Color Bin Structure - Seoul Semiconductor

Product Data Sheet
SAW9C72A – Acrich MJT 3030
Superior High Intensity for High Voltage System
Acrich MJT – 3030 series
SAW9C72A
LM-80
RoHS
Product Brief
Description
Features and Benefits
•
This White Colored surface-mount LED
comes in standard package dimension.
Package Size : 3.0x3.0x0.65mm
•
The MJT series of LEDs are designed
for AC & DC(High Voltage) operation
and high Intensity output applications
•
•
•
•
•
•
•
The MJT is ideal light sources for
general illumination applications and
custom designed solutions
•
High Intensity output and high luminance
Designed for high voltage operation
Compact size package
SMT solderable
High Color Quality with CRI Min.90(R9>50)
RoHS compliant
Key Applications
•
•
•
•
The package design coupled with
careful selection of component
materials allow these products to
perform with high reliability
General lighting
Replacement lamps
Architectural
Commercial
Table 1. Product Selection Table
CCT
Part Number
Color
Min.
Typ.
Max.
SAW9C72A
Neutral White
3700K
4200K
4700K
SAW9C72A
Warm White
2600K
3000K
3700K
Rev1.0, July 7, 2015
1
www.seoulsemicon.com
Product Data Sheet
SAW9C72A – Acrich MJT 3030
Table of Contents
Index
•
Product Brief
1
•
Table of Contents
2
•
Performance Characteristics
3
•
Characteristics Graph
4
•
Color Bin Structure
10
•
Mechanical Dimensions
17
•
Recommended Solder Pad
18
•
Reflow Soldering Characteristics
19
•
Emitter Tape & Reel Packaging
20
•
Product Nomenclature
22
•
Handling of Silicone Resin for LEDs
23
•
Precaution For Use
24
•
Company Information
27
Rev1.0, July 7, 2015
2
www.seoulsemicon.com
Product Data Sheet
SAW9C72A – Acrich MJT 3030
Performance Characteristics
Table 2. Characteristics, IF=40mA, Tj= 25ºC, RH30%
Value
Parameter
Symbol
Unit
Min.
Typ.
Max.
Forward Current
IF
-
40
60
mA
Forward Voltage
VF
21.5
-
24.5
V
Luminous Intensity[1] (2700K)[2]
Iv
-
28.5
(88)
-
cd
(lm)
CRI [3]
Ra
90
-
-
2Θ1/2
-
120
-
Deg.
RθJ-S
-
9
-
℃/W
Viewing Angle
Thermal resistance (J to S)
[4]
ESD Sensitivity(HBM)
-
Class 3A JESD22-A114-E
Table 3. Absolute Maximum Ratings
Parameter
Symbol
Value
Unit
Forward Current
IF
60
mA
IFP
90
mA
Power Dissipation
PD
1.5
W
Junction Temperature
Tj
125
ºC
Operating Temperature
Topr
-30 ~ + 100
ºC
Storage Temperature
Tstg
-40 ~ + 100
ºC
Pulse Forward Current
[5]
Notes :
(1) Seoul Semiconductor maintains a tolerance of 7% on Intensity and power measurements.
(2) Correlated Color Temperature is derived from the CIE 1931 Chromaticity diagram.
Color coordinate : 0.01, CCT 5% tolerance.
(3) Tolerance is 2.0 on CRI measurements.
(4) Thermal resistance: RthJS (Junction to Solder)
(5) IFP conditions with pulse width ≤10ms and duty cycle ≤10%
•
Calculated performance values are for reference only.
•
Thermal resistance can be increased substantially depending on the heat sink design/operating
condition, and the maximum possible driving current will decrease accordingly.
•
All measurements were made under the standardized environment of Seoul Semiconductor.
Rev1.0, July 7, 2015
3
www.seoulsemicon.com
Product Data Sheet
SAW9C72A – Acrich MJT 3030
Characteristics Graph
Relative Emission Intensity (a.u.)
