Si5327 Data Sheet

Si5327
A N Y - F REQUENCY P R E C I S I O N C LOCK M ULTIPLIER /J I T T E R
A TTENUATOR
Features
Generates any frequency from 2 kHz 
to 808 MHz from an input frequency

of 2 kHz to 710 MHz
 Ultra-low jitter clock outputs with jitter 
generation as low as 0.5 ps rms
(12 kHz–20 MHz)
 Integrated loop filter with selectable 
loop bandwidth (4 to 525 Hz)

 Meets OC-192 GR-253-CORE jitter 
specifications

Rev. 1.0 1/13
Copyright © 2013 by Silicon Laboratories
CKOUT1–
CKOUT1+
NC
GND
NC
VDD
1
27 SDI
NC
2
26 A2_SS
INT_LOS1
3
25 A1
LOS2
4
VDD
5
XA
6
XB
7
GND
8
20 NC
NC
9
19 NC
24 A0
GND
Pad
23 SDA_SDO
22 SCL
21 CKSEL
LOL
CKIN1–
GND
10 11 12 13 14 15 16 17 18
CKIN1+
The Si5327 is a jitter-attenuating precision clock multiplier for applications
requiring sub 1 ps jitter performance. The Si5327 accepts two input clocks ranging
from 2 kHz to 710 MHz and generates two output clocks ranging from 2 kHz to
808 MHz. The two outputs are divided down separately from a common source.
The Si5327 can also use its crystal oscillator as a clock source for frequency
synthesis. The device provides virtually any frequency translation combination
across this operating range. The Si5327 input clock frequency and clock
multiplication ratio are programmable through an I2C or SPI interface. The Si5327
is based on Silicon Laboratories' 3rd-generation DSPLL® technology, which
provides frequency synthesis and jitter attenuation in a highly integrated PLL
solution that eliminates the need for external VCXO and loop filter components.
The DSPLL loop bandwidth is digitally programmable, providing jitter performance
optimization at the application level. Operating from a single 1.8, 2.5, or 3.3 V
supply, the Si5327 is ideal for providing clock multiplication and jitter attenuation in
high performance timing applications.
36 35 34 33 32 31 30 29 28
RST
NC
Description
Pin Assignments
CKOUT2–





Synchronous Ethernet
Optical modules
Wireless repeaters/
wireless backhaul
Data converter clocking
xDSL
PDH clock synthesis
Test and measurement
Broadcast video
CKIN2–



CKOUT2+
Dual clock outputs with
programmable signal format
(LVPECL, LVDS, CML, CMOS)
 SONET/SDH OC-48/OC-192/STM16/STM-64 line cards
 ITU G.709 and custom FEC line
cards
 GbE/10GbE, 1/2/4/8/10G Fibre
Channel line cards
CKIN2+

CMODE
Applications
Ordering Information:
See page 54.
VDD
Dual clock inputs with manually
controlled hitless switching
Free run and VCO freeze modes
Support for ITU G.709 and custom
FEC ratios (255/238, 255/237,
255/236)
LOL and LOS alarm outputs
I2C or SPI programmable
Single 1.8, 2.5, 3.3 V supply
Small size: 6 x 6 mm 36-lead QFN
 Pb-free, ROHS compliant
RATE

Si5327
Si5327
Functional Block Diagram
Xtal or Refclock
CKIN1
÷ N31
CKIN2
÷ N32
Hitless Switching
Mux
®
DSPLL
Xtal/Refclock
Loss of Signal/
Frequency Offset
Loss of Lock
CKOUT1
÷ N2_LS
CKOUT2
÷ N1_HS
÷ N2
VDD (1.8, 2.5, or 3.3 V)
Control
Signal Detect
I2C/SPI Port
GND
Clock Select
Rate Select
Device Interrupt
2
÷ N1_LS
Rev. 1.0
Si5327
TABLE O F C ONTENTS
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2. Typical Phase Noise Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3. Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1. External Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2. Further Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6. Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
7. Pin Descriptions: Si5327 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
8. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
9. Package Outline: 36-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
10. Recommended PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
11. Si5327 Device Top Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
Rev. 1.0
3
Si5327
1. Electrical Specifications
Table 1. Recommended Operating Conditions
Parameter
Symbol
Ambient Temperature
TA
Supply Voltage during
Normal Operation
VDD
Test Condition
Min
Typ
Max
Unit
–40
25
85
C
3.3 V Nominal
2.97
3.3
3.63
V
2.5 V Nominal
2.25
2.5
2.75
V
1.8 V Nominal
1.71
1.8
1.89
V
Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.
Typical values apply at nominal supply voltages and an operating temperature of 25 ºC unless otherwise stated.
SIGNAL +
Differential I/Os VICM , VOCM
V
VISE , VOSE
SIGNAL –
Single-Ended
Peak-to-Peak Voltage
(SIGNAL +) – (SIGNAL –)
Differential Peak-to-Peak Voltage
VID,VOD
VICM, VOCM
t
SIGNAL +
VID = (SIGNAL+) – (SIGNAL–)
SIGNAL –
Figure 1. Differential Voltage Characteristics
80%
CKIN, CKOUT
20%
tF
tR
Figure 2. Rise/Fall Time Characteristics
4
Rev. 1.0
Si5327
Table 2. DC Characteristics
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
IDD
LVPECL Format
622.08 MHz Out
Both CKOUTs Enabled
—
251
279
mA
LVPECL Format
622.08 MHz Out
1 CKOUT Enabled
—
217
243
mA
CMOS Format
19.44 MHz Out
Both CKOUTs Enabled
—
204
234
mA
CMOS Format
19.44 MHz Out
1 CKOUT Enabled
—
194
220
mA
Disable Mode
—
165
—
mA
1.8 V ± 5%
0.9
—
1.4
V
2.5 V ± 10%
1
—
1.7
V
3.3 V ± 10%
1.1
—
1.95
V
CKNRIN
Single-ended
20
40
60
k
Single-Ended Input
Voltage Swing
(See Absolute
Specs)
VISE
fCKIN < 212.5 MHz
See Figure 1.
0.2
—
—
VPP
fCKIN > 212.5 MHz
See Figure 1.
0.25
—
—
VPP
Differential Input
Voltage Swing
(See Absolute
Specs)
VID
fCKIN < 212.5 MHz
See Figure 1.
0.2
—
—
VPP
fCKIN > 212.5 MHz
See Figure 1.
0.25
—
—
VPP
Supply Current1
CKINn Input Pins2
Input Common Mode
Voltage (Input
Threshold Voltage)
Input Resistance
VICM
Notes:
1.
2.
3.
4.
Current draw is independent of supply voltage.
No under- or overshoot is allowed.
LVPECL outputs require nominal VDD ≥ 2.5 V.
This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx
Family Reference Manual for more details.
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.
Rev. 1.0
5
Si5327
Table 2. DC Characteristics (Continued)
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
CKOVCM
LVPECL 100  load
line-to-line
VDD –1.42
—
VDD –1.25
V
Differential Output
Swing
CKOVD
LVPECL 100  load
line-to-line
1.1
—
1.9
VPP
Single Ended Output
Swing
CKOVSE
LVPECL 100  load lineto-line
0.5
—
0.93
VPP
Differential Output
Voltage
CKOVD
CML 100  load
line-to-line
350
425
500
mVPP
CKOVCM
CML 100  load
line-to-line
—
VDD-0.36
—
V
CKOVD
LVDS
100  load line-to-line
500
700
900
mVPP
Low Swing LVDS
100  load line-to-line
350
425
500
mVPP
CKOVCM
LVDS 100 load
line-to-line
1.125
1.2
1.275
V
CKORD
CML, LVPECL, LVDS
—
200
—

Output Voltage Low
CKOVOLLH
CMOS
—
—
0.4
V
Output Voltage High
CKOVOHLH
VDD = 1.71 V
CMOS
0.8 x VDD
—
—
V
Output Clocks (CKOUTn)3,5
Common Mode
Common Mode Output Voltage
Differential Output
Voltage
Common Mode
Output Voltage
Differential Output
Resistance
Notes:
1.
2.
3.
4.
Current draw is independent of supply voltage.
No under- or overshoot is allowed.
LVPECL outputs require nominal VDD ≥ 2.5 V.
This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx
Family Reference Manual for more details.
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.
6
Rev. 1.0
Si5327
Table 2. DC Characteristics (Continued)
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Output Drive Current
(CMOS driving into
CKOVOL for output
low or CKOVOH for
output high.
CKOUT+ and
CKOUT– shorted
externally)
CKOIO
ICMOS[1:0] = 11
VDD = 1.8 V
—
7.5
—
mA
ICMOS[1:0] = 10
VDD = 1.8 V
—
5.5
—
mA
ICMOS[1:0] = 01
VDD = 1.8 V
—
3.5
—
mA
ICMOS[1:0] = 00
VDD = 1.8 V
—
1.75
—
mA
ICMOS[1:0] = 11
VDD = 3.3 V
—
32
—
mA
ICMOS[1:0] = 10
VDD = 3.3 V
—
24
—
mA
ICMOS[1:0] = 01
VDD = 3.3 V
—
16
—
mA
ICMOS[1:0] = 00
VDD = 3.3 V
—
8
—
mA
VDD = 1.71 V
—
—
0.5
V
VDD = 2.25 V
—
—
0.7
V
VDD = 2.97 V
—
—
0.8
V
VDD = 1.89 V
1.4
—
—
V
VDD = 2.25 V
1.8
—
—
V
VDD = 3.63 V
2.5
—
—
V
2-Level LVCMOS Input Pins
Input Voltage Low
Input Voltage High
VIL
VIH
Notes:
1.
