10-FY06BIA080MF-M527E58 Maximum Ratings

10-FY06BIA080MF-M527E58
preliminary datasheet
flowSOL 1 BI
650V/80mΩ
Features
flow1 12mm housing
● Low inductive 12mm flow1 package
● Booster:
○ Dual boost topology
○ MOSFET 650V/70mOhm + SiC diode
○ Bypass rectifier
● Inverter:
○ H-bridge topology
○ MOSFET 650V/80mOhm CFD
● Integrated DC-capacitor
● Temperature sensor
Target Applications
Schematic
● Solar Inverter:
Primary of high efficient HF transformer-based solar inver
Types
● 10-FY06BIA080MF-M527E58
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
41
50
A
370
A
370
A2s
50
76
W
Tjmax
150
°C
VDS
650
V
22
27
A
150
A
78
117
W
Bypass Diode ( D1 , D2 )
Repetitive peak reverse voltage
VRRM
Forward current per diode
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
DC current
Th=80°C
Tc=80°C
tp=10ms
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
Input Boost MOSFET ( T1, T2 )
Drain to source breakdown voltage
DC drain current
Pulsed drain current
ID
IDpulse
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Ptot
Gate-source peak voltage
VGS
±30
V
Tjmax
150
°C
Maximum Junction Temperature
Copyright by Vincotech
Tj=Tjmax
Th=80°C
Tc=80°C
Power dissipation
1
Revision: 1
10-FY06BIA080MF-M527E58
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
20
24
A
57
A
46
70
W
175
°C
650
V
Input Boost Diode ( D3 , D4 )
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Th=80°C
Tc=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Tjmax
H-Bridge MOSFET ( T3 , T4 , T5 , T6 )
Drain to source breakdown voltage
DC drain current
Pulsed drain current
VDS
ID
IDpulse
Tj=Tjmax
Th=80°C
Tc=80°C
21
tp limited by Tjmax
Tc=25°C
137
A
Tj=Tjmax
Th=80°C
Tc=80°C
84
128
W
26
A
Power dissipation
Ptot
Gate-source peak voltage
Vgs
±30
V
Tjmax
150
°C
650
V
Maximum Junction Temperature
H-Bridge Body Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Th=80°C
Tc=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Tjmax
50
50
50
140
84
128
A
A
W
150
°C
630
V
DC link Capacitor ( C1 )
Max.DC voltage
VMAX
Tc=25°C
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 1
10-FY06BIA080MF-M527E58
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Unit
Typ
Max
1,18
1,17
0,91
0,80
0,01
0,01
1,21
Bypass Diode ( D1 , D2 )
Forward voltage
VF
35
Threshold voltage (for power loss calc. only)
Vto
35
Slope resistance (for power loss calc. only)
rt
35
Reverse current
Ir
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
1600
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
Ω
0,05
Thermal grease
thickness≤50um
λ = 1 W/mK
V
mA
1,40
K/W
0,92
Input Boost MOSFET ( T1 , T2 )
Static drain to source ON resistance
Gate threshold voltage
RDS(on)
20
10
V(GS)th
0,00176
Gate to Source Leakage Current
Igss
20
0
Zero Gate Voltage Drain Current
Idss
0
650
Turn On Delay Time
Rise Time
Turn off delay time
Fall time
td(ON)
tr
td(OFF)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge
Qg
Gate to source charge
Qgs
Gate to drain charge
Qgd
Input capacitance
Ciss
Output capacitance
Coss
Reverse transfer capacitance
Crss
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Rgoff=2 Ω
Rgon=2 Ω
Rgon=2 Ω
10
400
10
480
20
26,3
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,5
78
127
3
mΩ
3,5
100
1000
22
21
4
4
105
110
6
5
0,07
0,08
0,00
0,01
170
V
nA
nA
ns
mWs
nC
20
85
3900
f=1MHz
0
Tj=25°C
100
pF
215
tbd.
