10-PZ12B2A040ME01-M330L63Y Maximum Ratings

10-PZ12B2A040ME01-M330L63Y
flow SOL0-SiC
1200 V / 40 mΩ
Features
TM
● Cree
flow 0 12mm housing
Silicon Carbide Power MOSFET
TM
● Cree Silicon Carbide Power Schottky Diode
● Dual Boost Topology
● Ultra Low Inductance with Integrated DC-capacitors
● Extremely Fast Switching with No "Tail" Current
● Solderless Press-fit Mounting Technology
● Temperature sensor
Target Applications
Schematic
● High efficient solar inverters
● UPS
Types
● 10-PZ12B2A040ME01-M330L63Y
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
33
A
190
A
81
W
Boost - Silicon Carbide Power MOSFET ( T1 , T3 )
Drain to source breakdown voltage
DC drain current
Pulsed drain current
VDS
ID
IDpulse
Tj=Tjmax
Th=80°C
tp limited by Tjmax
Power dissipation
Ptot
Gate-source peak voltage
VGS
-5/25
V
Tjmax
150
°C
VRRM
1600
V
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Protection Diode ( D1 , D3 )
Peak Repetitive Reverse Voltage
IF
Tj=Tjmax
Th=80°C
47
A
Surge forward current
IFSM
10ms
sin 180°
Tj=25°C
370
A
Power dissipation per Diode
Ptot
Tj=Tjmax
Th=80°C
65
W
150
°C
DC forward current
Maximum Junction Temperature
copyright Vincotech
Tjmax
1
Revision: 1
10-PZ12B2A040ME01-M330L63Y
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
35
A
104
A
94
W
Tjmax
175
°C
VMAX
1000
V
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 9,16
mm
Boost - Silicon Carbide Power Schottky Diode ( D2 , D4 )
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=Tjmax
Th=80°C
Surge repetitive forward current
IFSM
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
DC link Capacitor ( C1 , C2 )
Max.DC voltage
Thermal Properties
Insulation Properties
Insulation voltage
copyright Vincotech
Vis
t=2s
DC voltage
2
Revision: 1
10-PZ12B2A040ME01-M330L63Y
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
Unit
Max
Boost - Silicon Carbide Power MOSFET ( T1 , T3 )
Static drain to source ON resistance
RDS(on)
Gate threshold voltage
V(GS)th
18
0,002
Gate to Source Leakage Current
Igss
20
Zero Gate Voltage Drain Current
Idss
0
Turn On Delay Time
Rise Time
Turn off delay time
Fall time
72
1200
td(ON)
tr
td(OFF)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge
Qg
Gate to source charge
Qgs
Gate to drain charge
Qgd
Input capacitance
Ciss
Output capacitance
Coss
Reverse transfer capacitance
Crss
Thermal resistance chip to heatsink per chip
RthJH
Rgoff=2 Ω
Rgon=2 Ω
0/16
0/20
700
800
32
40
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
52
78
2,25
mΩ
V
500
2
20
13
12
5
5
50
53
12
12
0,25
0,24
0,10
0,09
98,4
200
500
nA
nA
ns
mWs
21,6
nC
36
1900
f=1MHz
0
1000
Tj=25°C
pF
160
13
Phase-Change
Material
K/W
0,86
Protection Diode ( D1 , D3 )
Diode forward voltage
Reverse leakage current
Thermal resistance chip to heatsink per chip
VF
35
Irm
RthJH
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Phase-Change
Material
1,24
1,23
V
0,05
mA
K/W
1,07
Boost - Silicon Carbide Power Schottky Diode ( D2 , D4 )
Forward voltage
Reverse leakage current
VF
Irm
Peak recovery current
IRRM
Reverse recovery time
trr
Reverse recovery charge
Qrr
Reverse recovered energy
Erec
Peak rate of fall of recovery current
Thermal resistance chip to heatsink per chip
copyright Vincotech
20
1200
Rgon=2 Ω
0
700
di(rec)max
/dt
RthJH
Phase-Change
Material
32
Tj=25°C
Tj=150°C
Tj=25°C
Tj=175°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,43
1,72
80
160
35
38
9
9
0,15
0,14
0,03