2.
3.
4.
Current draw is independent of supply voltage.
No under- or overshoot is allowed.
LVPECL outputs require nominal VDD ≥ 2.5 V.
This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx
Family Reference Manual for more details.
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.
Rev. 1.0
7
Si5327
Table 2. DC Characteristics (Continued)
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
3-Level Input Pins4
Input Voltage Low
VILL
—
—
0.15 x VDD
V
Input Voltage Mid
VIMM
0.45 x
VDD
—
0.55 x VDD
V
Input Voltage High
VIHH
0.85 x
VDD
—
—
V
Input Low Current
IILL
See Note 4
–20
—
—
µA
Input Mid Current
IIMM
See Note 4
–2
—
+2
µA
Input High Current
IIHH
See Note 4
—
—
20
µA
VOL
IO = 2 mA
VDD = 1.71 V
—
—
0.4
V
IO = 2 mA
VDD = 2.97 V
—
—
0.4
V
IO = –2 mA
VDD = 1.71 V
VDD –0.4
—
—
V
IO = –2 mA
VDD = 2.97 V
VDD –0.4
—
—
V
LVCMOS Output Pins
Output Voltage Low
Output Voltage Low
Output Voltage High
Output Voltage High
VOH
Notes:
1.
2.
3.
4.
Current draw is independent of supply voltage.
No under- or overshoot is allowed.
LVPECL outputs require nominal VDD ≥ 2.5 V.
This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx
Family Reference Manual for more details.
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.
8
Rev. 1.0
Si5327
Table 3. AC Specifications
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Single-Ended Reference Clock Input Pin XA (XB with cap to GND)
Input Resistance
XARIN
RATE = M,
ac coupled
—
12
—
k
Input Voltage Swing
XAVPP
RATE = M,
ac coupled
0.5
—
1.2
VPP
0.5
—
2.4
VPP
0.002
—
710
MHz
40
—
60
%
2
—
—
ns
—
—
3
pF
Differential Reference Clock Input Pins (XA/XB)
Input Voltage Swing
XA/XBVPP
RATE = M
CKINn Input Pins
Input Frequency
CKNF
Input Duty Cycle
(Minimum Pulse
Width)
CKNDC
Input Capacitance
CKNCIN
Input Rise/Fall Time
CKNTRF
20–80%
See Figure 2
—
—
11
ns
Output Frequency
(Output not configured for CMOS or
Disabled)
CKOF
N1_HS  6
0.002
—
808
MHz
Maximum Output
Frequency in CMOS
Format
CKOF
—
—
212.5
MHz
Whichever is smaller
(i.e., the 40% / 60%
limitation applies only
to high frequency
clocks)
CKOUTn Output Pins
Output Rise/Fall
(20–80 %) @
622.08 MHz output
CKOTRF
Output not configured for
CMOS or Disabled
See Figure 2
—
230
350
ps
Output Rise/Fall
(20–80%) @
212.5 MHz output
CKOTRF
CMOS Output
VDD = 1.71
CLOAD = 5 pF
—
—
8
ns
Notes:
1. Input to output phase skew after an ICAL is not controlled and can assume any value.
2. Lock and settle time performance is dependent on the frequency plan. Please visit the Silicon Labs Technical Support
web page at https://www.silabs.com/support/pages/contacttechnicalsupport.aspx to submit a technical support
request regarding the lock time of your frequency plan.
Rev. 1.0
9
Si5327
Table 3. AC Specifications (Continued)
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Output Rise/Fall
(20–80%) @
212.5 MHz output
CKOTRF
CMOS Output
VDD = 2.97
CLOAD = 5 pF
—
—
2
ns
Output Duty Cycle
Uncertainty @
622.08 MHz
CKODC
100  Load
Line-to-Line
Measured at 50% Point
(Not for CMOS)
—
—
+/-40
ps
LVCMOS Input Pins
Minimum Reset Pulse
Width
tRSTMN
1
—
—
µs
Reset to Microprocessor Access Ready
tREADY
—
—
10
ms
LVCMOS Output Pins
tRF
CLOAD = 20pf
See Figure 2
—
25
—
ns
LOSn Trigger Window
LOSTRIG
From last CKINn to 
Internal detection of LOSn
N3 ≠ 1
—
—
4.5 x N3
TCKIN
Time to Clear LOL
after LOS Cleared
tCLRLOL
LOS to LOL
Fold = Fnew
Stable Xa/XB reference
—
10
—
ms
Output Clock Skew
tSKEW
 of CKOUTn to  of
CKOUT_m, CKOUTn
and CKOUT_m at same
frequency and signal
format
CKOUT_ALWAYS_ON = 1
SQ_ICAL = 1
—
—
100
ps
Phase Change due to
Temperature
Variation1
tTEMP
Max phase changes from
–40 to +85 °C
—
300
500
ps
Rise/Fall Times
Device Skew
Notes:
1. Input to output phase skew after an ICAL is not controlled and can assume any value.
2. Lock and settle time performance is dependent on the frequency plan. Please visit the Silicon Labs Technical Support
web page at https://www.silabs.com/support/pages/contacttechnicalsupport.aspx to submit a technical support
request regarding the lock time of your frequency plan.
10
Rev. 1.0
Si5327
Table 3. AC Specifications (Continued)
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
PLL Performance
(fin = fout = 622.08 MHz; BW = 7 Hz; LVPECL, XAXB = 40 MHz)
Lock Time2
tLOCKMP
Start of ICAL to of LOL
—
1.9
3
s
Settle Time2
tSETTLE
Start of ICAL to FOUT
within 5 ppm of final value
—
5.5
6.5
s
Output Clock Phase
Change
tP_STEP
After clock switch
f3  128 kHz
—
200
—
ps
—
0.05
0.1
dB
Jitter Frequency Loop
Bandwidth
5000/BW
—
—
ns pk-pk
100 Hz Offset
—
–80
—
dBc/Hz
1 kHz Offset
—
–110
—
dBc/Hz
10 kHz Offset
—
–113
—
dBc/Hz
100 kHz Offset
—
–117
—
dBc/Hz
1 MHz Offset
—
–125
—
dBc/Hz
Closed Loop Jitter
Peaking
JPK
Jitter Tolerance
JTOL
Phase Noise
fout = 622.08 MHz
CKOPN
Subharmonic Noise
SPSUBH
Phase Noise @ 100 kHz
Offset
—
–80
—
dBc
Spurious Noise
SPSPUR
Max spur @ n x F3
(n  1, n x F3 < 100 MHz)
—
–65
—
dBc
Notes:
1. Input to output phase skew after an ICAL is not controlled and can assume any value.
2. Lock and settle time performance is dependent on the frequency plan. Please visit the Silicon Labs Technical Support
web page at https://www.silabs.com/support/pages/contacttechnicalsupport.aspx to submit a technical support
request regarding the lock time of your frequency plan.
Rev. 1.0
11
Si5327
Table 4. Microprocessor Control
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
I2C Bus Lines (SDA, SCL)
Input Voltage Low
VILI2C
—
—
0.25 x VDD
V
Input Voltage High
VIHI2C
0.7 x VDD
—
VDD
V
VDD = 1.8V
0.1 x VDD
—
—
V
VDD = 2.5 or 3.3 V
0.05 x VDD
—
—
V
VDD = 1.8 V
IO = 3 mA
—
—
0.2 x VDD
V
VDD = 2.5 or 3.3 V
IO = 3 mA
—
—
0.4
V
Hysteresis of Schmitt
trigger inputs
Output Voltage Low
12
VHYSI2C
VOLI2C
Rev. 1.0
Si5327
Table 4. Microprocessor Control (Continued)
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Duty Cycle, SCLK
tDC
SCLK = 10 MHz
40
—
60
%
Cycle Time, SCLK
tc
100
—
—
ns
Rise Time, SCLK
tr
20–80%
—
—
25
ns
Fall Time, SCLK
tf
20–80%
—
—
25
ns
Low Time, SCLK
tlsc
20–20%
30
—
—
ns
High Time, SCLK
thsc
80–80%
30
—
—
ns
Delay Time, SCLK Fall
to SDO Active
td1
—
—
25
ns
Delay Time, SCLK Fall
to SDO Transition
td2
—
—
25
ns
Delay Time, SS Rise
to SDO Tri-state
td3
—
—
25
ns
Setup Time, SS to
SCLK Fall
tsu1
25
—
—
ns
Hold Time, SS to
SCLK Rise
th1
20
—
—
ns
Setup Time, SDI to
SCLK Rise
tsu2
25
—
—
ns
Hold Time, SDI to
SCLK Rise
th2
20
—
—
ns
Delay Time between
Slave Selects
tcs
25
—
—
ns
SPI Specifications
Rev. 1.0
13
Si5327
Table 5. Jitter Generation
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)
Parameter
Symbol
Test Condition1,2,3,4
Min
Typ
Max
GR-253-CORE
Unit
—
0.5
0.6
4.02 psrms
(0.01 UIrms)
psrms
Measuremen DSPLL BW1
t Filter (MHz)
Jitter Gen OC-48
JGEN
0.012–20
111 Hz
Notes:
1. 40 MHz fundamental mode crystal used as XA/XB input.