Thermal grease
thickness≤50um
λ = 1 W/mK
0,90
K/W
0,60
Input Boost Diode ( D3 , D4 )
Forward voltage
VF
Reverse leakage current
Irm
Peak recovery current
trr
Reverse recovery charge
Qrr
Reverse recovered energy
Erec
400
Rgon=2 Ω
10
400
di(rec)max
/dt
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Copyright by Vincotech
10
20
IRRM
Reverse recovery time
Peak rate of fall of recovery current
8
Thermal grease
thickness≤50um
λ = 1 W/mK
20
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,24
1,34
1,8
50
25
22
8
9
0,14
0,20
0,02
0,05
8216
7261
V
μA
A
ns
μC
mWs
A/μs
2,06
K/W
1,36
3
Revision: 1
10-FY06BIA080MF-M527E58
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
3,5
96
164
4
4,5
H-Bridge MOSFET ( T3 , T4 , T5 , T6 )
Static drain to source ON resistance
Rds(on)
Gate threshold voltage
V(GS)th
43
10
VDS=VGS
Gate to Source Leakage Current
Igss
20
0
Zero Gate Voltage Drain Current
Idss
0
650
Turn On Delay Time
Rise Time
Turn off delay time
Fall time
0,00176
td(ON)
tr
td(OFF)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge
Qg
Gate to source charge
Qgs
Rgoff=2 Ω
Rgon=128 Ω
10
400
20
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
100
1000
355
307
149
165
94
98
4
5
2,24
3,73
0,01
0,01
0/10
480
26,3
Tj=25°C
Qgd
120
Ciss
5030
Output capacitance
Coss
Crss
RthJH
Thermal resistance chip to case per chip
RthJC
nA
ns
mWs
25
Input capacitance
Thermal resistance chip to heatsink per chip
V
nA
170
Gate to drain charge
Reverse transfer capacitance
mΩ
f=1MHz
25
0
nC
215
Tj=25°C
pF
tbd.
Thermal grease
thickness≤50um
λ = 1 W/mK
0,83
K/W
0,55
H-Bridge Body Diode
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
43
Rgon=128 Ω
400
10
di(rec)max
/dt
Reverse recovery energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
20
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,18
1,09
13
24
122
216
0,96
2,85
1469
2749
0,03
0,07
Thermal grease
thickness≤50um
λ = 1 W/mK
V
A
ns
μC
A/μs
mWs
0,83
K/W
0,55
DC link Capacitor ( C1 )
C value
C
47
nF
22000
Ω
Thermistor
Rated resistance
R
Deviation of R25
ΔR/R
Power dissipation
P
Tj=25°C
R100=1486 Ω
Tj=100°C
Power dissipation constant
+5
-5
%
Tj=25°C
200
mW
Tj=25°C
2
mW/K
B-value
B(25/50)
Tol. ±3%
Tj=25°C
3950
K
B-value
B(25/100)
Tol. ±3%
Tj=25°C
3996
K
Vincotech NTC Reference
Copyright by Vincotech
Tj=25°C
4
B
Revision: 1
10-FY06BIA080MF-M527E58
preliminary datasheet
H-Bridge
MOSFET
Figure 1
Typical output characteristics
IC = f(VCE)
MOSFET
Figure 2
Typical output characteristics
IC = f(VCE)
70
IC (A)
IC (A)
70
60
60
50
50
40
40
30
30
20
20
10
10
0
0
0
2
At
tp =
Tj =
VGE from
4
6
8
V CE (V)
0
10
At
tp =
Tj =
VGE from
250
μs
25
°C
0 V to 20 V in steps of 2 V
MOSFET
Figure 3
Typical transfer characteristics
IC = f(VGE)
2
4
6
8
V CE (V)
250
μs
125
°C
0 V to 20 V in steps of 2 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
30
10
IF (A)
IC (A)
80
25
60
20
40
15
10
20
Tj = Tjmax-25°C
5
Tj = 25°C
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
4
6
V GE (V)
0
8
At
tp =
μs
V
Copyright by Vincotech
5
0,5
250
1
1,5
V F (V)
2
μs
Revision: 1
10-FY06BIA080MF-M527E58
preliminary datasheet
H-Bridge
MOSFET
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
MOSFET
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
0,30
E (mWs)
E (mWs)
8
Eon High T
Eoff High T
0,25
Eoff Low T
6
0,20
Eon Low T
4
0,15
0,10
2
0,05
Eoff High T
Eoff Low T