0,01
13071
14558
1,01
3
V
600
1200
µA
A
ns
µC
mWs
A/µs
K/W
Revision: 1
10-PZ12B2A040ME01-M330L63Y
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
Unit
Max
DC link Capacitor ( C1 , C2 )
C value
C
100
nF
22000
Ω
Thermistor
Rated resistance
R
Deviation of R25
∆R/R
Power dissipation
P
Tj=25°C
R100=1486 Ω
Tc=100°C
Power dissipation constant
-5
+5
%
Tj=25°C
200
mW
Tj=25°C
2
mW/K
B-value
B(25/50)
Tol. ±3%
Tj=25°C
3950
K
B-value
B(25/100)
Tol. ±3%
Tj=25°C
3996
K
Vincotech NTC Reference
copyright Vincotech
Tj=25°C
4
B
Revision: 1
10-PZ12B2A040ME01-M330L63Y
INPUT BOOST
BOOST MOSFET
Figure 1
Typical output characteristics
ID = f(VDS)
BOOST MOSFET
Figure 2
Typical output characteristics
ID = f(VDS)
80
ID (A)
ID(A)
80
60
60
40
40
20
20
0
0
0
1
At
tp =
Tj =
VGS from
2
3
4
V DS (V)
5
0
At
tp =
Tj =
VGS from
µs
250
25
°C
0 V to 20 V in steps of 2 V
BOOST MOSFET
Figure 3
Typical transfer characteristics
ID = f(VGS)
1
2
3
4
5
250
µs
125
°C
0 V to 20 V in steps of 2 V
BOOST FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
50
ID (A)
IF (A)
50
V DS (V)
40
40
30
30
Tj = 25°C
Tj = Tjmax-25°C
20
20
Tj = Tjmax-25°C
Tj = 25°C
10
10
0
0
0
At
tp =
VDS =
3
250
10
copyright Vincotech
6
9
V GS (V)
0
12
At
tp =
µs
V
5
0,5
250
1
1,5
2
2,5
V F (V)
3
µs
Revision: 1
10-PZ12B2A040ME01-M330L63Y
INPUT BOOST
BOOST MOSFET
Figure 5
Typical switching energy losses
as a function of drain current
E = f(ID)
BOOST MOSFET
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
0,8
E (mWs)
E (mWs)
0,8
Eon Low T
0,6
0,6
Eon High T
Eoff Low T
0,4
0,4
Eon Low T
Eon High T
Eoff Low T
0,2
0,2
Eoff High T
Eoff High T
0,0
0
0
10
20
30
40
50
I D (A)
60
0
With an inductive load at
Tj =
°C
25/125
VDS =
700
V
VGS =
0/16
V
Rgon =
2
Ω
Rgoff =
2
Ω
4
8
12
16
RG (Ω )
20
With an inductive load at
Tj =
25/125
°C
VDS =
700
V
VGS =
0/16
V
ID =
A
32
BOOST FWD
Figure 7
Typical reverse recovery energy loss
as a function of drain current
Erec = f(ID)
BOOST FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,04
E (mWs)
E (mWs)
0,05
0,04
0,03
Erec High T
0,03
0,02
Erec Low T
0,02
Erec Low T
0,01
0,01
Erec High T
0,00
0,00
0
10
20
30
40
50
I D (A)
60
0
With an inductive load at
Tj =
°C
25/125
VDS =
700
V
VGS =
0/16
V
Rgon =
2
Ω
Rgoff =
2
Ω
copyright Vincotech
4
8
12
16
RG(Ω )
20
With an inductive load at
Tj =
25/125
°C
VDS =
700
V
VGS =
0/16
V
ID =
32
A
6
Revision: 1
10-PZ12B2A040ME01-M330L63Y
INPUT BOOST
BOOST MOSFET
Figure 9
Typical switching times as a
function of drain current
t = f(ID)
BOOST MOSFET
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
t ( µs)
t ( µs)
1
tdoff
0,1
0,1
tdoff
tdon
tdon
0,01
tr
0,01
tr
tf
tf
0,001
0,001
0
20
40
I D (A)
60
0
With an inductive load at
Tj =
°C
125
VDS =
700
V
VGS =
0/16
V
Rgon =
2
Ω
Rgoff =
2
Ω
5
10
15
RG(Ω )
20
With an inductive load at
Tj =
125
°C
VDS =
700
V
VGS =
0/16
V
ID =
A
32
BOOST FWD
Figure 11
Typical reverse recovery time as a
function of drain current
trr = f(ID)
BOOST FWD
Figure 12
Typical reverse recovery time as a
function of MOSFET turn on gate resistor
trr = f(Rgon)
0,010
trr High T
trr Low T
t rr( µs)
t rr( µs)
0,010
trr High T
0,008
0,008
trr Low T
0,006
0,006
0,004
0,004
0,002
0,002
0,000
0,000
0
At
Tj =
VDS =
VGS =
Rgon =
10
25/125
700
0/16
2
copyright Vincotech
20
30
40
50
I D (A)
60
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
7
5
25/125
700
32
0/16
10
15
R Gon ( Ω )
20
°C
V
A
V
Revision: 1
10-PZ12B2A040ME01-M330L63Y