2. VDD = 2.5 V
3. TA = 85 °C
4. Test condition: fIN = 19.44 MHz, fOUT = 156.25 MHz, LVPECL clock input: 1.19 Vppd with 0.5 ns rise/fall time (20–80%),
LVPECL clock output.
Table 6. Thermal Characteristics
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)
Parameter
Symbol
Test Condition
Value
Unit
Thermal Resistance Junction to Ambient
JA
Still Air
32
C°/W
Thermal Resistance Junction to Case
JC
Still Air
14
C°/W
14
Rev. 1.0
Si5327
Table 7. Absolute Maximum Ratings*
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
DC Supply Voltage
VDD
–0.5
—
3.8
V
LVCMOS Input Voltage
VDIG
–0.3
—
VDD+0.3
V
CKINn Voltage Level Limits
CKNVIN
0
—
VDD
V
XA/XB Voltage Level Limits
XAVIN
0
—
1.2
V
Operating Junction Temperature
TJCT
–55
—
150
ºC
Storage Temperature Range
TSTG
–55
—
150
ºC
2
—
—
kV
ESD MM Tolerance; All pins
except CKIN+/CKIN–
150
—
—
V
ESD HBM Tolerance
(100 pF, 1.5 k); CKIN+/CKIN–
750
—
—
V
ESD MM Tolerance;
CKIN+/CKIN–
100
—
—
V
ESD HBM Tolerance
(100 pF, 1.5 k); All pins except
CKIN+/CKIN–
Latch-up Tolerance
JESD78 Compliant
*Note: Permanent device damage may occur if the Absolute Maximum Ratings are exceeded. Functional operation should be
restricted to the conditions as specified in the operation sections of this data sheet. Exposure to absolute maximum
rating conditions for extended periods of time may affect device reliability.
Rev. 1.0
15
Si5327
2. Typical Phase Noise Performance
Figure 3. Typical Phase Noise (669.326 MHz)
Jitter Bandwidth
Jitter, RMS
SONET_OC48, 12 kHz to 20 MHz
322 fs
SONET_OC192_A, 20 kHz to 80 MHz
322 fs
SONET_OC192_B, 4 MHz to 80 MHz
105 fs
SONET_OC192_C, 50 kHz to 80 MHz
308 fs
Brick Wall_800 Hz to 80 MHz
332 fs
Note: Jitter integration bands include low-pass (–20 dB/Dec) and hi-pass (–60 dB/Dec) roll-offs
per Telecordia GR-253-CORE.
16
Rev. 1.0
Si5327
Figure 4. Typical Phase Noise (644.531 MHz)
Jitter Bandwidth
Jitter, RMS
SONET_OC48, 12 kHz to 20 MHz
329 fs
SONET_OC192_A, 20 kHz to 80 MHz
328 fs
SONET_OC192_B, 4 MHz to 80 MHz
105 fs
SONET_OC192_C, 50 kHz to 80 MHz
314 fs
Brick Wall_800 Hz to 80 MHz
339 fs
Note: Jitter integration bands include low-pass (–20 dB/Dec) and hi-pass (–60 dB/Dec) roll-offs
per Telecordia GR-253-CORE.
Rev. 1.0
17
Si5327
3. Typical Application Circuit
C4 1 µF
System
Power
Supply
C1 0.1 µF
Ferrite
Bead
C2 0.1 µF
VDD = 3.3 V
C3 0.1 µF
130 
CKIN1–
82 
GND PAD
CKIN1+
GND
VDD
130 
0.1 µF
CKOUT1+
+
100 
–
CKOUT1–
82 
0.1 µF
0.1 µF
Input
Clock
Sources*
Clock Outputs
CKOUT2+
VDD = 3.3 V
130 
+
100 
–
CKOUT2–
130 
0.1 µF
CKIN2+
CKIN2–
82 
82 
INT_LOS1
Si5327
Interrupt/CKIN1 LOS Indicator
LOS2
Option 1:
CKIN2 LOS Indicator
XA
LOL
Crystal
PLL Loss of Lock Indicator
XB
VDD
15 k
A[2:0]
RATE2
Crystal/Ref Clk Rate
15 k
0.1 µF
Option 2:
Refclk+
XA
Serial Port Address
SDA
Serial Data
SCL
Serial Clock
CKSEL
Clock Select
I2C Interface
0.1 µF
XB
Refclk–
CMODE
Control Mode (L)
RST
Reset
Notes: 1. Assumes differential LVPECL termination (3.3 V) on clock inputs.
2. Denotes tri-level input pins with states designated as L (ground), M (VDD/2), and H (VDD).
3. I2C-required pull-up resistors not shown.
Figure 5. Si5327 Typical Application Circuit (I2C Control Mode)
Note: For an example schematic and layout, refer to the Si5327-EVB User’s Guide.
C4 1 µF
System
Power
Supply
C1 0.1 µF
Ferrite
Bead
C2 0.1 µF
VDD = 3.3 V
C3 0.1 µF
130 
CKIN1+
82 
82 
GND PAD
GND
VDD
130 
0.1 µF
CKOUT1+
+
100 
–
CKOUT1–
CKIN1–
0.1 µF
0.1 µF
Input
Clock
Sources*
Clock Outputs
CKOUT2+
VDD = 3.3 V
+
100 
130 
130 
82 
82 
–
CKOUT2–
0.1 µF
CKIN2+
CKIN2–
INT_LOS1
Si5327
Option 1:
XA
LOS2
LOL
Interrupt/CLKIN1 LOS Indicator
CLKIN2 LOS Indicator
PLL Loss of Lock Indicator
Crystal
XB
VDD
SS
15 k
Slave Select
RATE2
Crystal/Ref Clk Rate
15 k
SDO
Serial Data Out
SPI Interface
0.1 µF
Option 2:
Refclk+
SDI
XA
0.1 µF
Refclk–
Control Mode (H)
Reset
XB
CMODE
Serial Data In
SCLK
Serial Clock
CKSEL
Clock Select
RST
Notes: 1. Assumes differential LVPECL termination (3.3 V) on clock inputs.
2. Denotes tri-level input pins with states designated as L (ground), M (VDD/2), and H (VDD).
Figure 6. Si5327 Typical Application Circuit (SPI Control Mode)
Note: For an example schematic and layout, refer to the Si5327-EVB User’s Guide.
18
Rev. 1.0
Si5327
4. Functional Description
Xtal or Refclock
CKIN1
÷ N31
CKIN2
÷ N32
Hitless Switching
Mux
®
DSPLL
Xtal/Refclock
Loss of Signal/
Frequency Offset
Loss of Lock
÷ N1_LS
CKOUT1
÷ N2_LS
CKOUT2
÷ N1_HS
÷ N2
VDD (1.8, 2.5, or 3.3 V)
Control
Signal Detect
I2C/SPI Port
GND
Clock Select
Rate Select
Device Interrupt
Figure 7. Functional Block Diagram
The Si5327 is a jitter-attenuating precision clock
multiplier for applications requiring sub 1 ps jitter
performance. The Si5327 accepts two input clocks
ranging from 2 kHz to 710 MHz and generates two
output clocks ranging from 2 kHz to 808 MHz. The
Si5327 can also use its crystal oscillator as a clock
source for frequency synthesis. The device provides
virtually any frequency translation combination across
this operating range. Independent dividers are available
for each input clock and output clock, so the Si5327 can
accept input clocks at different frequencies and it can
generate output clocks at different frequencies. The
Si5327 input clock frequency and clock multiplication
ratio are programmable through an I2C or SPI interface.
Silicon Laboratories offers a PC-based software utility,
DSPLLsim, that can be used to determine the optimum
PLL divider settings for a given input frequency/clock
multiplication ratio combination that minimizes phase
noise and power consumption. This utility can be
downloaded from http://www.silabs.com/timing.
The Si5327 is based on Silicon Laboratories' 3rdgeneration DSPLL® technology, which provides any
frequency synthesis and jitter attenuation in a highly
integrated PLL solution that eliminates the need for
external VCXO and loop filter components. The Si5327
PLL loop bandwidth is digitally programmable and
supports a range from 4 to 525 Hz. The DSPLLsim
software utility can be used to calculate valid loop
bandwidth settings for a given input clock
frequency/clock multiplication ratio.
The Si5327 supports hitless switching between the two
manually controlled synchronous input clocks in
compliance with GR-253-CORE that greatly minimizes
the propagation of phase transients to the clock outputs
during an input clock transition (maximum 200 ps phase
change). The Si5327 monitors both input clocks for
loss-of-signal (LOS) and provides a LOS alarm
(INT_LOS1 and LOS2) when it detects missing pulses
on either input clock. The device monitors the lock
status of the PLL. The lock detect algorithm works by
continuously monitoring the phase of the input clock in
relation to the phase of the feedback clock. The Si5327
provides a digital hold capability that allows the device
to continue generation of a stable output clock when the
selected input reference is lost. During digital hold, the
DSPLL generates an output frequency based on a
historical average frequency that existed for a fixed
amount of time before the error event occurred,
eliminating the effects of phase and frequency
transients that may occur immediately preceding digital
hold.
The Si5327 has two differential clock outputs. The
electrical format of each clock output is independently
programmable to support LVPECL, LVDS, CML, or
CMOS loads. If not required, the second clock output
can be powered down to minimize power consumption.
