V23990-K240-A-PM Maximum Ratings

V23990-K240-A-PM
MiniSKiiP® 3 PIM
1200V/70A
MiniSkiip® 3 housing
Features
● IGBT3 technology for low saturation losses
● Solderless spring contact mounting system
Target Applications
Schematic
● Industrial motor drives
Types
● V23990-K240-A-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
69
93
A
700
A
2450
A2s
D8,D9,D10,D11,D12,D13
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms
Tj=25°C
Tj=Tjmax
Th=80°C
77
Tc=80°C
117
W
Tjmax
150
°C
VCE
1200
V
T1,T2,T3,T4,T5,T6,T7
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Copyright by Vincotech
Th=80°C
Tc=80°C
tp limited by Tjmax
VCE ≤ 1200V, Tj ≤ Top max
Turn off safe operating area
Maximum Junction Temperature
Tj=Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
66
66
108
108
Th=80°C
Tc=80°C
142
215
A
A
A
W
±20
V
10
900
µs
V
150
°C
Revision: 2.1
V23990-K240-A-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
64
66
A
D1,D2,D3,D4,D5,D6,D7
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Th=80°C
Tj=Tjmax
Tc=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
102
Th=80°C
Tc=80°C
A
100
151
W
Tjmax
150
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Thermal Properties
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 2.1
V23990-K240-A-PM
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,8
1,02
0,94
0,88
0,75
4,00
6,00
1,35
D8,D9,D10,D11,D12,D13
Forward voltage
VF
35
Threshold voltage (for power loss calc. only)
Vto
35
Slope resistance (for power loss calc. only)
rt
35
Reverse current
Ir
Thermal resistance chip to heatsink per chip
1500
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
VGE(th)
VCE=VGE
V
V
mΩ
0,1
2
0,90
mA
K/W
T1,T2,T3,T4,T5,T6,T7
Gate emitter threshold voltage
Collector-emitter saturation voltage
Collector-emitter cut-off current incl. Diode
VCE(sat)
15
ICES
0
Gate-emitter leakage current
IGES
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
70
1200
70
0
20
tr
td(off)
tf
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
RthJH
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
5
5,80
6,5
1,35
1,79
2,07
2,15
0,1
300
Rgoff=14 Ω
Rgon=14 Ω
±15
600
70
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
3
td(on)
Turn-on energy loss per pulse
Thermal resistance chip to heatsink per chip
0,003
77
28
ns
486
188
8,77
mWs
7,18
4,8
f=1MHz
25
0
1
Tj=25°C
pF
0,6
Tj=25°C
±15
Thermal grease
thickness≤50um
λ = 1 W/mK
500
nC
0,5
K/W
D1,D2,D3,D4,D5,D6,D7
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
70
Rgoff=14 Ω
0
600
di(rec)max
/dt
Erec
RthJH
70
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,25
1,67
1,73
1,8
A
121
ns
469
µC
17,62
A/µs
2787
mWs
6,89
Thermal grease
thickness≤50um
λ = 1 W/mK
V
0,7
K/W
1000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
R100
T=25°C
R100=1670 Ω
T=100°C
T=100°C
P
-3
3
T=25°C
Power dissipation constant
%
Ω
1670,313
mW/K
A-value
B(25/50) Tol. %
T=25°C
7,635*10-3
1/K
B-value
B(25/100) Tol. %
T=25°C
1,731*10-5
1/K²
Vincotech NTC Reference
Copyright by Vincotech
E
3
Revision: 2.1
V23990-K240-A-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
200
IC (A)
200
150
150
100
100
50
50
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
T1,T2,T3,T4,T5,T6,T7 IGBT
2
3
90
250
IF (A)
V CE (V)
4
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
IC (A)
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
75
200
Tj = 25°C
60
150
Tj = Tjmax-25°C
45
100
30
Tj = Tjmax-25°C
50
15
Tj = 25°C
0
0
0
At
tp =
VCE =
2
4
250
10
µs
V
Copyright by Vincotech
6
8
10
V GE (V)
12
0
At
tp =
4
0,5
250
1
1,5
2
2,5
V F (V)
3
µs
Revision: 2.1
V23990-K240-A-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
18
E (mWs)
E (mWs)
18
Eon High T
15
15
12
12
Eon High T
Eoff High T
9
9
6
6
3
3
Eoff High T
0
0
0
30
60
90
120
I C (A)
0
150
With an inductive load at
Tj =
°C
125
VCE =
600
V
VGE =
±15
V
Rgon =
14
Ω
Rgoff =
14
Ω
5
10
15
20
25
30 R G ( Ω )
35
With an inductive load at
Tj =
°C
125
VCE =
600
V
VGE =
±15
V
IC =
69