INPUT BOOST
BOOST FWD
Figure 13
Typical reverse recovery charge as a
function of drain current
Qrr = f(ID)
BOOST FWD
Figure 14
Typical reverse recovery charge as a
function of MOSFET turn on gate resistor
Qrr = f(Rgon)
0,2
Qrr ( µC)
Qrr ( µC)
0,2
Qrr Low T
0,15
0,15
Qrr High T
Qrr High T
Qrr Low T
0,1
0,1
0,05
0,05
0
0
0
At
At
Tj =
VDS =
VGS =
Rgon =
10
25/125
700
0/16
2
20
30
40
50
I D (A)
60
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
BOOST FWD
Figure 15
Typical reverse recovery current as a
function of drain current
IRRM = f(ID)
4
25/125
700
32
0/16
8
12
16
20
°C
V
A
V
BOOST FWD
Figure 16
Typical reverse recovery current as a
function of MOSFET turn on gate resistor
IRRM = f(Rgon)
50
R Gon ( Ω)
50
IrrM (A)
IrrM (A)
IRRM High T
IRRM Low T
40
40
30
30
IRRM High T
20
20
IRRM Low T
10
10
0
0
At
Tj =
VDS =
VGS =
Rgon =
10
25/125
700
0/16
2
copyright Vincotech
20
30
40
50
I D (A)
0
60
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
8
4
25/125
700
32
0/16
8
12
16
R Gon ( Ω )
20
°C
V
A
V
Revision: 1
10-PZ12B2A040ME01-M330L63Y
INPUT BOOST
BOOST FWD
20000
dI0/dt
dIrec/dt
16000
20000
dI0/dt
dIrec/dt
16000
12000
12000
8000
8000
4000
4000
0
0
0
At
Tj =
VDS =
VGS =
Rgon =
10
25/125
700
0/16
2
20
30
40
50
I D (A)
60
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
BOOST MOSFET
Figure 19
MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
-2
R Gon ( Ω)
15
20
°C
V
A
V
BOOST FWD
ZthJH (K/W)
ZthJH (K/W)
10
25/125
700
32
0/16
10
101
100
-1
5
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
10
BOOST FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of MOSFET turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
direc / dt (A/ µs)
direc / dt (A/ µs)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of drain current
dI0/dt,dIrec/dt = f(ID)
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
101
10
At
D=
RthJH =
tp / T
0,86
K/W
IGBT thermal model values
R (K/W)
1,34E-01
3,81E-01
2,07E-01
7,72E-02
6,49E-02
copyright Vincotech
-5
10
-4
10
-3
10
-2
10
-1
10
0
t p (s)
10
1
tp / T
1,01
K/W
FWD thermal model values
Tau (s)
8,84E-01
1,39E-01
5,28E-02
5,60E-03
8,44E-04
R (K/W)
5,83E-02
1,31E-01
4,46E-01
1,27E-01
1,77E-01
9
Tau (s)
3,01E+00
4,50E-01
8,80E-02
2,30E-02
5,54E-03
Revision: 1
10-PZ12B2A040ME01-M330L63Y
INPUT BOOST
BOOST MOSFET
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
BOOST MOSFET
Figure 22
Drain current as a
function of heatsink temperature
ID = f(Th)
50
Ptot (W)
ID (A)
200
160
40
120
30
80
20
40
10
0
0
0
At
Tj =
30
60
90
120
Th ( o C)
150
0
At
Tj =
VGS =
ºC
150
BOOST FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
30
60
150
18
90
120
150
ºC
V
BOOST FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
40
IF (A)
Ptot (W)
200
Th ( o C)
150
30
100
20
50
10
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
ºC
10
50
175
100
150
T h ( o C)
200
ºC
Revision: 1
10-PZ12B2A040ME01-M330L63Y
INPUT BOOST
BOOST MOSFET
Figure 25
Safe operating area as a function
of drain-source voltage
ID = f(VDS)
ID (A)
103
102
100uS
101
10
100uS
0
1mS
10mS
100mS
10
-1
DC
101
102
10
3
V DS (V)
At
D=
Th =
VGS =
Tj =
single pulse
ºC
80
V
0/16
Tjmax
ºC
copyright Vincotech
11
Revision: 1
10-PZ12B2A040ME01-M330L63Y
INP.BOOST INVERSE DIODE
Bost inv. diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Boost inv. diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
1
ZthJC (K/W)
IF (A)
10
80
100
60
40