Fig 1. Color Spectrum, Tj = 25ºC, IF=40mA
3700~4700K
2600~3700K
1.0
0.5
0.0
400
500
600
700
800
Wavelength [nm]
Fig 2. Radiant Pattern, Tj = 25ºC, IF=40mA
Relative Intensity (%)
100
80
60
40
20
0
-100
-75
-50
-25
0
25
50
75
100
Angle [Degree]
Rev1.0, July 7, 2015
4
www.seoulsemicon.com
Product Data Sheet
SAW9C72A – Acrich MJT 3030
Characteristics Graph
Fig 3. Forward Voltage vs. Forward Current, T j = 25ºC
0.06
Forward Current [A]
0.05
0.04
0.03
0.02
0.01
0.00
0
5
10
15
20
25
Forward Voltage [V]
Fig 4. Forward Current vs. Relative Luminous Intensity, Tj = 25ºC
Relative Luminous Intensity [a.u.]
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0
10
20
30
40
50
60
Forward Current [mA]
Rev1.0, July 7, 2015
5
www.seoulsemicon.com
Product Data Sheet
SAW9C72A – Acrich MJT 3030
Characteristics Graph
Fig 5. Forward Current vs. CIE X,Y Shift, T j = 25ºC
(3700~4700K)
0.388
0.387
20mA
CIE Y
0.386
10mA
30mA
40mA
50mA
0.385
60mA
0.384
0.383
0.382
0.382
0.383
0.384
0.385
0.386
0.387
0.388
CIE X
(2600~3700K)
0.416
CIE Y
0.414
0.412
30mA
20mA
10mA
40mA
50mA
60mA
0.410
0.408
0.406
0.448
0.450
0.452
0.454
0.456
0.458
CIE X
Rev1.0, July 7, 2015
6
www.seoulsemicon.com
Product Data Sheet
SAW9C72A – Acrich MJT 3030
Characteristics Graph
Relative Luminous Intensity [a.u.]
Fig 6. Junction Temperature vs. Relative Luminous Intensity, IF=40mA
1.0
0.8
0.6
0.4
0.2
0.0
25
45
65
85
105
125
O
Junction Temperature Tj( C)
Fig 7. Junction Temperature vs. Relative Forward Voltage, IF=40mA
Relative Forward Voltage
1.0
0.8
0.6
0.4
0.2
0.0
25
45
65
85
105
125
O
Junction Temperature Tj( C)
Rev1.0, July 7, 2015
7
www.seoulsemicon.com
Product Data Sheet
SAW9C72A – Acrich MJT 3030
Characteristics Graph
Fig 8. Chromaticity Coordinate vs. Junction Temperature, IF=40mA
(3700~4700K)
0.390
CIE Y
0.388
o
25 C
o
0.386
50 C
o
75 C
0.384
o
100 C
o
125 C
0.382
0.380
0.380
0.382
0.384
0.386
0.388
CIE X
(2600~3700K)
0.422
CIE Y
0.420
o
25 C
o
0.418
50 C
o
75 C
0.416
o
100 C
o
125 C
0.414
0.412
0.452
0.454
0.456
0.458
0.460
CIE X
Rev1.0, July 7, 2015
8
www.seoulsemicon.com
Product Data Sheet
SAW9C72A – Acrich MJT 3030
Characteristics Graph
Fig 9. Ambient Temperature vs. Maximum Forward Current, T j_max = 125℃
Forward Current [mA]
60
40
Rth(j-a) = 40K/W
Rth(j-a) = 50K/W
Rth(j-a) = 60K/W
20
0
0
20
40
60
80
100
120
O
Ambient Temperature Ta [ C]
Rev1.0, July 7, 2015
9
www.seoulsemicon.com
Product Data Sheet
SAW9C72A – Acrich MJT 3030
Color Bin Structure
Table 4. Bin Code description, Tj=25℃, IF=40mA
Part
Number
SAW9C72A
Luminous Flux
(lm) [1]
Luminous
Intensity (cd) [2]
Bin
Code
Min.
Max.
Min.
Max.
K26
80
85
25.9
27.5
K28
85
90
27.5
29.2
K29
90
95
29.2
30.8
L31
95
101
30.8
32.7
L33
101
107
32.7
34.7
Color
Chromaticity
Coordinate
Refer to
Page. 12~16
Typical Forward Voltage
(V)
Bin
Code
Min.
Max.