0
0,00
0
10
20
30
I C (A)
40
0
With an inductive load at
Tj =
°C
25/125
VCE =
400
V
VGE =
10
V
Rgon =
128
Ω
Rgoff =
2
Ω
10
With an inductive load at
Tj =
°C
25/125
VCE =
400
V
VGE =
10
V
IC =
20
A
20
Rgon =
30
128
R goff (Ω)
40
Ω
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
E (mWs)
0,12
Erec High T
0,10
0,08
0,06
Erec Low T
0,04
0,02
0,00
0
10
20
30
I C (A)
40
With an inductive load at
Tj =
25/125
°C
VCE =
400
V
VGE =
10
V
Rgon =
128
Ω
Copyright by Vincotech
6
Revision: 1
10-FY06BIA080MF-M527E58
preliminary datasheet
H-Bridge
MOSFET
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
MOSFET
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
tdon
tr
tdoff
0,10
tdoff
t (ms)
t (ms)
1,00
0,10
tf
0,01
0,01
tf
0,00
0,00
0
10
20
30
I C (A)
40
0
With an inductive load at
Tj =
125
°C
VCE =
400
V
VGE =
10
V
Rgon =
128
Ω
Rgoff =
2
Ω
10
20
30
R G (Ω)
40
With an inductive load at
Tj =
125
°C
VCE =
400
V
VGE =
10
V
IC =
20
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
t rr(ms)
0,30
0,25
trr High T
0,20
0,15
trr Low T
0,10
0,05
0,00
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
400
10
128
20
30
I C (A)
40
°C
V
V
Ω
Copyright by Vincotech
7
Revision: 1
10-FY06BIA080MF-M527E58
preliminary datasheet
H-Bridge
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Qrr (mC)
4
Qrr High T
3
2
Qrr Low T
1
0
0
10
At
At
Tj =
VCE =
VGE =
Rgon =
25/125
400
10
128
20
30
40
I C (A)
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
IrrM (A)
30
IRRM High T
25
20
IRRM Low T
15
10
5
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
400
10
128
20
30
I C (A)
40
°C
V
V
Ω
Copyright by Vincotech
8
Revision: 1
10-FY06BIA080MF-M527E58
preliminary datasheet
H-Bridge
FWD
direc / dt (A/ms)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
3000
dIrec/dt T
dIo/dt T
2500
2000
1500
1000
500
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
400
10
128
20
30
I C (A)
40
°C
V
V
Ω
MOSFET
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
ZthJH (K/W)
ZthJH (K/W)
101
0
10
-1
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10
-5
-4
10
At
D=
RthJH =
10
-3
-2
10
-1
10
0
10
t p (s)
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
1
10 10
tp / T
0,83
K/W
10-5
10-4
At
D=
RthJH =
tp / T
0,83
10-3
FWD thermal model values
R (C/W)
0,03
0,10
0,33
0,26
0,08
0,04
R (C/W)
0,03
0,10
0,33
0,26
0,08
0,04
Copyright by Vincotech
9
10-1
100
t p (s)
10110
K/W
IGBT thermal model values
Tau (s)
4,8E+00
1,1E+00
2,3E-01
8,5E-02
1,3E-02
1,0E-03
10-2
Tau (s)
4,8E+00
1,1E+00
2,3E-01
8,5E-02
1,3E-02
1,0E-03
Revision: 1
10-FY06BIA080MF-M527E58
preliminary datasheet
H-Bridge
MOSFET
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
MOSFET
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
40
IC (A)
Ptot (W)
200
160
30
120
20
80
10
40
0
0
0
At
Tj =
50
150
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
150
15
100
150
T h ( o C)
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
200
200
Ptot (W)
IF (A)
60
50
160
40
120
30
80
20
40
10
0
0
0
At
Tj =
50
150
100
150
T h ( o C)
200
0
At
Tj =
°C
Copyright by Vincotech
10
50
150
100
150
T h ( o C)
200
°C
Revision: 1
10-FY06BIA080MF-M527E58
preliminary datasheet
H-Bridge
MOSFET
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
MOSFET
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
103
VGE (V)
IC (A)
10
100uS
102
120V
480V
8
1mS
100mS
10
1