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
Tj = Tjmax-25°C
20
Tj = 25°C
0
10-2
0
0,5
At
tp =
1
V F (V)
1,5
2
10-5
At
D=
RthJH =
µs
250
10-4
Boost inv. diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-3
10-2
10-1
t p (s)
101
tp / T
1,07
K/W
Boost inv. diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
70
Ptot (W)
IF (A)
150
100
60
120
50
90
40
30
60
20
30
10
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
120
T h ( o C)
0
150
At
Tj =
ºC
12
30
150
60
90
120
T h ( o C)
150
ºC
Revision: 1
10-PZ12B2A040ME01-M330L63Y
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
copyright Vincotech
50
75
100
T (°C)
125
13
Revision: 1
10-PZ12B2A040ME01-M330L63Y
Switching Definition BOOST MOSFET
General conditions
= 150 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
BOOST MOSFET
Figure 1
125
%
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
tdoff
225
%
200
VDS
100
ID
VGS 90%
BOOST MOSFET
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
ID
175
VDS 90%
75
VGS
150
50
125
tEoff
VDS
25
100
ID 1%
0
75
tdon
50
-25
25
VGS10%
-50
0
-0,04
VGS (0%) =
VGS (100%) =
VD (100%) =
ID (100%) =
tdoff =
tEoff =
-0,02
0
0,02
0,04
-25
2,98
0,06
time (us)
3
VGS (0%) =
VGS (100%) =
VD (100%) =
ID (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
-15
16
350
32
0,06
0,07
BOOST MOSFET
Figure 3
VDS3%
tEon
VGS
-75
-0,06
ID10%
3,02
-15
16
350
32
0,01
0,03
3,04
3,06
V
V
V
A
µs
µs
BOOST MOSFET
Figure 4
Turn-off Switching Waveforms & definition of tf
time(us)
Turn-on Switching Waveforms & definition of tr
125
250
%
fitted
ID
%
ID
100
200
ID 90%
75
150
ID 60%
50
ID 40%
VDS
100
25
ID 90%
ID 10%
VDS
0
tr
tf
50
-25
ID 10%
0
-50
-50
-75
0
0,01
VD (100%) =
ID (100%) =
tf =
copyright Vincotech
0,02
350
32
0,01
0,03
0,04
time (us)
3
0,05
3,005
3,01
3,015
3,02
3,025
3,03
time(us)
VD (100%) =
ID (100%) =
tr =
V
A
µs
14
350
32
0,005
V
A
µs
Revision: 1
10-PZ12B2A040ME01-M330L63Y
Switching Definition BOOST MOSFET
BOOST MOSFET
Figure 5
BOOST MOSFET
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
150
125
%
Eoff
Pon
%
125
Eon
100
100
75
75
50
ID 1%
50
25
VGS 90%
0
25
tEoff
Poff
VGS10%
-25
VDS 3%
0
tEon
-50
-75
-0,05
-0,03
-0,01
Poff (100%) =
Eoff (100%) =
tEoff =
11,26
0,14
0,067
0,01
-25
2,98
0,03 time (us) 0,05
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
3
11,26
0,24
0,03
3,02
time(us)
3,04
kW
mJ
µs
BOOST FWD
Figure 7
Turn-off Switching Waveforms & definition of trr
125
Id
%
100
75
trr
50
25
0
Vd
IRRM 10%
-25
fitted
-50
-75
IRRM 90%
-100
IRRM 100%
-125
3
3,01
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
3,02
350
32
10
0,009
3,03
3,04
time(us)
3,05
V
A
A
µs
15
Revision: 1
10-PZ12B2A040ME01-M330L63Y
Switching Definition BOOST MOSFET
BOOST FWD
Figure 8
BOOST FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
250
%
%
Id
100
Erec
200
tQrr
50
150
Qrr
0
100
tErec
-50
50
-100
0
Prec
-150
-50
3
3,01
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
3,02
32
0,15
0,02
3,03
3,04
time(us)
3,05
3
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
16
3,01
3,02
11,26
0,02
0,02
3,03
3,04
time(us)
3,05
kW
mJ
µs
Revision: 1
10-PZ12B2A040ME01-M330L63Y
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
10-PZ12B2A040ME01-M330L63Y
in DataMatrix as
M330L63Y
in packaging barcode as
M330L63Y
Outline
Pinout
copyright Vincotech
17
Revision: 1
10-PZ12B2A040ME01-M330L63Y
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
18
Revision: 1