A
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
10
Tj = Tjmax -25°C
Erec
E (mWs)
E (mWs)
10
8
8
Tj = Tjmax -25°C
Erec
6
6
4
4
2
2
0
0
0
30
60
90
120
I C (A)
0
150
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
Rgon =
14
Ω
Copyright by Vincotech
5
10
15
20
25
30
R G ( Ω ) 35
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
IC =
69
A
5
Revision: 2.1
V23990-K240-A-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
tdoff
t ( µs)
t ( µs)
1
tdoff
tf
tf
tdon
0,1
0,1
tdon
tr
tr
0,01
0,01
0,001
0,001
0
30
60
90
120
I C (A)
0
150
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
Rgon =
14
Ω
Rgoff =
14
Ω
5
10
15
20
25
R G ( Ω ) 35
30
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
IC =
69
A
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr( µs)
0,7
t rr( µs)
0,7
D1,D2,D3,D4,D5,D6,D7 FWD
trr
0,6
trr
0,6
Tj = Tjmax -25°C
Tj = Tjmax -25°C
0,5
0,5
0,4
0,4
0,3
0,3
0,2
0,2
0,1
0,1
0,0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
30
125
600
±15
14
60
90
120
I C (A)
0
150
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
6
5
125
600
69
±15
10
15
20
25
30 R g on ( Ω ) 35
°C
V
A
V
Revision: 2.1
V23990-K240-A-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr( µC)
24
Qrr( µC)
24
D1,D2,D3,D4,D5,D6,D7 FWD
20
20
Tj = Tjmax -25°C
Qrr
Tj = Tjmax -25°C
16
16
12
12
8
8
4
4
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
30
125
600
±15
14
60
90
I C (A)
120
0
150
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
D1,D2,D3,D4,D5,D6,D7 FWD
5
10
125
600
69
±15
15
20
25
30 R g on ( Ω) 35
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
D1,D2,D3,D4,D5,D6,D7 FWD
180
Tj = Tjmax - 25°C
IrrM (A)
IrrM (A)
180
150
150
Tj = Tjmax -25°C
IRRM
120
120
90
90
60
60
30
30
IRRM
0
0
0
30
At
Tj =
VCE =
VGE =
Rgon =
125
600
±15
14
60
90
120
I C (A)
0
150
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
5
125
600
69
±15
10
15
20
25
30 R gon ( Ω ) 35
°C
V
A
V
Revision: 2.1
V23990-K240-A-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
5000
direc / dt (A/ µs)
direc / dt (A/µ s)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
D1,D2,D3,D4,D5,D6,D7 FWD
5000
dI0/dt
dIrec/dt
4000
4000
3000 dIrec/dtHigh T
3000
2000
2000
di0/dtHigh T
1000
1000
dI0/dt
dIrec/dt
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
30
125
600
±15
14
60
90
I C (A)
120
150
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
8
125
600
69
±15
16
32
°C
V
A
V
D1,D2,D3,D4,D5,D6,D7 FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Zth-JH (K/W)
100
ZthJH (K/W)
100
R gon ( Ω )
24
10-1
10
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
At
D=
RthJH =
tp / T
0,5
-2
10-5
102
101
K/W
10-4
10-2
10-1
100
t p (s)
102
101
tp / T
0,7
IGBT thermal model values
K/W
FWD thermal model values
Thermal grease
Thermal grease
R (C/W)
0,04
0,05
0,11
0,20
0,05
0,02
R (C/W)
0,03
0,05
0,16
0,35
0,08
0,04
Tau (s)
2,4E+01
2,0E+00
3,3E-01
8,0E-02
1,1E-02
9,3E-04
Copyright by Vincotech
10-3
8
Tau (s)
3,9E+01
2,8E+00
4,4E-01
1,1E-01
1,6E-02
1,4E-03
Revision: 2.1
V23990-K240-A-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
T1,T2,T3,T4,T5,T6,T7 IGBT
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
70
Ptot (W)
IC (A)
350
60
280
50
210
40
30
140
20
70
10
0
0
0
At
Tj =
30
60
90
120
T h ( o C)
150
0
At
Tj =
VGE =
°C
150
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
D1,D2,D3,D4,D5,D6,D7 FWD
30
150
15
60
120
T h ( o C)
150
°C
V
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
D1,D2,D3,D4,D5,D6,D7 FWD
70
IF (A)
Ptot (W)
250
90
60
200
50
150
40
30
100
20
50
10
0
0
0
At
Tj =
30
150
60
90
120
T h ( o C) 150
0
At
Tj =
°C
Copyright by Vincotech
9
30
150
60
90
120
T h ( o C)
150
°C
Revision: 2.1
V23990-K240-A-PM
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
VGE = f(QGE)
3
100mS
10mS
VGE (V)
18
IC (A)
10
100uS
1mS
15
DC
10
T1,T2,T3,T4,T5,T6,T7 IGBT
Figure 26
Gate voltage vs Gate charge
120V
2
12
480V
10
9
1
6
100
3
0
10-1
100
At
D=
Th =
VGE =
Tj =
10
1
10
2
V CE (V)
0
103