D1
21.5
22.5
D2
22.5
23.5
D3
23.5
24.5
-
-
-
Table 5. Intensity rank distribution
Available ranks
CCT
CIE
IV Rank
4200 ~ 4700K
D
K26
K28
K29
L31
L33
3700 ~ 4200K
E
K26
K28
K29
L31
L33
3200 ~ 3700K
F
K26
K28
K29
L31
L33
2900 ~ 3200K
G
K26
K28
K29
L31
L33
2600 ~ 2900K
H
K26
K28
K29
L31
L33
*Notes :
(1) Calculated performance values are for reference only.
(2) Luminous Intensity values are based on CCT 2700K.
•All measurements were made under the standardized environment of Seoul Semiconductor.
In order to ensure availability, single color rank will not be orderable.
Rev1.0, July 7, 2015
10
www.seoulsemicon.com
Product Data Sheet
SAW9C72A – Acrich MJT 3030
Color Bin Structure
CIE Chromaticity Diagram Tj=25℃, IF=40mA
0.46
0.44
0.42
G
CIE coord.(Y)
0.40
H
F
E
0.38
D
0.36
0.34
0.32
0.30
MACADAM 3STEP Rank
0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42
0.44
0.46
0.48
0.50
CIE coord.(X)
*Notes :
• Energy Star binning applied to all 2600~4700K.
• Measurement Uncertainty of the Color Coordinates : ± 0.01
Rev1.0, July 7, 2015
11
www.seoulsemicon.com
Product Data Sheet
SAW9C72A – Acrich MJT 3030
Color Bin Structure
CIE Chromaticity Diagram (Neutral white), Tj=25℃, IF=40mA
4200K
0.39
4500K
0.38
4700K
CIE Y
D41
D31
D21
D42
D11
0.37
D32
D22
D12
D43
D33
D23
0.36
D13
D44
D34
D24
D14
0.35
0.34
0.350
0.355
0.360
0.365
0.370
0.375
CIE X
D11
D21
D31
D41
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3548
0.3736
0.3595
0.3770
0.3641
0.3804
0.3689
0.3839
0.3539
0.3668
0.3584
0.3701
0.3628
0.3733
0.3674
0.3767
0.3584
0.3701
0.3628
0.3733
0.3674
0.3767
0.3720
0.3800
0.3770
0.3641
0.3804
0.3689
0.3839
0.3736
0.3595
D12
D22
D32
0.3874
D42
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3539
0.3668
0.3584
0.3701
0.3628
0.3733
0.3674
0.3767
0.3530
0.3601
0.3573
0.3632
0.3616
0.3663
0.3659
0.3694
0.3573
0.3632
0.3616
0.3663
0.3659
0.3694
0.3703
0.3726
0.3584
0.3701
0.3628
0.3733
0.3674
0.3767
0.3720
0.3800
D13
D23
D33
D43
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3530
0.3601
0.3573
0.3632
0.3616
0.3663
0.3659
0.3694
0.3520
0.3533
0.3562
0.3562
0.3603
0.3592
0.3645
0.3622
0.3562
0.3562
0.3603
0.3592
0.3645
0.3622
0.3687
0.3652
0.3573
0.3632
0.3616
0.3663
0.3659
0.3694
0.3703
0.3726
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3520
0.3533
0.3562
0.3562
0.3603
0.3592
0.3645
0.3622
0.3511
0.3465
0.3551
0.3493
0.3590
0.3521
0.3630
0.3550
0.3551
0.3493
0.3590
0.3521
0.3630
0.3550
0.3670
0.3578
0.3562
0.3562
0.3603
0.3592
0.3645
0.3622
0.3687
0.3652
D14
D24
Rev1.0, July 7, 2015
D34
12
D44
www.seoulsemicon.com
Product Data Sheet
SAW9C72A – Acrich MJT 3030
Color Bin Structure
CIE Chromaticity Diagram (Neutral white), Tj=25℃, IF=40mA
0.41
3700K
0.40
E41
4000K
E31
4200K
0.39
E42
E21
E32
CIE Y
E11
E22
0.38
E12
E43
E33
E23
E13
0.37
E44
E34
E24
E14
0.36
0.35
0.36
0.37
0.38
0.39
0.40
CIE X
E11
E21
E31
E41
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3736