The device input to output skew is not specified. For
system-level debugging, a bypass mode is available
which drives the output clock directly from the input
clock, bypassing the internal DSPLL. The device is
powered by a single 1.8, 2.5, or 3.3 V supply.
Rev. 1.0
19
Si5327
4.1. External Reference
4.2. Further Documentation
An external, high quality clock or a low-cost 40 MHz
crystal is used as part of a fixed-frequency oscillator
within the DSPLL. This external reference is required for
the device to perform jitter attenuation. Silicon
Laboratories recommends using a high quality crystal.
Specific recommendations may be found in the Family
Reference Manual.
Consult the Silicon Laboratories Si53xx Any Frequency
Precision Clock Family Reference Manual (Si53xx
FRM) for detailed information about the Si5327
functions. Additional design support is available from
Silicon Laboratories through your distributor.
In digital hold, the DSPLL remains locked and tracks the
external reference. Note that crystals can have
temperature sensitivities.
Silicon Laboratories has developed a PC-based
software utility called DSPLLsim to simplify device
configuration, including frequency planning and loop
bandwidth selection. The FRM and this utility can be
downloaded from http://www.silabs.com/timing.
If there is a need to use a reference oscillator instead of
a crystal, Silicon Labs does not recommend using
MEMS based oscillators. The very low loop BW of the
Si5327 means that it can be susceptible to XAXB
reference sources that have high wander. Experience
has shown that in spite of having low jitter, some MEMs
oscillators have high wander, and these devices should
be avoided. Contact Silicon Labs for details.
Table 8. CKOUT_ALWAYS_ON and SQ_ICAL Truth Table
20
CKOUT_ALWAYS_ON
SQ_ICAL
Results
0
0
CKOUT OFF until after the first ICAL
0
1
CKOUT OFF until after the first successful
ICAL (i.e., when LOL is low)
1
0
CKOUT always ON, including during an ICAL
1
1
CKOUT always ON, including during an ICAL.
Use these settings to preserve output-to-output
skew
Rev. 1.0
Si5327
5. Register Map
All register bits that are not defined in this map should always be written with the specified Reset Values. The
writing to these bits of values other than the specified Reset Values may result in undefined device behavior.
Registers not listed, such as Register 64, should never be written to.
Register
0
2
D7
D6
D5
D4
FREE_RUN
CKOUT_
ALWAYS_
ON
D3
D0
BYPASS_
REG
VCO_
FREEZE
SQ_ICAL
4
HIST_DEL[4:0]
ICMOS[1:0]
6
8
D1
BWSEL_REG[3:0]
3
5
D2
SFOUT2_REG[2:0]
HLOG_2[1:0]
9
SFOUT1_REG[2:0]
HLOG_1[1:0]
HIST_AVG[4:0]
10
DSBL2_
REG
DSBL1_
REG
11
PD_CK2
19
VALTIME[1:0]
20
CK2_
BAD_
PIN
PD_CK1
LOCK[T2:0]
CK1_
BAD_
PIN
LOL_PIN
INT_PIN
22
CK_BAD_
POL
LOL_POL
INT_POL
23
LOS2_MSK
LOS1_MSK
LOSX_MSK
24
25
LOL_MSK
N1_HS[2:0]
31
NC1_LS[19:16]
32
NC1_LS[15:8]
33
NC1_LS[7:0]
34
NC2_LS[19:16]
35
NC2_LS[15:8]
36
NC2_LS[7:0]
40
41
N2_HS[2:0]
N2_LS[19:16]
N2_LS[15:8]
Rev. 1.0
21
Si5327
Register
D7
D6
D5
42
D4
D3
D2
D1
D0
N2_LS[7:0]
43
N31[18:16]
44
N31[15:8]
45
N31[7:0]
46
N32[18:16]
47
N32[15:8]
48
N32[7:0]
128
129
LOS2_INT
CK2_ACTV_REG
CK1_ACTV_REG
LOS1_INT
LOSX_INT
130
LOL_INT
131
LOS2_FLG
132
PARTNUM_RO[11:4]
135
PARTNUM_RO[3:0]
RST_REG
REVID_RO[3:0]
ICAL
137
FASTLOCK
138
139
22
LOSX_FLG
LOL_FLG
134
136
LOS1_FLG
LOS2_EN
[1:1]
LOS2_EN
[0:0]
LOS1_EN
[0:0]
Rev. 1.0
LOS1_EN
[1:1]
Si5327
6. Register Descriptions
Register 0.
Bit
D7
Name
Type
D6
D5
FREE_
RUN
CKOUT_
ALWAYS_
ON
R/W
R/W
R
D4
D3
D2
D1
D0
BYPASS_
REG
R
R
R
R/W
R
Reset value = 0001 0100
Bit
Name
7
Reserved
6
FREE_RUN
5
Free Run.
Internal to the device, route XA/XB to CKIN2. This allows the device to lock to its XA-XB
reference.
0: Disable
1: Enable
CKOUT_
CKOUT Always On.
ALWAYS_ON This will bypass the SQ_ICAL function. Output will be available even if SQ_ICAL is on
and ICAL is not complete or successful. See Table 8 on page 20.
0: Squelch output until part is calibrated (ICAL).
1: Provide an output. Note: The frequency may be significantly off and variable until the
part is calibrated.
4:2
Reserved
1
BYPASS_
REG
0
Function
Bypass Register.
This bit enables or disables the PLL bypass mode. Use only when the device is in digital
hold or before the first ICAL.
0: Normal operation
1: Bypass mode. Selected input clock is connected to CKOUT buffers, bypassing the
PLL. Bypass mode does not support CMOS clock outputs.
Reserved
Rev. 1.0
23
Si5327
Register 2.
Bit
D7
D6
D5
Name
BWSEL_REG [3:0]
Type
R/W
D4
D3
D2
D1
D0
R
R
R
R
Reset value = 0100 0010
Bit
7:4
3:0
Name
Function
BWSEL_REG BWSEL_REG.
[3:0]
Selects nominal f3dB bandwidth for PLL. See DSPLLsim for settings. After BWSEL_REG
is written with a new value, an ICAL is required for the change to take effect.
Reserved
Register 3.
Bit
D7
D6
Name
Type
D5
D4
VCO_FREEZE
SQ_ICAL
R/W
R/W
R
D3
D2
D1
D0
R
R
R
R
Reset value = 0000 0101
Bit
Name
7:6
Reserved
5
Function
VCO_FREEZE VCO_FREEZE.
Forces the part into VCO freeze. This bit overrides all other manual and automatic clock
selection controls.
0: Normal operation.
1: Force VCO freeze mode. Overrides all other settings and ignores the quality of all of
the input clocks.
4
SQ_ICAL
SQ_ICAL.
This bit determines if the output clocks will remain enabled or be squelched (disabled)
during an internal calibration. See Table 8 on page 20.
0: Output clocks enabled during ICAL.
1: Output clocks disabled during ICAL.
3:0
24
Reserved
Rev. 1.0
Si5327
Register 4.
Bit
D7
D6
D5
D4
D3
Name
D2
D1
D0
HIST_DEL [4:0]
Type
R
R
R
R/W
Reset value = 0001 0010
Bit
Name
7:5
Reserved
4:0
Function
HIST_DEL [4:0] HIST_DEL [4:0].
Selects amount of delay to be used in generating the history information used for Digital Hold.
See the Si53xx Family Reference Manual for a detailed description.
Register 5.
Bit
D7
D6
Name
ICMOS [1:0]
Type
R/W
D5
D4
D3
D2
D1
D0
R
R
R
R
R
R
Reset value = 1110 1101
Bit
Name
7:6
ICMOS [1:0]
Function
ICMOS [1:0].
When the output buffer is set to CMOS mode, these bits determine the output buffer drive
strength. The first number below refers to 3.3 V operation; the second to 1.8 V operation.
These values assume CKOUT+ is tied to CKOUT-.
00: 8mA/2mA
01: 16mA/4mA
10: 24mA/6mA
11: 32mA/8mA
5:0
Reserved
Rev. 1.0
25
Si5327
Register 6.
Bit
D7
D6
Name
Type
R
D5
D4
D3
D2
D1
SFOUT2_REG [2:0]
SFOUT1_REG [2:0]
R/W
R/W
R
Reset value = 0010 1101
Bit
Name
7:6
Reserved
5:3
Function
SFOUT2_REG [2:0] SFOUT2_REG [2:0].
Controls output signal format and disable for CKOUT2 output buffer.
000: Reserved
001: Disable
010: CMOS (Bypass mode not supported)
011: Low swing LVDS
100: Reserved
101: LVPECL
110: CML
111: LVDS
Note: LVPECL requires a nominal VDD  2.5 V.
2:0
SFOUT1_REG [2:0] SFOUT1_REG [2:0].
Controls output signal format and disable for CKOUT1 output buffer.
000: Reserved
001: Disable
010: CMOS (Bypass mode not supported)
011: Low swing LVDS
100: Reserved
101: LVPECL
110: CML
111: LVDS
Note: LVPECL requires a nominal VDD  2.5 V.
26
Rev. 1.0
D0
Si5327
Register 8.
Bit
D7
D6
D5
D4
Name
HLOG_2[1:0]
HLOG_1[1:0]
Type
R/W
R/W
D3
D2
D1
D0
R
Reset value = 0000 0000
Bit
7:6
Name
Function
HLOG_2 [1:0] HLOG_2 [1:0].
00: Normal operation
01: Holds CKOUT2 output at static logic 0. Entrance and exit from this state will occur
without glitches or runt pulses.