10mS
6
DC
4
100
2
-1
10
0
0
100
At
D=
Th =
VGE =
Tj =
10
1
10
2
100
150
200
Q g (nC)
At
IC =
single pulse
80
ºC
15
V
Tjmax
ºC
Copyright by Vincotech
50
V CE (V) 1
11
43
A
Revision: 1
10-FY06BIA080MF-M527E58
preliminary datasheet
INPUT BOOST
BOOST MOSFET
Figure 1
Typical output characteristics
ID = f(VDS)
BOOST MOSFET
Figure 2
Typical output characteristics
ID = f(VDS)
80
IC (A)
IC(A)
80
60
60
40
40
20
20
0
0
0
2
At
tp =
Tj =
VGS from
4
6
8
V CE (V)
0
10
At
tp =
Tj =
VGS from
250
μs
25
°C
0 V to 20 V in steps of 2 V
BOOST MOSFET
Figure 3
Typical transfer characteristics
ID = f(VGS)
2
4
6
8
V CE (V)
10
250
μs
125
°C
0 V to 20 V in steps of 2 V
BOOST FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
80
IF (A)
ID (A)
25
20
60
15
40
10
Tj = 25°C
Tj = Tjmax-25°C
20
5
Tj = 25°C
Tj = Tjmax-25°C
0
0
0
At
tp =
VDS =
1
250
10
2
3
4
5
V GS (V)
6
0
At
tp =
μs
V
Copyright by Vincotech
12
2
250
4
6
V F (V)
8
μs
Revision: 1
10-FY06BIA080MF-M527E58
preliminary datasheet
INPUT BOOST
BOOST MOSFET
Figure 5
Typical switching energy losses
as a function of collector current
E = f(ID)
BOOST MOSFET
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
0,15
E (mWs)
0,25
E (mWs)
Eon High T
0,12
Eon High T
0,20
Eon Low T
0,09
0,15
0,06
0,10
Eoff Low T
Eoff High T
Eon Low T
0,05
0,03
Eoff High T
Eoff Low T
0,00
0
0
10
20
30
I C (A)
0
40
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
10
V
Rgon =
2
Ω
Rgoff =
2
Ω
5
10
15
RG (Ω )
20
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
10
V
ID =
20
A
BOOST FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector (drain) current
Erec = f(Ic)
BOOST FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,04
E (mWs)
E (mWs)
0,05
Erec High T
0,04
0,03
Erec Low T
Erec Low T
Erec High T
0,03
0,02
0,02
0,01
0,01
0
0
0
10
20
30
I C (A)
40
0
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
10
V
Rgon =
2
Ω
Rgoff =
2
Ω
Copyright by Vincotech
5
10
15
R G( Ω )
20
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
10
V
ID =
20
A
13
Revision: 1
10-FY06BIA080MF-M527E58
preliminary datasheet
INPUT BOOST
BOOST MOSFET
Figure 9
Typical switching times as a
function of collector current
t = f(ID)
BOOST MOSFET
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
t ( μs)
t ( μs)
1
tdoff
tdoff
0,1
0,1
tf
tdon
tdon
0,01
0,01
tf
tr
tr
0,001
0,001
0
10
20
30
I D (A)
40
0
With an inductive load at
Tj =
125
°C
VDS =
400
V
VGS =
10
V
Rgon =
2
Ω
Rgoff =
2
Ω
5
10
15
R G( Ω )
20
With an inductive load at
Tj =
125
°C
VDS =
400
V
VGS =
10
V
IC =
20
A
BOOST FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
BOOST FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,01
t rr( μs)
t rr( μs)
0,015
trr High T
trr High T
0,012
0,008
trr Low T
trr Low T
0,006
0,009
0,004
0,006
0,002
0,003
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
400
10
2
20
30
I C (A)
0
40
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Copyright by Vincotech
14
5
25/125
400
20
10
10
15
R Gon ( Ω )
20
°C
V
A
V
Revision: 1
10-FY06BIA080MF-M527E58
preliminary datasheet
INPUT BOOST
BOOST FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
BOOST FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
0,20
0,2
Qrr ( μC)
Qrr ( μC)
Qrr High T
Qrr Low T
0,15
0,15
Qrr Low T
Qrr High T
0,10
0,1
0,05
0,05
0
0,00
0
At
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
400
10
2
20
30
I C (A)
0
40