0.3874
0.3804
0.3917
0.3871
0.3959
0.3939
0.4002
0.3720
0.3800
0.3784
0.3841
0.3849
0.3881
0.3914
0.3922
0.3784
0.3841
0.3849
0.3881
0.3914
0.3922
0.3979
0.3962
0.3917
0.3871
0.3959
0.3939
0.4002
0.4006
0.3804
E12
E22
E32
0.4044
E42
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3720
0.3800
0.3784
0.3841
0.3849
0.3881
0.3914
0.3922
0.3703
0.3726
0.3765
0.3765
0.3828
0.3803
0.3890
0.3842
0.3765
0.3765
0.3828
0.3803
0.3890
0.3842
0.3952
0.3880
0.3784
0.3841
0.3849
0.3881
0.3914
0.3922
0.3979
0.3962
E13
E23
E33
E43
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3703
0.3726
0.3765
0.3765
0.3828
0.3803
0.3890
0.3842
0.3687
0.3652
0.3746
0.3689
0.3806
0.3725
0.3865
0.3762
0.3746
0.3689
0.3806
0.3725
0.3865
0.3762
0.3925
0.3798
0.3765
0.3765
0.3828
0.3803
0.3890
0.3842
0.3952
0.3880
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3687
0.3652
0.3746
0.3689
0.3806
0.3725
0.3865
0.3762
0.3670
0.3578
0.3727
0.3613
0.3784
0.3647
0.3841
0.3682
0.3727
0.3613
0.3784
0.3647
0.3841
0.3682
0.3898
0.3716
0.3746
0.3689
0.3806
0.3725
0.3865
0.3762
0.3925
0.3798
E14
E24
Rev1.0, July 7, 2015
E34
13
E44
www.seoulsemicon.com
Product Data Sheet
SAW9C72A – Acrich MJT 3030
Color Bin Structure
CIE Chromaticity Diagram (Warm white), Tj=25℃, IF=40mA
0.42
3200K
3500K
0.41
3700K
CIE Y
0.40
F21
F11
F42
F32
F22
F43
F12
0.39
F41
F31
F33
F23
F44
F13
F34
0.38
F24
F14
0.37
0.39
0.40
0.41
0.42
0.43
CIE X
F11
F21
F31
F41
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3996
0.4015
0.4071
0.4052
0.4146
0.4089
0.4223
0.4127
0.3969
0.3934
0.4042
0.3969
0.4114
0.4005
0.4187
0.4041
0.4042
0.3969
0.4114
0.4005
0.4187
0.4041
0.4261
0.4077
0.4052
0.4146
0.4089
0.4223
0.4127
0.4299
0.4071
F12
F22
F32
0.4165
F42
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3969
0.3934
0.4042
0.3969
0.4114
0.4005
0.4187
0.4041
0.3943
0.3853
0.4012
0.3886
0.4082
0.3920
0.4152
0.3955
0.4012
0.3886
0.4082
0.3920
0.4152
0.3955
0.4223
0.3990
0.4042
0.3969
0.4114
0.4005
0.4187
0.4041
0.4261
0.4077
F13
F23
F33
F43
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3943
0.3853
0.4012
0.3886
0.4082
0.3920
0.4152
0.3955
0.3916
0.3771
0.3983
0.3803
0.4049
0.3836
0.4117
0.3869
0.3983
0.3803
0.4049
0.3836
0.4117
0.3869
0.4185
0.3902
0.4012
0.3886
0.4082
0.3920
0.4152
0.3955
0.4223
0.3990
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.3916
0.3771
0.3983
0.3803
0.4049
0.3836
0.4117
0.3869
0.3889
0.3690
0.3953
0.3721
0.4017
0.3751
0.4082
0.3783
0.3953
0.3721
0.4017
0.3751
0.4082
0.3783
0.4147
0.3814
0.3983
0.3803
0.4049
0.3836
0.4117
0.3869
0.4185
0.3902
F14
F24
Rev1.0, July 7, 2015
F34
14
F44
www.seoulsemicon.com
Product Data Sheet
SAW9C72A – Acrich MJT 3030
Color Bin Structure
CIE Chromaticity Diagram (Warm white), Tj=25℃, IF=40mA
0.43
2900K
3000K
3200K
0.42
G41
G31
G21
G11
G42
CIE Y
0.41
G32
G22
G12
G43
0.40
G23
G33
G13
0.39
G14
G24
G44
G34
0.38
0.41
0.42
0.43
0.44
0.45
0.46
CIE X
G11
G21
G31
G41