10: Holds CKOUT2 output at static logic 1. Entrance and exit from this state will occur
without glitches or runt pulses.
11: Reserved
5:4
HLOG_1 [1:0].
00: Normal operation
01: Holds CKOUT1 output at static logic 0. Entrance and exit from this state will occur
without glitches or runt pulses.
10: Holds CKOUT1 output at static logic 1. Entrance and exit from this state will occur
without glitches or runt pulses.
11: Reserved
3:0
Reserved
Register 9.
Bit
D7
D6
D5
Name
HIST_AVG [4:0]
Type
R/W
D4
D3
D2
D1
D0
R
R
R
Reset value = 1100 0000
Bit
Name
7:3
HIST_AVG [4:0]
Function
HIST_AVG [4:0].
Selects amount of averaging time to be used in generating the history information for
Digital Hold.
See the Si53xx Family Reference Manual for a detailed description
2:0
Reserved
Rev. 1.0
27
Si5327
Register 10.
Bit
D7
D6
D5
D4
D3
Name
D2
D1
D0
R
R
DSBL2_REG DSBL1_REG
Type
R
R
R
R
R/W
R/W
Reset value = 0000 0000
Bit
Name
7:4
Reserved
3
Function
DSBL2_REG DSBL2_REG.
This bit controls the powerdown of the CKOUT2 output buffer. If disable mode is
selected, the NC2_LS output divider is also powered down.
0: CKOUT2 enabled
1: CKOUT2 disabled
2
DSBL1_REG DSBL1_REG.
This bit controls the powerdown of the CKOUT1 output buffer. If disable mode is
selected, the NC1_LS output divider is also powered down.
0: CKOUT1 enabled
1: CKOUT1 disabled
1:0
Reserved
Register 11.
Bit
D7
D6
D5
D4
D3
D2
Name
Type
R
R
R
R
R
R
Reset value = 0100 0000
Bit
Name
7:2
Reserved
1
PD_CK2
Function
PD_CK2.
This bit controls the powerdown of the CKIN2 input buffer.
0: CKIN2 enabled
1: CKIN2 disabled
0
PD_CK1
PD_CK1.
This bit controls the powerdown of the CKIN1 input buffer.
0: CKIN1 enabled
1: CKIN1 disabled
28
Rev. 1.0
D1
D0
PD_CK2
PD_CK1
R/W
R/W
Si5327
Register 19.
Bit
D7
D6
D5
Name
Type
R
R
R
D4
D3
D2
D1
VALTIME [1:0]
LOCKT [2:0]
R/W
R/W
D0
Reset value = 0010 1100
Bit
Name
7:5
Reserved
4:3
Function
VALTIME [1:0] VALTIME [1:0].
Sets amount of time for input clock to be valid before the associated alarm is removed.
00: 2 ms
01: 100 ms
10: 200 ms
11: 13 seconds
2:0
LOCKT [2:0]
LOCKT [2:0].
Sets retrigger interval for one shot monitoring phase detector output. One shot is triggered by phase slip in DSPLL. Refer to the Si53xx Family Reference Manual for more
details. To minimize lock time, the value 001 for LOCKT is recommended.
000: 106 ms
001: 53 ms
010: 26.5 ms
011: 13.3 ms
100: 6.6 ms
101: 3.3 ms
110: 1.66 ms
111: .833 ms
Rev. 1.0
29
Si5327
Register 20.
Bit
D7
D6
D5
D4
Name
Type
D3
D2
CK2_BAD_PIN CK1_BAD_PIN
R
R
R
R
R/W
D1
D0
LOL_PIN
INT_PIN
R/W
R/W
R/W
Reset value = 0011 1110
Bit
Name
7:4
Reserved
3
Function
CK2_BAD_PIN CK2_BAD_PIN.
The CK2_BAD status can be reflected on the LOS2 output pin.
0: LOS2 output pin tristated
1: CK2_BAD status reflected to output pin
2
CK1_BAD_PIN CK1_BAD_PIN.
Either LOS1 or INT (see INT_PIN) status can be reflected on the INT_LOS1 output pin.
0: INT_LOS1 output pin tristated
1: LOS1 or INT (see INT_PIN) status reflected to output pin
1
LOL_PIN
LOL_PIN.
The LOL_INT status bit can be reflected on the LOL output pin.
0: LOL output pin tristated
1: LOL_INT status reflected to output pin
0
INT_PIN
INT_PIN.
Reflects the interrupt status on the INT_LOS1 output pin.
0: Interrupt status not displayed on INT_LOS1 output pin. Instead, the INT_LOS1 pin
indicates when CKIN1 is bad. If CK1_BAD_PIN = 0, INT_LOS1 output pin is tristated.
1: Interrupt status reflected to output pin.
30
Rev. 1.0
Si5327
Register 22.
Bit
D7
D6
D5
D4
D3
Name
Type
R
R
R
R
D2
D1
D0
CK_BAD_ POL
LOL_POL
INT_POL
R
R/W
R/W
R
Reset value = 1101 1111
Bit
Name
7:3
Reserved
2
CK_BAD_ POL
Function
CK_BAD_POL.
Sets the active polarity for the INT_C1B and C2B signals when reflected on output
pins.
0: Active low
1: Active high
1
LOL_POL
LOL_POL.
Sets the active polarity for the LOL status when reflected on an output pin.
0: Active low
1: Active high
0
INT_POL
INT_POL.
Sets the active polarity for the interrupt status when reflected on the INT_LOS1 output
pin.
0: Active low
1: Active high
Rev. 1.0
31
Si5327
Register 23.
Bit
D7
D6
D5
D4
D3
D2
Name
D1
D0
LOS2_ MSK LOS1_ MSK LOSX_ MSK
Type
R
R
R
R
R
R/W
R/W
R/W
Reset value = 0001 1111
Bit
Name
7:3
Reserved
2
LOS2_MSK
Function
LOS2_MSK.
Determines if a LOS on CKIN2 (LOS2_FLG) is used in the generation of an interrupt.
Writes to this register do not change the value held in the LOS2_FLG register.
0: LOS2 alarm triggers active interrupt on INT_LOS1 output (if INT_PIN=1).
1: LOS2_FLG ignored in generating interrupt output.
1
LOS1_MSK
LOS1_MSK.
Determines if a LOS on CKIN1 (LOS1_FLG) is used in the generation of an interrupt.
Writes to this register do not change the value held in the LOS1_FLG register.
0: LOS1 alarm triggers active interrupt on INT_LOS1 output (if INT_PIN=1).
1: LOS1_FLG ignored in generating interrupt output.
0
LOSX_MSK
LOSX_MSK.
Determines if a LOS on XA/XB(LOSX_FLG) is used in the generation of an interrupt.
Writes to this register do not change the value held in the LOSX_FLG register.
0: LOSX alarm triggers active interrupt on INT_LOS1 output (if INT_PIN=1).
1: LOSX_FLG ignored in generating interrupt output.
Register 24.
Bit
D7
D6
D5
D4
D3
D2
D1
Name
Type
D0
LOL_MSK
R
R
R
R
R
R
R
R
Reset value = 0011 1111
Bit
Name
7:1
Reserved
0
LOL_MSK
Function
LOL_MSK.
Determines if the LOL_FLG is used in the generation of an interrupt. Writes to this register do not change the value held in the LOL_FLG register.
0: LOL alarm triggers active interrupt on INT_LOS1 output (if INT_PIN=1).
1: LOL_FLG ignored in generating interrupt output.
32
Rev. 1.0
Si5327
Register 25.
Bit
D7
D6
Name
N1_HS [2:0]
Type
R/W
D5
D4
D3
D2
D1
D0
R
R
R
R
R
Reset value = 0010 0000
Bit
Name
7:5
N1_HS [2:0]
Function
N1_HS [2:0].
Sets value for N1 high speed divider which drives NCn_LS (n = 1 to 2) low-speed divider.
000: N1= 4
001: N1= 5
010: N1= 6
011: N1= 7
100: N1= 8
101: N1= 9
110: N1= 10
111: N1= 11
4:0
Reserved
Register 31.
Bit
D7
D6
D5
D4
D3
Name
Type
D2
D1
D0
NC1_LS [19:16]
R
R
R
R
R/W
Reset value = 0000 0000
Bit
Name
7:4
Reserved
3:0
NC1_LS
[19:16]
Function
NC1_LS [19:16].
Sets value for NC1 low-speed divider, which drives CKOUT1 output. Must be 0 or odd.
00000000000000000000 = 1
00000000000000000001 = 2
00000000000000000011 = 4
00000000000000000101 = 6
...
11111111111111111111=2^20
Valid divider values=[1, 2, 4, 6, ..., 2^20]
Rev. 1.0
33
Si5327
Register 32.
Bit
D7
D6
D5
D4
D3
Name
NC1_LS [15:8]
Type
R/W
D2
D1
D0
Reset value = 0000 0000
Bit
Name
7:0
NC1_LS
[15:8]
Function
NC1_LS [15:8].
Sets value for NC1 low-speed divider, which drives CKOUT1 output. Must be 0 or odd.
00000000000000000000 = 1
00000000000000000001 = 2
00000000000000000011 = 4
00000000000000000101 = 6
...
11111111111111111111=2^20
Valid divider values=[1, 2, 4, 6, ..., 2^20]
Register 33.