400
600
800
Q g (nC)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Copyright by Vincotech
200
10
69
A
Revision: 2.1
V23990-K240-A-PM
D8,D9,D10,D11,D12,D13
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
D8,D9,D10,D11,D12,D13 diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
150
0
IF (A)
ZthJC (K/W)
10
D8,D9,D10,D11,D12,D13 diode
120
90
10
-1
60
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
30
Tj = Tjmax-25°C
Tj = 25°C
0
0,0
At
tp =
0,3
0,6
0,9
1,2
V F (V)
10-2
1,5
10-5
At
D=
RthJH =
µs
250
10-4
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
D8,D9,D10,D11,D12,D13 diode
10-3
10-2
100
t p (s)
101
tp / T
0,90
K/W
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
D8,D9,D10,D11,D12,D13 diode
100
Ptot (W)
IF (A)
180
10-1
150
80
120
60
90
40
60
20
30
0
0
0
At
Tj =
30
150
60
90
120
T h ( o C)
150
0
At
Tj =
ºC
Copyright by Vincotech
11
30
150
60
90
120
T h ( o C)
150
ºC
Revision: 2.1
V23990-K240-A-PM
Thermistor
Thermistor
Figure 1
Typical PTC characteristic
as a function of temperature
RT = f(T)
PTC-typical temperature characteristic
R/Ω
2000
1800
1600
1400
1200
1000
25
50
Copyright by Vincotech
75
100
T (°C)
125
12
Revision: 2.1
V23990-K240-A-PM
Switching Definitions Output Inverter
General conditions
Tj
= 125 °C
Rgon
= 14 Ω
Rgoff
= 14 Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
300
120
tdoff
%
IC
%
VCE
250
90 VGE 90%
VCE 90%
200
150
60
VCE
IC
100
tdon
30
tEoff
VGE
50
IC 1%
VGE10%
VCE 3%
IC10%
0
0
tEon
VGE
-30
-0,2
-50
-100
-0,05
0,1
0,25
0,4
0,55
0,7
0,85
1
2,4
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
600
69
0,49
0,74
Output inverter IGBT
2,85
-15
15
600
69
0,07
0,45
3
3,15
time(us)
3,3
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
120
2,7
VGE (-100%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Figure 3
Turn-on Switching Waveforms & definition of tr
280
fitted
%
2,55
VCE
%
Ic
IC
100
240
IC 90%
80
200
IC 60%
60
160
120
IC 40%
40
VCE
IC90%
80
20
tr
IC10%
0
40
tf
IC10%
0
-20
0,2
VC (100%) =
IC (100%) =
tf =
0,3
0,4
600
69
2,00
Copyright by Vincotech
0,5
0,6
time (us)
2,7
0,7
2,75
2,8
2,85
2,9
2,95
3
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
13
600
69
0,03
V
A
µs
Revision: 2.1
V23990-K240-A-PM
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
240
%
Poff
Pon
%
Eoff
100
200
80
160
Eon
60
120
40
80
20
40
0
0
VGE 10%
VCE 3%
IC 1%
VGE 90%
tEon
tEoff
-20
-0,1
0,05
0,2
-40
0,35
0,5
0,65
2,4
0,8
2,5
2,6
2,7
2,8
Poff (100%) =
Eoff (100%) =
tEoff =
41,57
7,13
0,74
2,9
3
3,1
3,2
time(us)
time (us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
41,57
8,51
0,45
kW
mJ
µs
Output inverter FWD
Figure 7
Turn-off Switching Waveforms & definition of trr
150
%
Id
100
trr
50
fitted
0
Vd
IRRM10%
-50
-100
-150
IRRM90%
IRRM100%
-200
2,6
2,7
2,8
2,9
3
3,1
3,2
3,3
3,4
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
600
69
121
0,47
Copyright by Vincotech
V
A
A
µs
14
Revision: 2.1
V23990-K240-A-PM
Switching Definitions Output Inverter
Output inverter FWD
Figure 8
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
120
150
%
%
Id
Qrr
Erec
100
100
80
tErec
50
tQrr
60
0
40
-50
20
Prec
-100
0
-20
-150
2,4
2,6
2,8
3
3,2
3,4
3,6
3,8
2,6
4
2,8
3
3,2
3,4
Id (100%) =
Qrr (100%) =
tQrr =
69
17,62
1,06
Copyright by Vincotech
3,6
3,8
4
time(us)
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
15
41,57
6,89
1,06
kW
mJ
µs
Revision: 2.1
V23990-K240-A-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
with std lid (black V23990-K32-T-PM)
with std lid (black V23990-K32-T-PM) and P12
with thin lid (white V23990-K33-T-PM)
with thin lid (white V23990-K33-T-PM) and P12
Ordering Code
in DataMatrix as
V23990-K240-A-/0A/-PM
V23990-K240-A-/1A/-PM
V23990-K240-A-/0B/-PM
V23990-K240-A-/1B/-PM
K240A
K240A
K240A
K240A
in packaging barcode as
K240A-/0A/
K240A-/1A/
K240A-/0B/
K240A-/1B/
Outline
Pinout
Copyright by Vincotech
16
Revision: 2.1
V23990-K240-A-PM
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
17
Revision: 2.1