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.4299
0.4165
0.4364
0.4188
0.4430
0.4212
0.4496
0.4236
0.4261
0.4077
0.4324
0.4099
0.4387
0.4122
0.4451
0.4145
0.4324
0.4100
0.4387
0.4122
0.4451
0.4145
0.4514
0.4168
0.4189
0.4430
0.4212
0.4496
0.4236
0.4562
0.4365
G12
G22
G32
0.4260
G42
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.4261
0.4077
0.4324
0.4100
0.4387
0.4122
0.4451
0.4145
0.4223
0.3990
0.4284
0.4011
0.4345
0.4033
0.4406
0.4055
0.4284
0.4011
0.4345
0.4033
0.4406
0.4055
0.4468
0.4077
0.4324
0.4100
0.4387
0.4122
0.4451
0.4145
0.4515
0.4168
G13
G23
G33
G43
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.4223
0.3990
0.4284
0.4011
0.4345
0.4033
0.4406
0.4055
0.4185
0.3902
0.4243
0.3922
0.4302
0.3943
0.4361
0.3964
0.4243
0.3922
0.4302
0.3943
0.4361
0.3964
0.4420
0.3985
0.4284
0.4011
0.4345
0.4033
0.4406
0.4055
0.4468
0.4077
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.4243
0.3922
0.4302
0.3943
0.4302
0.3943
0.4361
0.3964
0.4203
0.3834
0.4259
0.3853
0.4259
0.3853
0.4316
0.3873
0.4147
0.3814
0.4203
0.3834
0.4316
0.3873
0.4373
0.3893
0.4185
0.3902
0.4243
0.3922
0.4361
0.3964
0.4420
0.3985
G14
G24
Rev1.0, July 7, 2015
G34
15
G44
www.seoulsemicon.com
Product Data Sheet
SAW9C72A – Acrich MJT 3030
Color Bin Structure
CIE Chromaticity Diagram (Warm white), Tj=25℃, IF=40mA
0.44
0.43
2900K
CIE Y
H21
H11
0.42
H13
H24 H34
H41
H31
H42
H43
H33
H23
0.40
H14
H32
H22
H12
0.41
2600K
2700K
H44
0.39
0.38
0.43
0.44
0.45
0.46
0.47
0.48
CIE X
H11
H21
H31
H41
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.4562
0.4260
0.4625
0.4275
0.4687
0.4289
0.4750
0.4304
0.4515
0.4168
0.4575
0.4182
0.4636
0.4197
0.4697
0.4211
0.4575
0.4182
0.4636
0.4197
0.4697
0.4211
0.4758
0.4225
0.4275
0.4687
0.4289
0.4750
0.4304
0.4810
0.4625
H12
H22
H32
0.4319
H42
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.4515
0.4168
0.4575
0.4182
0.4636
0.4197
0.4697
0.4211
0.4468
0.4077
0.4526
0.4090
0.4585
0.4104
0.4644
0.4118
0.4526
0.4090
0.4585
0.4104
0.4644
0.4118
0.4703
0.4132
0.4575
0.4182
0.4636
0.4197
0.4697
0.4211
0.4758
0.4225
H13
H23
H33
H43
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.4468
0.4077
0.4526
0.4090
0.4585
0.4104
0.4644
0.4118
0.4420
0.3985
0.4477
0.3998
0.4534
0.4012
0.4591
0.4025
0.4477
0.3998
0.4534
0.4012
0.4591
0.4025
0.4648
0.4038
0.4526
0.4090
0.4585
0.4104
0.4644
0.4118
0.4703
0.4132
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
CIE X
CIE Y
0.4420
0.3985
0.4477
0.3998
0.4534
0.4012
0.4591
0.4025
0.4373
0.3893
0.4428
0.3906
0.4483
0.3919
0.4538
0.3932
0.4428
0.3906
0.4483
0.3919
0.4538
0.3932
0.4593
0.3944
0.4477
0.3998
0.4534
0.4012
0.4591
0.4025
0.4648
0.4038
H14
H24
Rev1.0, July 7, 2015
H34
16
H44
www.seoulsemicon.com
Product Data Sheet
SAW9C72A – Acrich MJT 3030
Mechanical Dimensions
Bottom View
Top View
Cathode
Cathode
Mark (-)
Side View
Circuit
Cathode
Anode
1
2
ESD Protection Device
Notes :
(1) All dimensions are in millimeters.