Bit
D7
D6
D5
D4
D3
Name
NC1_LS [7:0]
Type
R/W
D2
D1
D0
Reset value = 0011 0001
34
Bit
Name
7:0
NC1_LS
[19:0]
Function
NC1_LS [7:0].
Sets value for N1 low-speed divider, which drives CKOUT1 output. Must be 0 or odd.
00000000000000000000 = 1
00000000000000000001 = 2
00000000000000000011 = 4
00000000000000000101 = 6
...
11111111111111111111=2^20
Valid divider values=[1, 2, 4, 6, ..., 2^20]
Rev. 1.0
Si5327
Register 34.
Bit
D7
D6
D5
D4
D3
Name
D2
D1
D0
NC2_LS [19:16]
Type
R
R
R
R
R/W
Reset value = 0000 0000
Bit
Name
7:4
Reserved
3:0
NC2_LS
[19:16]
Function
NC2_LS [19:16].
Sets value for NC2 low-speed divider, which drives CKOUT2 output. Must be 0 or odd.
00000000000000000000=1
00000000000000000001=2
00000000000000000011=4
00000000000000000101=6
...
11111111111111111111=2^20
Valid divider values=[1, 2, 4, 6, ..., 2^20]
Register 35.
Bit
D7
D6
D5
D4
D3
Name
NC2_LS [15:8]
Type
R/W
D2
D1
D0
Reset value = 0000 0000
Bit
Name
7:0
NC2_LS
[15:8]
Function
NC2_LS [15:8].
Sets value for NC2 low-speed divider, which drives CKOUT2 output. Must be 0 or odd.
00000000000000000000 = 1
00000000000000000001 = 2
00000000000000000011 = 4
00000000000000000101 = 6
...
11111111111111111111=2^20
Valid divider values=[1, 2, 4, 6, ..., 2^20]
Rev. 1.0
35
Si5327
Register 36.
Bit
D7
D6
D5
D4
D3
Name
NC2_LS [7:0]
Type
R/W
D2
D1
D0
Reset value = 0011 0001
Bit
7:0
Name
Function
NC2_LS [7:0] NC2_LS [7:0].
Sets value for NC2 low-speed divider, which drives CKOUT2 output. Must be 0 or odd.
00000000000000000000 = 1
00000000000000000001 = 2
00000000000000000011 = 4
00000000000000000101 = 6
...
11111111111111111111=2^20
Valid divider values=[1, 2, 4, 6, ..., 2^20]
36
Rev. 1.0
Si5327
Register 40.
Bit
D7
D6
Name
N2_HS [2:0]
Type
R/W
D5
D4
D3
D2
D1
D0
N2_LS [19:16]
R
R/W
Reset value = 1100 0000
Bit
Name
7:5
N2_HS [2:0]
Function
N2_HS [2:0].
Sets value for N2 high speed divider, which drives N2_LS low-speed divider.
000: 4
001: 5
010: 6
011: 7
100: 8
101: 9
110: 10
111: 11
4
3:0
Reserved
N2_LS [19:16] N2_LS [19:16].
Sets value for N2 low-speed divider, which drives phase detector.
00000000000000000001 = 2
00000000000000000011 = 4
00000000000000000101 = 6
...
11111111111111111111 = 2^20
Valid divider values = [2, 4, 6, ..., 2^20]
Rev. 1.0
37
Si5327
Register 41.
Bit
D7
D6
D5
D4
D3
Name
N2_LS [15:8]
Type
R/W
D2
D1
D0
D1
D0
Reset value = 0000 0000
Bit
7:0
Name
Function
N2_LS [15:8] N2_LS [15:8].
Sets value for N2 low-speed divider, which drives phase detector.
00000000000000000001 = 2
00000000000000000011 = 4
00000000000000000101 = 6
...
11111111111111111111 = 2^20
Valid divider values = [2, 4, 6, ..., 2^20]
Register 42.
Bit
D7
D6
D5
D4
D3
Name
N2_LS [7:0]
Type
R/W
D2
Reset value = 1111 1001
Bit
Name
7:0
N2_LS [7:0]
Function
N2_LS [7:0].
Sets value for N2 low-speed divider, which drives phase detector.
00000000000000000001 = 2
00000000000000000011 = 4
00000000000000000101 = 6
...
11111111111111111111 = 2^20
Valid divider values = [2, 4, 6, ..., 2^20]
38
Rev. 1.0
Si5327
Register 43.
Bit
D7
D6
D5
D4
D3
D2
Name
D1
D0
N31 [18:16]
Type
R
R
R
R
R
R/W
Reset value = 0000 0000
Bit
Name
7:3
Reserved
2:0
N31 [18:16]
Function
N31 [18:16].
Sets value for input divider for CKIN1.
0000000000000000000 = 1
0000000000000000001 = 2
0000000000000000010 = 3
...
1111111111111111111 = 2^19
Valid divider values=[1, 2, 3, ..., 2^19]
Register 44.
Bit
D7
D6
D5
D4
D3
Name
N31_[15:8]
Type
R/W
D2
D1
D0
Reset value = 0000 0000
Bit
Name
7:0
N31_[15:8]
Function
N31_[15:8].
Sets value for input divider for CKIN1.
0000000000000000000 = 1
0000000000000000001 = 2
0000000000000000010 = 3
...
1111111111111111111 = 2^19
Valid divider values=[1, 2, 3, ..., 2^19]
Rev. 1.0
39
Si5327
Register 45.
Bit
D7
D6
D5
D4
D3
Name
N31_[7:0]
Type
R/W
D2
D1
D0
D2
D1
D0
Reset value = 0000 1001
Bit
Name
7:0
N31_[7:0
Function
N31_[7:0].
Sets value for input divider for CKIN1.
0000000000000000000 = 1
0000000000000000001 = 2
0000000000000000010 = 3
...
1111111111111111111 = 2^19
Valid divider values=[1, 2, 3, ..., 2^19]
Register 46.
Bit
D7
D6
D5
D4
D3
Name
Type
N32_[18:16]
R
R/W
Reset value = 0000 0000
Bit
Name
7:3
Reserved
2:0
N32_[18:16]
Function
N32_[18:16].
Sets value for input divider for CKIN2.
0000000000000000000 = 1
0000000000000000001 = 2
0000000000000000010 = 3
...
1111111111111111111 = 2^19
Valid divider values=[1, 2, 3, ..., 2^19]
40
Rev. 1.0
Si5327
Register 47.
Bit
D7
D6
D5
D4
D3
Name
N32[15:8]
Type
R/W
D2
D1
D0
D2
D1
D0
Reset value = 0000 0000
Bit
Name
7:0
N32_[15:8]
Function
N32[15:8].
Sets value for input divider for CKIN2.
0000000000000000000 = 1
0000000000000000001 = 2
0000000000000000010 = 3
...
1111111111111111111 = 2^19
Valid divider values=[1, 2, 3, ..., 2^19]
Register 48.
Bit
D7
D6
D5
D4
D3
Name
N32[7:0]
Type
R/W
Reset value = 0000 1001
Bit
Name
7:0
N32_[7:0]
Function
N32[7:0].
Sets value for input divider for CKIN2.
0000000000000000000 = 1
0000000000000000001 = 2
0000000000000000010 = 3
...
1111111111111111111 = 2^19
Valid divider values=[1, 2, 3, ..., 2^19]
Rev. 1.0
41
Si5327
Register 128.
Bit
D7
D6
D5
D4
D3
D2
Name
Type
D1
D0
CK2_ACTV_REG CK1_ACTV_REG
R
R
R
R
R
R
R
R
Reset value = 0010 0000
Bit
Name
Function
7:2
Reserved
1
CK2_ACTV_REG
CK2_ACTV_REG.
Indicates if CKIN2 is currently the active clock for the PLL input.
0: CKIN2 is not the active input clock. Either it is not selected or LOS2_INT is 1.
1: CKIN2 is the active input clock.
0
CK1_ACTV_REG
CK1_ACTV_REG.
Indicates if CKIN1 is currently the active clock for the PLL input.
0: CKIN1 is not the active input clock. Either it is not selected or LOS1_INT is 1.
1: CKIN1 is the active input clock.
Register 129.
Bit
D7
D6
D5
D4
D3
Name
Type
R
R
R
R
R
D2
D1
D0
LOS2_INT
LOS1_INT
LOSX_INT
R
R
R
Reset value = 0000 0110
Bit
Name
7:3
Reserved
2
LOS2_INT
Function
LOS2_INT.
Indicates the LOS status on CKIN2.
0: Normal operation.
1: Internal loss-of-signal alarm on CKIN2 input.
1
LOS1_INT
LOS1_INT.
Indicates the LOS status on CKIN1.
0: Normal operation.
1: Internal loss-of-signal alarm on CKIN1 input.
0
LOSX_INT
LOSX_INT.
Indicates the LOS status of the external reference on the XA/XB pins.
0: Normal operation.
1: Internal loss-of-signal alarm on XA/XB reference clock input.
42
Rev. 1.0
Si5327
Register 130.
Bit
D7
D6
D5
D4
D3
D2
D1
Name
Type
D0
LOL_INT
R
R
R
R
R
R
R
R
Reset value = 0000 0001
Bit
Name
7:1
Reserved
0
LOL_INT
Function
PLL Loss of Lock Status.
0: PLL locked.
1: PLL unlocked.
Rev. 1.0
43
Si5327
Register 131.
