IC
VGE 90%
100
75
VGE
75
tdon
50
VCE 90%
tEoff
25
50
IC 1%
VGE
VCE
25
VCE
VGE 10%
0
VCE 3%
IC10%
0
tEon
-25
-0,1
0
0,1
0,2
0,3
-25
2,98
0,4
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0
10
700
20
0,29
0,33
3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
BUCK MOSFET
Figure 3
3,02
0
10
700
20
0,03
0,07
3,04
3,06
3,08
V
V
V
A
µs
µs
BUCK MOSFET
Figure 4
Turn-off Switching Waveforms & definition of tf
time(us)
Turn-on Switching Waveforms & definition of tr
125
150
fitted
%
%
IC
100
IC
125
IC 90%
100
75
IC90%
VCE
IC 60%
75
tr
50
VCE
IC 40%
50
25
25
IC10%
0
IC10%
tf
0
-25
0,2
0,25
0,3
0,35
-25
3,02
0,4
time (us)
VC (100%) =
IC (100%) =
tf =
copyright by Vincotech
700
20
2,756
VC (100%) =
IC (100%) =
tr =
V
A
µs
20
3,03
3,04
700
20
0,01
3,05
3,06
time(us)
3,07
V
A
µs
Revision: 1
10-FZ06NRA041FS02-P965F68
10-PZ06NRA041FS02-P965F68Y
Switching Definitions BUCK
BUCK MOSFET
Figure 5
BUCK MOSFET
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
%
%
100
Eon
100
IC 1%
Eoff
75
75
50
50
25
25
Pon
VGE90%
VCE 3%
VGE 10%
Poff
0
0
tEon
tEoff
-25
-0,1
0
0,1
Poff (100%) =
Eoff (100%) =
tEoff =
13,98
0,07
0,33
0,2
0,3
time (us)
-25
2,98
0,4
3,02
3,04
3,06
3,08
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
BUCK MOSFET
Figure 7
13,98
0,15
0,07
kW
mJ
µs
BUCK FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
125
%
3
150
Id
%
100
Qrr
Id
100
75
trr
50
tQrr
50
25
0
fitted
Vd
IRRM 10%
0
-25
-50
3,02
IRRM 90%
IRRM 100%
3,04
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright by Vincotech
3,06
700
20
-10
0,02
3,08
time(us)
-50
3,02
3,1
Id (100%) =
Qrr (100%) =
tQrr =
V
A
A
µs
21
3,04
3,06
3,08
20
0,12
0,08
A
µC
µs
3,1
3,12
time(us)
3,14
Revision: 1
10-FZ06NRA041FS02-P965F68
10-PZ06NRA041FS02-P965F68Y
Switching Definitions BUCK
BUCK FWD
Figure 9
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
125
Erec
%
100
tErec
75
50
25
Prec
0
-25
3
3,05
Prec (100%) =
Erec (100%) =
tErec =
3,1
13,98
0,02
0,08
3,15
time(us)
3,2
kW
mJ
µs
Measurement circuits
Figure 11
BUCK stage switching measurement circuit
copyright by Vincotech
Figure 12
BOOST stage switching measurement circuit
22
Revision: 1
10-FZ06NRA041FS02-P965F68
10-PZ06NRA041FS02-P965F68Y
Switching Definitions BOOST
General conditions
= 125 °C
Tj
= 4Ω
Rgon IGBT
Rgoff IGBT
= 4Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
350
150
%
%
300
tdoff
IC
250
100
VCE 90%
VGE 90%
200
IC
150
50
tEoff
IC 1%
VCE
0
VGE
VCE
100
tdon
50
VCE3%
VGE
Ic 10%
VGE10%
0
tEon
-50
-50
-0,2
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,2
0,4
time (us)
3
0,6
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
-15
15
350
30
0,24
0,52
3,05
Output inverter IGBT
Figure 3
3,1
-15
15
350
30
0,08
0,10
3,15
3,2
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
time(us)
Turn-on Switching Waveforms & definition of tr
125
350
%
IC
fitted
%
VCE
Ic
300
100
IC 90%
250
75
200
IC 60%
50
150
IC 40%
100
VCE
25
IC90%
tr
50
IC10%
0
tf
-25
0
0,1
VC (100%) =
IC (100%) =
tf =
copyright by Vincotech
0,2
350
30
0,090
IC10%
0
0,3
0,4
time (us)
-50
3,06
0,5
VC (100%) =
IC (100%) =
tr =
V
A
µs
23
3,08
3,1
350
30
0,01
3,12
time(us)
3,14
V
A
µs
Revision: 1
10-FZ06NRA041FS02-P965F68
10-PZ06NRA041FS02-P965F68Y
Switching Definitions BOOST
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
200
125
%
Poff
100
Eoff
%
IC 1%
Pon
150
75
Eon
100
50
50
25
VCE 3%
VGE 10%
VGE 90%
0
0
tEon
tEoff
-25
-0,2
-50
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,2
10,46
1,36
0,52
0,4
time (us)
0,6
3
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Output inverter IGBT
Figure 7
3,1
10,46
0,39
0,10
3,15
time(us)
3,2
kW
mJ
µs
Output inverter FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
150
%
3,05
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
150
Id
%
100
Id
Qrr
100
trr
50
tQrr
50
0
Vd
fitted
0
IRRM 10%
-50
-50
-100
-100
-150
-150
-200
-200
IRRM 90%
IRRM 100%
-250
3,05
-250
3,1
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright by Vincotech
3,15
350
30
-67
0,10
3,2
time(us)
3,25
3
Id (100%) =
Qrr (100%) =
tQrr =
V
A
A
µs
24
3,25
3,5
30
4,72
1,00
3,75
4
time(us)
4,25
A
µC
µs
Revision: 1
10-FZ06NRA041FS02-P965F68
10-PZ06NRA041FS02-P965F68Y
Switching Definitions BOOST
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
300
%
Erec
250
200
150
100
tErec
50
Prec
0
-50
3
3,25
Prec (100%) =
Erec (100%) =
tErec =
3,5
10,46
1,45
1,00
3,75
4
time(us)
4,25
kW
mJ
µs
Measurement circuits
Figure 11
BUCK stage switching measurement circuit
Figure 12
BOOST stage switching measurement circuit
Cg is included in the module
copyright by Vincotech
25
Revision: 1
10-FZ06NRA041FS02-P965F68
10-PZ06NRA041FS02-P965F68Y
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
w/o thermal paste 12mm housing solder pin
w/o thermal paste 12mm housing Press-fit pin
Ordering Code
10-FZ06NRA041FS02-P965F68
10-FZ06NRA041FS02-P965F68
in DataMatrix as
P965F68
P965F68Y
in packaging barcode as
P965F68
P965F68Y
Outline
Pinout
copyright by Vincotech
26
Revision: 1
10-FZ06NRA041FS02-P965F68
10-PZ06NRA041FS02-P965F68Y
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright by Vincotech
27
Revision: 1