(2) Scale : none
(3) Undefined tolerance is ±0.2mm
Rev1.0, July 7, 2015
17
www.seoulsemicon.com
Product Data Sheet
SAW9C72A – Acrich MJT 3030
Recommended Solder Pad
Notes :
(1) All dimensions are in millimeters.
(2) Scale : none
(3) This drawing without tolerances are for reference only
(4) Undefined tolerance is ±0.1mm
(5) The appearance and specifications of the product may be changed for improvement without notice.
Rev1.0, July 7, 2015
18
www.seoulsemicon.com
Product Data Sheet
SAW9C72A – Acrich MJT 3030
Reflow Soldering Characteristics
IPC/JEDEC J-STD-020
Table 6. Reflow Soldering Characteristics
Profile Feature
Sn-Pb Eutectic Assembly
Pb-Free Assembly
Average ramp-up rate (Ts_max to Tp)
3° C/second max.
3° C/second max.
Preheat
- Temperature Min (Ts_min)
- Temperature Max (Ts_max)
- Time (Ts_min to Ts_max) (ts)
100 °C
150 °C
60-120 seconds
150 °C
200 °C
60-180 seconds
Time maintained above:
- Temperature (TL)
- Time (tL)
183 °C
60-150 seconds
217 °C
60-150 seconds
Peak Temperature (Tp)
215℃
260℃
Time within 5°C of actual Peak
Temperature (tp)2
10-30 seconds
20-40 seconds
Ramp-down Rate
6 °C/second max.
6 °C/second max.
Time 25°C to Peak Temperature
6 minutes max.
8 minutes max.
Caution :
(1) Reflow soldering is recommended not to be done more than two times
In the case of more than 24 hours passed soldering after first, LEDs will be damaged.
(2) Repairs should not be done after the LEDs have been soldered
When repair is unavoidable, suitable tools must be used.
(3) Die slug is to be soldered.
(4) When soldering, do not put stress on the LEDs during heating.
(5) After soldering, do not warp the circuit board.
Rev1.0, July 7, 2015
19
www.seoulsemicon.com
Product Data Sheet
SAW9C72A – Acrich MJT 3030
Emitter Tape & Reel Packaging
( Tolerance: ±0.2, Unit: mm )
Notes :
(1) Quantity : Max 4,500pcs/Reel
(2) Cumulative Tolerance : Cumulative Tolerance/10 pitches to be ±0.2mm
(3) Adhesion Strength of Cover Tape
Adhesion strength to be 0.1-0.7N when the cover tape is turned off from the carrier tape
at the angle of 10˚ to the carrier tape.
(4) Package : P/N, Manufacturing data Code No. and Quantity to be indicated on a damp proof Package.
Rev1.0, July 7, 2015
20
www.seoulsemicon.com
Product Data Sheet
SAW9C72A – Acrich MJT 3030
Emitter Tape & Reel Packaging
Reel
Aluminum Bag
Outer Box
Rev1.0, July 7, 2015
21
www.seoulsemicon.com
Product Data Sheet
SAW9C72A – Acrich MJT 3030
Product Nomenclature
Table 7. Part Numbering System : X1X2X3X4X5X6X7X8
Part Number Code
Description
Part Number
Value
X1
Company
S
SSC
X2
Top View LED series
A
Acrich
X3
Color Specification
W9
CRI 90
X4
Package series
C
3030 Series
X5X6
Characteristic code
72
X7
Revision
A
Table 8. Lot Numbering System :Y1Y2Y3Y4Y5Y6Y7Y8Y9Y10–Y11Y12Y13Y14Y15Y16Y17
Lot Number Code
Description
Y1Y2
Year
Y3
Month
Y4Y5
Day
Y6
Top View LED series
Y7Y8Y9Y10
Mass order
Y11Y12Y13Y14Y15Y16Y17
Internal Number
Rev1.0, July 7, 2015
Lot Number
22
Value
www.seoulsemicon.com
Product Data Sheet
SAW9C72A – Acrich MJT 3030
Handling of Silicone Resin for LEDs
(1) During processing, mechanical stress on the surface should be minimized as much as possible.