Bit
D7
D6
D5
D4
D3
Name
Type
D2
D1
D0
LOS2_FLG LOS1_FLG LOSX_FLG
R
R
R
R
R
R/W
R/W
R/W
Reset value = 0001 1111
Bit
Name
7:3
Reserved
2
LOS2_FLG
Function
CKIN2 Loss-of-Signal Flag.
0: Normal operation.
1: Held version of LOS2_INT. Generates active output interrupt if output interrupt pin is
enabled (INT_PIN = 1) and if not masked by LOS2_MSK bit. Flag cleared by writing 0 to
this bit.
1
LOS1_FLG
CKIN1 Loss-of-Signal Flag.
0: Normal operation
1: Held version of LOS1_INT. Generates active output interrupt if output interrupt pin is
enabled (INT_PIN = 1) and if not masked by LOS1_MSK bit. Flag cleared by writing 0 to
this bit.
0
LOSX_FLG
External Reference (signal on pins XA/XB) Loss-of-Signal Flag.
0: Normal operation
1: Held version of LOSX_INT. Generates active output interrupt if output interrupt pin is
enabled (INT_PIN = 1) and if not masked by LOSX_MSK bit. Flag cleared by writing 0 to
this bit.
44
Rev. 1.0
Si5327
Register 132.
Bit
D7
D6
D5
D4
D3
D2
Name
Type
D1
D0
LOL_FLG
R
R
R
R
R
R
R/W
R
Reset value = 0000 0010
Bit
Name
7:2
Reserved
1
LOL_FLG
Function
PLL Loss of Lock Flag.
0: PLL locked
1: Held version of LOL_INT. Generates active output interrupt if output interrupt pin is
enabled (INT_PIN = 1) and if not masked by LOL_MSK bit. Flag cleared by writing 0 to
this bit.
0
Reserved
Register 134.
Bit
D7
D6
D5
D4
D3
Name
PARTNUM_RO [11:4]
Type
R
D2
D1
D0
Reset value = 0000 0001
Bit
Name
7:0
PARTNUM_
RO [11:0]
Function
Device ID (1 of 2).
0000 0001 1011: Si5327
Rev. 1.0
45
Si5327
Register 135.
Bit
D7
D6
D5
D4
D3
D2
D1
Name
PARTNUM_RO [3:0]
REVID_RO [3:0]
Type
R
R
D0
Reset value = 1011 0010
Bit
7:4
Name
Function
PARTNUM_RO [11:0] Device ID (2 of 2).
0000 0001 1011: Si5327
3:0
REVID_RO [3:0]
Device Revision.
0000: Revision A
0001: Revision B
0010: Revision C
Others: Reserved
Register 136.
Bit
D7
D6
Name
RST_REG
ICAL
Type
R/W
R/W
D5
D4
D3
D2
D1
D0
R
R
R
R
R
R
Reset value = 0000 0000
Bit
Name
7
RST_REG
Function
Internal Reset (Same as Pin Reset).
Note: The I2C (or SPI) port may not be accessed until 10 ms after RST_REG is asserted.
0: Normal operation.
1: Reset of all internal logic. Outputs disabled or tristated during reset.
6
ICAL
Start an Internal Calibration Sequence.
For proper operation, the device must go through an internal calibration sequence. ICAL
is a self-clearing bit. Writing a “1” to this location initiates an ICAL. The calibration is complete once the LOL alarm goes low.
0: Normal operation.
1: Writing a "1" initiates internal self-calibration. Upon completion of internal self-calibration, LOL will go low.
Notes:
1. A valid stable clock (within 100 ppm) must be present to begin ICAL.
2. If the input changes by more than 500 ppm, the part may do an autonomous ICAL.
3. See Table 9, “Register Locations Requiring ICAL,” on page 53 for register changes that
require an ICAL.
5:0
46
Reserved
Rev. 1.0
Si5327
Register 137.
Bit
D7
D6
D5
D4
D3
D2
D1
FASTLOCK
Name
Type
D0
R
R
R
R
R
R
R
R/W
Reset value = 0000 0000
Bit
Name
7:1
Reserved
0
FASTLOCK
Function
Do not modify.
This bit must be set to 1 to enable FASTLOCK. This improves initial lock time by
dynamically changing the loop bandwidth.
Register 138.
Bit
D7
D6
D5
D4
D3
D2
Name
Type
R
R
R
R
R
D1
D0
LOS2_EN
LOS1_EN
R/W
R/W
R
Reset value = 0000 1111
Bit
Name
7:2
Reserved
1
LOS2_EN
Function
Enable CKIN2 LOS Monitoring on the Specified Input (2 of 2).
Note: LOS2_EN is split between two registers.
00: Disable LOS monitoring
01: Reserved
10: Enable LOSA monitoring
11: Enable LOS monitoring
LOSA is a slower and less sensitive version of LOS. SEe the Si53xx Family Reference
Manual for details.
0
LOS1_EN
Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2).
Note: LOS1_EN is split between two registers.
00: Disable LOS monitoring
01: Reserved
10: Enable LOSA monitoring
11: Enable LOS monitoring
LOSA is a slower and less sensitive version of LOS. See the Si53xx Family Reference
Manual for details.
Rev. 1.0
47
Si5327
Register 139.
Bit
D7
D6
Name
Type
R
R
D5
D4
LOS2_EN
LOS1_EN
R/W
R/W
D3
D2
D1
D0
R
R
R
R
Reset value = 1111 1111
Bit
Name
7:6
Reserved
5
LOS2_EN
Function
Enable CKIN2 LOS Monitoring on the Specified Input (2 of 2).
Note: LOS2_EN is split between two registers.
00: Disable LOS monitoring
01: Reserved
10: Enable LOSA monitoring
11: Enable LOS monitoring
LOSA is a slower and less sensitive version of LOS. See the Si53xx Family Reference
Manual for details
4
LOS1_EN
Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2).
Note: LOS1_EN is split between two registers.
00: Disable LOS monitoring
01: Reserved
10: Enable LOSA monitoring
11: Enable LOS monitoring
LOSA is a slower and less sensitive version of LOS. See the Si53xx Family Reference
Manual for details.
3:0
48
Reserved
Rev. 1.0
Si5327
CKOUT1+
CKOUT1–
NC
GND
NC
VDD
CKOUT2–
CKOUT2+
CMODE
7. Pin Descriptions: Si5327
36 35 34 33 32 31 30 29 28
RST
1
27 SDI
NC
2
26 A2_SS
INT_LOS1
3
25 A1
LOS2
4
VDD
5
XA
6
XB
7
24 A0
GND
Pad
23 SDA_SDO
22 SCL
21 CKSEL
GND
8
20 NC
NC
9
19 NC
LOL
CKIN1–
GND
CKIN1+
NC
CKIN2–
CKIN2+
VDD
RATE
10 11 12 13 14 15 16 17 18
Pin #
Pin Name
I/O
Signal Level
Description
1
RST
I
LVCMOS
External Reset.
Active low input that performs external hardware reset of device.
Resets all internal logic to a known state and forces the device registers to their default value. Clock outputs are tristated during reset.
The part must be programmed after a reset or power on to get a
clock output. See the Si53xx Family Reference Manual for details.
This pin has a weak pull-up.
2, 9, 14,
19, 20, 30,
33
NC
3
INT_LOS1
No Connection.
Leave floating. Make no external connections to this pin for normal
operation.
O
LVCMOS
Interrupt/CKIN1 LOS Indicator.
This pin functions as a device interrupt output or an alarm output for
CKIN1. If used as an interrupt output, INT_PIN must be set to 1. The
pin functions as a maskable interrupt output with active polarity controlled by the INT_POL register bit.
If used as an alarm output, the pin functions as a LOS alarm indicator for CKIN1. Set CK1_BAD_PIN = 1 and INT_PIN = 0.
0 = CKIN1 present
1 = LOS on CKIN1
The active polarity is controlled by CK_BAD_POL. If no function is
selected, the pin tristates.
Note: Internal register names are indicated by underlined italics, e.g., INT_PIN. See Section “5.Register Map”.
Rev. 1.0
49
Si5327
Pin #
Pin Name
I/O
Signal Level
Description
4
LOS2
O
LVCMOS
5, 10, 32
VDD
VDD
Supply
Supply.
The device operates from a 1.8, 2.5, or 3.3 V supply. Bypass capacitors should be associated with the following VDD pins:
5
0.1 µF
10
0.1 µF
32
0.1 µF
A 1.0 µF should also be placed as close to the device as is practical.
7
6
XB
XA
I
Analog
External Crystal or Reference Clock.
External crystal should be connected to these pins to use internal
oscillator based reference. Refer to the Si53xx Family Reference
Manual for interfacing to an external reference. External reference
must be from a high-quality clock source (TCXO, OCXO). Accepts
37–41 MHz crystal or reference clock, as determine by the RATE
pin setting.
8, 15, 31
GND
GND
Supply
Ground.
Must be connected to system ground. Minimize the ground path
impedance for optimal performance of this device. Grounding these
pins does not eliminate the requirement to ground the GND PAD on
the bottom of the package.
11
RATE
I
3-Level
External Crystal or Reference Clock Rate.
Three level input that selects an external crystal or reference clock
to be applied to the XA/XB interface.
L setting (GND) = crystal on XA/XB
M setting (VDD/2) = clock or XO on XA/XB
H setting (VDD) = reserved
Some designs may require an external resistor voltage divider when
driven by an active device that will tristate.
16
17
CKIN1+
CKIN1–
I
Multi
Clock Input 1.