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
BOOST FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
5
25/125
400
20
10
10
15
R Gon ( Ω )
20
°C
V
A
V
BOOST FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
40
IrrM (A)
30
IrrM (A)
IRRM Low T
25
30
IRRM High T
20
20
15
10
10
IRRM Low T
IRRM High T
5
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
400
10
2
20
30
I C (A)
0
40
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Copyright by Vincotech
15
5
25/125
400
20
10
10
15
R Gon ( Ω )
20
°C
V
A
V
Revision: 1
10-FY06BIA080MF-M527E58
preliminary datasheet
INPUT BOOST
BOOST FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
10000
14000
dI0/dt
dI0/dt
direc / dt (A/ μs)
direc / dt (A/ μs)
BOOST FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIrec/dt
dIrec/dt
12000
8000
10000
6000
8000
6000
4000
4000
2000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
400
10
2
20
I C (A)
30
40
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
BOOST MOSFET
Figure 19
IGBT/MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
R Gon ( Ω)
15
20
°C
V
A
V
BOOST FWD
ZthJH (K/W)
ZthJH (K/W)
101
0
0
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
25/125
400
20
10
10
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
10
5
-2
10-5
10-4
At
D=
RthJH =
10-3
10-2
10-1
100
t p (s)
10-2
10110
10-5
At
D=
RthJH =
tp / T
0,90
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
K/W
10-4
10-3
R (C/W)
3,43E-02
1,09E-01
4,48E-01
1,86E-01
8,11E-02
4,45E-02
R (C/W)
3,27E-02
1,23E-01
5,18E-01
7,80E-01
3,95E-01
2,09E-01
16
100
t p (s)
1
10
K/W
FWD thermal model values
Copyright by Vincotech
10-1
tp / T
2,06
IGBT thermal model values
Tau (s)
5,75E+00
1,04E+00
1,90E-01
6,29E-02
1,23E-02
1,06E-03
10-2
Tau (s)
9,23E+00
1,09E+00
1,63E-01
5,62E-02
1,25E-02
2,51E-03
Revision: 1
10-FY06BIA080MF-M527E58
preliminary datasheet
INPUT BOOST
BOOST MOSFET
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
BOOST MOSFET
Figure 22
Collector/Drain current as a
function of heatsink temperature
IC = f(Th)
200
Ptot (W)
IC (A)
35
30
150
25
20
100
15
10
50
5
0
0
0
At
Tj =
50
150
100
150
Th ( o C)
200
0
At
Tj =
VGS =
ºC
BOOST FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
150
10
100
150
Th ( o C)
200
ºC
V
BOOST FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
30
IF (A)
Ptot (W)
100
25
80
20
60
15
40
10
20
5
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
0
200
At
Tj =
ºC
Copyright by Vincotech
17
50
175
100
150
T h ( o C)
200
ºC
Revision: 1
10-FY06BIA080MF-M527E58
preliminary datasheet
INPUT BOOST
BOOST MOSFET
Figure 25
Safe operating area as a function
of drain-source voltage
ID = f(VDS)
VGS = f(Qg)
10
3
ID (A)
UGS (V)
10
10
BOOST MOSFET
Figure 26
Gate voltage vs Gate charge
2
120V
8
10uS
480V
1mS
6
100uS
10mS
10
1
4
DC
100mS
100
2
0
10-1
100
At
D=
Th =
VGS =
Tj =
101
102
103
0
V DS (V)
At
ID =
single pulse
80
ºC
V
10
Tjmax
ºC
Copyright by Vincotech
18
50
20
100
150
Qg (nC)
200
A
Revision: 1
10-FY06BIA080MF-M527E58
preliminary datasheet
Bypass Diode
Bypass diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Bypass diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
60
1
50
ZthJC (K/W)
IF (A)
10
40
100
30
20
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
Tj = Tjmax-25°C
Tj = 25°C
0
0
0,3
At
tp =
0,6
0,9
1,2
V F (V)
10-2
1,5
μs
250