Sharp objects of all types should not be used to pierce the sealing compound.
(2) In general, LEDs should only be handled from the side. By the way, this also applies to LEDs
without a silicone sealant, since the surface can also become scratched.
(3) When populating boards in SMT production, there are basically no restrictions regarding the form
of the pick and place nozzle, except that mechanical pressure on the surface of the resin must be
prevented. This is assured by choosing a pick and place nozzle which is larger than the LED’s
reflector area.
(4) Silicone differs from materials conventionally used for the manufacturing of LEDs. These
conditions must be considered during the handling of such devices. Compared to standard
encapsulants, silicone is generally softer, and the surface is more likely to attract dust.
As mentioned previously, the increased sensitivity to dust requires special care during processing.
In cases where a minimal level of dirt and dust particles cannot be guaranteed, a suitable cleaning
solution must be applied to the surface after the soldering of components.
(5) SSC suggests using isopropyl alcohol for cleaning. In case other solvents are used, it must be
assured that these solvents do not dissolve the package or resin.
Ultrasonic cleaning is not recommended. Ultrasonic cleaning may cause damage to the LED.
(6) Please do not mold this product into another resin (epoxy, urethane, etc) and do not handle this.
product with acid or sulfur material in sealed space.
Rev1.0, July 7, 2015
23
www.seoulsemicon.com
Product Data Sheet
SAW9C72A – Acrich MJT 3030
Precaution for Use
(1) Storage
To avoid the moisture penetration, we recommend store in a dry box with a desiccant.
The recommended storage temperature range is 5℃ to 30℃ and a maximum humidity of
RH50%.
(2) Use Precaution after Opening the Packaging
Use proper SMT techniques when the LED is to be soldered dipped as separation of the lens may
affect the light output efficiency.
Pay attention to the following:
a. Recommend conditions after opening the package
- Sealing
- Temperature : 5 ~ 40℃ Humidity : less than RH30%
b. If the package has been opened more than 4 week(MSL_2a) or the color of the desiccant
changes, components should be dried for 10-12hr at 60±5℃
(3) Do not apply mechanical force or excess vibration during the cooling process to normal
temperature after soldering.
(4) Do not rapidly cool device after soldering.
(5) Components should not be mounted on warped (non coplanar) portion of PCB.
(6) Radioactive exposure is not considered for the products listed here in.
(7) Gallium arsenide is used in some of the products listed in this publication.
These products are dangerous if they are burned or shredded in the process of disposal.
It is also dangerous to drink the liquid or inhale the gas generated by such products when
chemically disposed of.
(8) This device should not be used in any type of fluid such as water, oil, organic solvent and etc.
When washing is required, IPA (Isopropyl Alcohol) should be used.
(9) When the LEDs are in operation the maximum current should be decided after measuring
the package temperature.
(10) LEDs must be stored properly to maintain the device. If the LEDs are stored for 3 months or
more after being shipped from SSC, a sealed container with a nitrogen atmosphere should
be used for storage.
Rev1.0, July 7, 2015
24
www.seoulsemicon.com
Product Data Sheet
SAW9C72A – Acrich MJT 3030
Precaution for Use
(11) The appearance and specifications of the product may be modified for improvement without
notice.
(12) Long time exposure of sunlight or occasional UV exposure will cause lens discoloration.
(13) VOCs (Volatile organic compounds) emitted from materials used in the construction of fixtures
can penetrate silicone encapsulants of LEDs and discolor when exposed to heat and photonic
energy. The result can be a significant loss of light output from the fixture. Knowledge of the
properties of the materials selected to be used in the construction of fixtures can help prevent
these issues.