Differential input clock. This input can also be driven with a singleended signal. Input frequency range is 2 kHz to 710 MHz.
12
13
CKIN2+
CKIN2–
I
Multi
Clock Input 2.
Differential input clock. This input can also be driven with a singleended signal. Input frequency range is 2 kHz to 710 MHz.
CKIN2 Invalid Indicator.
This pin functions as a LOS alarm indicator for CKIN2 if
CK2_BAD_PIN = 1.
0 = CKIN2 present
1 = LOS on CKIN2
The active polarity can be changed by CK_BAD_POL. If
CK2_BAD_PIN = 0, the pin tristates.
Note: Internal register names are indicated by underlined italics, e.g., INT_PIN. See Section “5.Register Map”.
50
Rev. 1.0
Si5327
Pin #
Pin Name
I/O
Signal Level
Description
18
LOL
O
LVCMOS
PLL Loss of Lock Indicator.
This pin functions as the active high PLL loss of lock indicator if the
LOL_PIN register bit is set to 1.
0 = PLL locked
1 = PLL unlocked
If LOL_PIN = 0, this pin will tristate. Active polarity is controlled by
the LOL_POL bit. The PLL lock status will always be reflected in the
LOL_INT read only register bit.
21
CKSEL
I
LVCMOS
Input Clock Select.
This pin functions as the manual input clock selector.
0 = Select CKIN1
1 = Select CKIN2
CKSEL should not be left open and should be driven to either logic
high or logic low.
22
SCL
I
LVCMOS
Serial Clock.
This pin functions as the serial clock input for both SPI and I2C
modes.
This pin has a weak pull-down.
23
SDA_SDO
I/O
LVCMOS
Serial Data.
In I2C control mode (CMODE = 0), this pin functions as the bidirectional serial data port.
In SPI control mode (CMODE = 1), this pin functions as the serial
data output.
25
24
A1
A0
I
LVCMOS
Serial Port Address.
In I2C control mode (CMODE = 0), these pins function as hardware
controlled address bits. The I2C address is 1101 [A2] [A1] [A0].
In SPI control mode (CMODE = 1), these pins are ignored.
These pins have a weak pull-down.
26
A2_SS
I
LVCMOS
Serial Port Address/Slave Select.
In I2C control mode (CMODE = 0), this pin functions as a hardware
controlled address bit [A2].
In SPI control mode (CMODE = 1), this pin functions as the slave
select input.
This pin has a weak pull-down.
27
SDI
I
LVCMOS
Serial Data In.
In I2C control mode (CMODE = 0), this pin is ignored.
In SPI control mode (CMODE = 1), this pin functions as the serial
data input.
This pin has a weak pull-down.
Note: Internal register names are indicated by underlined italics, e.g., INT_PIN. See Section “5.Register Map”.
Rev. 1.0
51
Si5327
Pin #
Pin Name
I/O
Signal Level
Description
29
28
CKOUT1–
CKOUT1+
O
Multi
Output Clock 1.
Differential output clock with a frequency range of 2 kHz to
808 MHz. Output signal format is selected by SFOUT1_REG register bits. Output is differential for LVPECL, LVDS, and CML compatible modes. For CMOS format, both output pins drive identical
single-ended clock outputs.
34
35
CKOUT2–
CKOUT2+
O
Multi
Output Clock 2.
Differential output clock with a frequency range of 2 kHz to
808 MHz. Output signal format is selected by SFOUT2_REG register bits. Output is differential for LVPECL, LVDS, and CML compatible modes. For CMOS format, both output pins drive identical
single-ended clock outputs.
36
CMODE
I
LVCMOS
Control Mode.
Selects I2C or SPI control mode for the Si5327.
0 = I2C Control Mode
1 = SPI Control Mode
This pin must not be NC. Tie either high or low.
See the Si53xx Family Reference Manual for details on I2C or SPI
operation.
GND PAD
GND
GND
Supply
Ground Pad.
The ground pad must provide a low thermal and electrical
impedance to a ground plane.
Note: Internal register names are indicated by underlined italics, e.g., INT_PIN. See Section “5.Register Map”.
52
Rev. 1.0
Si5327
Table 9 lists all of the register locations that should be followed by an ICAL after their contents are changed.
Table 9. Register Locations Requiring ICAL
Addr
Register
0
BYPASS_REG
0
CKOUT_ALWAYS_ON
2
BWSEL_REG
4
HIST_DEL
5
ICMOS
9
HIST_AVG
10
DSBL2_REG
10
DSBL1_REG
11
PD_CK2
11
PD_CK1
19
VALTIME
19
LOCKT
25
N1_HS
31
NC1_LS
34
NC2_LS
40
N2_HS
40
N2_LS
43
N31
46
N32
Table 10. Si5327 Internal Pull up/Pull down
Pin #
Si5327
Pull up/
Pull down
1
RST
U
11
RATE
U, D
21
CKSEL
U, D
22
SCL
D
24
A0
D
25
A1
D
26
A2_SS
D
27
SDI
D
36
CMODE
U, D
Rev. 1.0
53
Si5327
8. Ordering Guide
Ordering Part
Number
Output Clock Frequency
Range
Package
ROHS6,
Pb-Free
Temperature
Si5327B-C-GM
2 kHz–808 MHz
36-Lead 6 x 6 mm QFN
Yes
–40 to 85 °C
Si5327C-C-GM
2 kHz–346 MHz
36-Lead 6 x 6 mm QFN
Yes
–40 to 85 °C
Si5327D-C-GM
2 kHz–243 MHz
36-Lead 6 x 6 mm QFN
Yes
–40 to 85 °C
Si5327-EVB
Evaluation Board
Note: Add an R at the end of the device to denote tape and reel options.
54
Rev. 1.0
Si5327
9. Package Outline: 36-Pin QFN
Figure 8 illustrates the package details for the Si5327. Table 11 lists the values for the dimensions shown in the
illustration.
Figure 8. 36-Pin Quad Flat No-lead (QFN)
Table 11. Package Dimensions
Symbol
Millimeters
Symbol
Min
Nom
Max
A
0.80
0.85
0.90
A1
0.00
0.02
b
0.18
0.25
D
D2
Min
Nom
Max
L
0.50
0.60
0.70
0.05

—
—
12º
0.30
aaa
—
—
0.10
bbb
—
—
0.10
ccc
—
—
0.08
6.00 BSC
3.95
4.10
Millimeters
4.25
e
0.50 BSC
ddd
—
—
0.10
E
6.00 BSC
eee
—
—
0.05
E2
3.95
4.10
4.25
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to JEDEC outline MO-220, variation VJJD.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body
Components.
Rev. 1.0
55
Si5327
10. Recommended PCB Layout
Figure 9. PCB Land Pattern Diagram
Figure 10. Ground Pad Recommended Layout
56
Rev. 1.0
Si5327
Table 12. PCB Land Pattern Dimensions
Dimension
MIN
MAX
e
0.50 BSC.
E
5.42 REF.
D
5.42 REF.
E2
4.00
4.20
D2
4.00
4.20
GE
4.53
—
GD
4.53
—
X
—
0.28
Y
0.89 REF.
ZE
—
6.31
ZD
—
6.31
Notes:
General
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
3. This Land Pattern Design is based on IPC-SM-782 guidelines.
4. All dimensions shown are at Maximum Material Condition (MMC). Least Material
Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.
Solder Mask Design
5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the
solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.
Stencil Design
6. A stainless steel, laser-cut, and electro-polished stencil with trapezoidal walls should be
used to assure good solder paste release.
7. The stencil thickness should be 0.125 mm (5 mils).
8. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.
9. A 4 x 4 array of 0.80 mm square openings on 1.05 mm pitch should be used for the
center ground pad.
Card Assembly
10. A No-Clean, Type-3 solder paste is recommended.
11. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for
Small Body Components.
Rev. 1.0
57
Si5327
11. Si5327 Device Top Mark
Mark Method:
Laser
Font Size:
0.80 mm
Right-Justified
Line 1 Marking:
Si5327Q
Customer Part Number
Q = Speed Code: B, C, D
See Ordering Guide for options
Line 2 Marking:
C-GM
C = Product Revision
G = Temperature Range –40 to 85 °C (RoHS6)
M = QFN Package
Line 3 Marking:
YYWWRF
YY = Year
WW = Work Week
R = Die Revision
F = Internal code
Assigned by the Assembly House. Corresponds to the year
and work week of the mold date.
Line 4 Marking:
Pin 1 Identifier
Circle = 0.75 mm Diameter
Lower-Left Justified
XXXX
Internal Code
58
Rev. 1.0
Si5327
DOCUMENT CHANGE LIST
Revision 0.1 to Revision 0.4

Updated Table 3, “AC Specifications,” on page 9.
Added

table note.
Updated Table 5, “Jitter Generation,” on page 14.
Updated
maximum jitter generation specifications.
Revision 0.4 to Revision 1.0






Minor changes to Table 2 on page 5
Minor changes to Table 4 on page 12
Added maximum lock and settle time specs to
Table 3.
Fixed typos in description of Register 10 on page 28.
Fixed typos in description of Register 48 on page 41.
Added warning about MEMS oscillators to "4.1." on
page 20.
Rev. 1.0
59
Si5327
CONTACT INFORMATION
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Please visit the Silicon Labs Technical Support web page:
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.
Patent Notice
Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analogintensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team.
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.
60
Rev. 1.0