Bypass diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-5
10-4
At
D=
RthJH =
tp / T
1,397
10-2
10-1
100
t p (s)
10110
K/W
Bypass diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
60
IF (A)
Ptot (W)
120
100
50
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
10-3
50
150
100
150
T h ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
19
50
150
100
150
T h ( o C)
200
ºC
Revision: 1
10-FY06BIA080MF-M527E58
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
20
Revision: 1
10-FY06BIA080MF-M527E58
preliminary datasheet
Switching Definitions H-Bridge MOSFET
General conditions
= 125 °C
Tj
= 128 Ω
Rgon
Rgoff
= 2Ω
H-Bridge MOSFET
Figure 1
H-Bridge MOSFET
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
250
125
tdoff
%
%
IC
100
VGE 90%
IC
200
VCE 90%
75
VGE
150
50
tEoff
VCE
100
25
IC 1%
VCE
VGE
tdon
0
50
-25
VCE 3%
IC 10%
0
tEon
-50
VGE 10%
-75
-0,2
-50
-0,15
-0,1
-0,05
3,8
0
4
4,2
4,4
0
10
400
20
0,31
0,98
V
V
V
A
μs
μs
4,6
4,8
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0
10
400
20
0,10
0,13
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
H-Bridge MOSFET
Figure 3
5
H-Bridge MOSFET
Figure 4
Turn-off Switching Waveforms & definition of tf
time(us)
Turn-on Switching Waveforms & definition of tr
250
125
fitted
%
%
IC
100
IC
200
IC 90%
75
150
IC 60%
50
VCE
IC 40%
100
IC 90%
25
tr
VCE
IC 10%
50
tf
0
IC 10%
0
-25
-50
-0,075
VC (100%) =
IC (100%) =
tf =
-50
-0,0725
-0,07
400
20
0,01
Copyright by Vincotech
-0,0675
-0,065
-0,0625
-0,06
time (us)
4,1
VC (100%) =
IC (100%) =
tr =
V
A
μs
21
4,2
4,3
400
20
0,16
4,4
4,5
4,6
time(us)
4,7
V
A
μs
Revision: 1
10-FY06BIA080MF-M527E58
preliminary datasheet
Switching Definitions H-Bridge MOSFET
H-Bridge MOSFET
Figure 5
H-Bridge MOSFET
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
250
200
Eoff
%
%
Pon
200
150
150
100
Eon
100
IC 1%
50
50
VGE 90%
Poff
VGE 10%
0
VCE 3%
0
tEoff
tEon
-50
-50
-0,2
-0,15
Poff (100%) =
Eoff (100%) =
tEoff =
-0,1
8,05
0,01
0,13
-0,05
time (us)
3,8
0
4
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
H-Bridge MOSFET
Figure 7
Gate voltage vs Gate charge (measured)
4,2
4,4
8,05
3,68
0,98
kW
mJ
μs
4,6
4,8
time(us)
5
H-Bridge FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
120
VGE (V)
15
Id
%
80
10
trr
40
5
Vd
fitted
0
IRRM 10%
0
-40
-5
-80
IRRM 90%
-120
4,15
-10
-10
10
30
50
70
90
110
130
150
IRRM 100%
4,3
4,45
Qg (nC)
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
0
10
400
20
145,99
Copyright by Vincotech
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
22
400
20
-24
0,21
4,6
time(us)
4,75
V
A
A
μs
Revision: 1
10-FY06BIA080MF-M527E58
preliminary datasheet
Switching Definitions H-Bridge MOSFET
H-Bridge FWD
Figure 9
H-Bridge FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
150
%
%
Id
125
100
Erec
100
tQrr
50
tErec
75
Qrr
0
50
-50
25
Prec
-100
0
-150
-25
4,2
Id (100%) =
Qrr (100%) =
tQrr =
4,4
4,6
20
2,74
0,43
Copyright by Vincotech
4,8
time(us)
5
4,2
Prec (100%) =
Erec (100%) =
tErec =
A
μC
μs
23
4,4
4,6
8,05
0,05
0,43
4,8
time(us)
5
kW
mJ
μs
Revision: 1
10-FY06BIA080MF-M527E58
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
10-FY06BIA080MF-M527E58
in DataMatrix as
M527E58
in packaging barcode as
M527E58
Outline
Pinout
Pins 3,4,9,12,27,34 are not connected.
Copyright by Vincotech
24
Revision: 1
10-FY06BIA080MF-M527E58
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
25
Revision: 1