(14) Attaching LEDs, do not use adhesives that outgas organic vapor.
(15) The driving circuit must be designed to allow forward voltage only when it is ON or OFF.
If the reverse voltage is applied to LED, migration can be generated resulting in LED damage.
(16) Similar to most Solid state devices;
LEDs are sensitive to Electro-Static Discharge (ESD) and Electrical Over Stress (EOS).
Below is a list of suggestions that Seoul Semiconductor purposes to minimize these effects.
a. ESD (Electro Static Discharge)
Electrostatic discharge (ESD) is the defined as the release of static electricity when two objects come
into contact. While most ESD events are considered harmless, it can be an expensive problem in
many industrial environments during production and storage. The damage from ESD to an LEDs may
cause the product to demonstrate unusual characteristics such as:
- Increase in reverse leakage current lowered turn-on voltage
- Abnormal emissions from the LED at low current
The following recommendations are suggested to help minimize the potential for an ESD event.
One or more recommended work area suggestions:
- Ionizing fan setup
- ESD table/shelf mat made of conductive materials
- ESD safe storage containers
One or more personnel suggestion options:
- Antistatic wrist-strap
- Antistatic material shoes
- Antistatic clothes
Environmental controls:
- Humidity control (ESD gets worse in a dry environment)
Rev1.0, July 7, 2015
25
www.seoulsemicon.com
Product Data Sheet
SAW9C72A – Acrich MJT 3030
Precaution for Use
b. EOS (Electrical Over Stress)
Electrical Over-Stress (EOS) is defined as damage that may occur when an electronic device is
subjected to a current or voltage that is beyond the maximum specification limits of the device.
The effects from an EOS event can be noticed through product performance like:
- Changes to the performance of the LED package
(If the damage is around the bond pad area and since the package is completely encapsulated
the package may turn on but flicker show severe performance degradation.)
- Changes to the light output of the luminaire from component failure
- Components on the board not operating at determined drive power
Failure of performance from entire fixture due to changes in circuit voltage and current across total
circuit causing trickle down failures. It is impossible to predict the failure mode of every LED exposed
to electrical overstress as the failure modes have been investigated to vary, but there are some
common signs that will indicate an EOS event has occurred:
- Damaged may be noticed to the bond wires (appearing similar to a blown fuse)
- Damage to the bond pads located on the emission surface of the LED package
(shadowing can be noticed around the bond pads while viewing through a microscope)
- Anomalies noticed in the encapsulation and phosphor around the bond wires.
- This damage usually appears due to the thermal stress produced during the EOS event.
c. To help minimize the damage from an EOS event Seoul Semiconductor recommends utilizing:
- A surge protection circuit
- An appropriately rated over voltage protection device
- A current limiting device
Rev1.0, July 7, 2015
26
www.seoulsemicon.com
Product Data Sheet
SAW9C72A – Acrich MJT 3030
Company Information
Published by
Seoul Semiconductor © 2013 All Rights Reserved.
Company Information
Seoul Semiconductor (www.SeoulSemicon.com) manufacturers and packages a wide selection of
light emitting diodes (LEDs) for the automotive, general illumination/lighting, Home appliance, signage
and back lighting markets. The company is the world’s fifth largest LED supplier, holding more than
10,000 patents globally, while offering a wide range of LED technology and production capacity in
areas such as “nPola”, "Acrich", the world’s first commercially produced AC LED, and "Acrich MJT Multi-Junction Technology" a proprietary family of high-voltage LEDs.
The company’s broad product portfolio includes a wide array of package and device choices such as
Acrich and Acirch2, high-brightness LEDs, mid-power LEDs, side-view LEDs, and through-hole type
LEDs as well as custom modules, displays, and sensors.
Legal Disclaimer
Information in this document is provided in connection with Seoul Semiconductor products. With
respect to any examples or hints given herein, any typical values stated herein and/or any information
regarding the application of the device, Seoul Semiconductor hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual
property rights of any third party. The appearance and specifications of the product can be changed
to improve the quality and/or performance without notice.
Rev1.0, July 7, 2015
27
www.seoulsemicon.com