ADA4807-1/ADA4807-2 (Rev. A)

3.1 nV/√Hz, 1 mA, 180 MHz,
Rail-to-Rail Input/Output Amplifiers
ADA4807-1/ADA4807-2
Data Sheet
PIN CONNECTION DIAGRAMS
6
+VS
–VS 2
5
DISABLE
+IN 3
4
–IN
12611-001
VOUT 1
Figure 1. 6-Lead SC70 and 6-Lead SOT-23
VOUT1 1
8
+VS
–IN1 2
7
VOUT2
+IN1 3
6
–IN2
–VS 4
5
+IN2
12611-058
Low power
Quiescent current per amplifier: 1.0 mA at ±5 V
Fully specified at +3 V, +5 V, and ±5 V supplies
High speed and fast settling for ±5 V
180 MHz, −3 dB bandwidth (G = +1, VOUT = 20 mV p-p)
28 MHz, −3 dB bandwidth (G = +1, VOUT = 2 V p-p)
225 V/μs slew rate for 5 V step (rise)
47 ns settling time to 0.1% for 4 V step
Rail-to-rail input and output
Low distortion at ±5 V (HD2/HD3)
−112 dBc/−115 dBc at 100 kHz, VOUT = 2 V p-p
−95 dBc/−79 dBc at 1 MHz, VOUT = 2 V p-p
Low noise
3.1 nV/√Hz, f = 100 kHz
0.7 pA/√Hz, f = 100 kHz
Low input noise voltage 1/f corner: 29 Hz
Low input bias current: −1.2 μA typical
Linear output current: 60 mA (sourcing) for ±5 V and +5 V
Low input offset voltage: ±125 μV maximum
Low input offset voltage drift: 3.8 μV/°C maximum
Figure 2. 8-Lead MSOP Pin Configuration
VOUT1
–IN1
+IN1
–VS
DISABLE1
1
2
3
4
5
10
9
8
7
6
+VS
VOUT2
–IN2
+IN2
DISABLE2
12611-059
FEATURES
Figure 3. 10-Lead LFCSP Pin Configuration
APPLICATIONS
High speed, battery operated systems
High component density systems
High resolution analog-to-digital converter (ADC) drivers
Portable test instruments
Active filters
GENERAL DESCRIPTION
The ADA4807-1/ADA4807-2 are low power, low noise,
rail-to-rail voltage feedback amplifiers with exceptionally high
performance. They are designed to have the lowest input noise
(3.1 nV/√Hz and 0.7 pA/√Hz) among high speed, rail-to-rail
amplifiers in the industry while operating on only 1 mA or less
of quiescent supply current, making them ideal for a wide range
of applications from battery-powered, portable instrumentation
to high speed systems where component density requires lower
power dissipation. The ADA4807-1/ADA4807-2 operate over a
wide range of supply voltages from ±1.5 V to ±5 V, as well as from
3 V to 10 V single supplies, and include a disable feature that allows
reduction of the typical quiescent supply current to 2.4 μA or less
when asserted.
For systems with high dynamic range signals, the output voltage
swings to within 70 mV of each rail, maximizing the output
dynamic range, and the full, rail-to-rail input stage permits input
operation up to and beyond the supply rails.
Rev. A
The ADA4807-1/ADA4807-2 feature high speed performance of
180 MHz small signal −3 dB bandwidth, a 225 V/μs slew rate, and a
settling time of 47 ns to 0.1% (4 V step) with a low input offset
voltage of ±20 μV and 0.7 μV/°C drift. For ±5 V supplies, the
HD2 is −112 dBc and HD3 is –115 dBc for a 2 V p-p, 100 kHz
output signal driving a 1 kΩ load. The low distortion and fast
settling time make these amplifiers ideal for driving high speed
single-supply precision ADCs with up to 18-bit resolution. The
ADA4807-1/ADA4807-2 deliver this excellent performance
while consuming 1 mA or less of quiescent current.
The ADA4807-1 (single) is available in space-saving 6-lead SC70
and 6-lead SOT-23 packages. The ADA4807-2 (dual) is available
in 10-lead LFCSP and 8-lead MSOP packages. The ADA4807-1/
ADA4807-2 operate over the −40°C to +125°C industrial
temperature range.
Table 1. Other Rail-to-Rail Amplifiers
Device
AD8031/AD8032
AD8027/AD8028
AD8029/AD8030
Bandwidth
(MHz)
80
190
125
Slew
Rate
(V/μs)
35
90
62
Voltage
Noise
(nV/√Hz)
15
4.3
16.5
Max
VOS
(mV)
1.5
0.8
5.0
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2014–2015 Analog Devices, Inc. All rights reserved.
Technical Support
www.analog.com
ADA4807-1/ADA4807-2
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Frequency and Supply Current................................................. 14
Applications ....................................................................................... 1
DC and Input Common-Mode Peformance .......................... 15
General Description ......................................................................... 1
Slew, Transient, Settling Time, and Crosstalk............................. 16
Functional Block Diagrams ............................................................. 1
Distortion and Noise.................................................................. 17
Revision History ............................................................................... 2
Output Characteristics............................................................... 18
Specifications..................................................................................... 3
Overdrive Recovery and Power-Up/Power-Down ................ 19
±5 V Supply ................................................................................... 3
Theory of Operation ...................................................................... 20
5 V Supply...................................................................................... 5
DISABLE Circuitry .................................................................... 21
3 V Supply...................................................................................... 7
Input Protection ......................................................................... 21
Absolute Maximum Ratings............................................................ 9
Noise Considerations ................................................................. 21
Maximum Power Dissipation ..................................................... 9
Applications Information .............................................................. 22
Thermal Resistance ...................................................................... 9
Capacitive Load Drive ............................................................... 22
ESD Caution .................................................................................. 9
Layout, Grounding, and Bypassing .......................................... 22
Pin Configurations and Function Descriptions ......................... 10
Outline Dimensions ....................................................................... 23
Typical Performance Characteristics ........................................... 12
Ordering Guide .......................................................................... 25
Frequency Response................................................................... 12
REVISION HISTORY
4/15—Rev. 0 to Rev. A
Added ADA4807-2 ............................................................. Universal
Changes to Features Section, General Description
Section, and Pin Connection Diagrams Heading ........................ 1
Added Figure 2 and Figure 3; Renumbered Sequentially ........... 1
Changes to Table 1 ............................................................................ 3
Changes to Table 2 ............................................................................ 5
Changes to Table 3 ............................................................................ 7
Changes to Table 6 and Figure 4 ..................................................... 9
Added Figure 7, Figure 8, and Table 8; Renumbered
Sequentially ..................................................................................... 11
Reorganized Layout, Typical Performance Characteristics
Section .............................................................................................. 12
Added Figure 36 ............................................................................. 16
Changes to Figure 37 Caption, Figure 38 Caption, Figure 39
Caption, and Figure 40 Caption ................................................... 17
Changes to Figure 44 and Figure 47 ............................................ 18
Change to Theory of Operation Section ..................................... 20
Changes to DISABLE Circuitry Section, Table 9, and Noise
Considerations Section .................................................................. 21
Added Figure 65 and Figure 66 .................................................... 23
Changes to Ordering Guide .......................................................... 25
12/14—Revision 0: Initial Version
Rev. A | Page 2 of 25
Data Sheet
ADA4807-1/ADA4807-2
SPECIFICATIONS
±5 V SUPPLY
TA = 25°C, VS = ±5 V, RLOAD = 1 kΩ to midsupply, RF = 0 Ω, G = +1, −VS ≤ VICM ≤ +VS − 1.5 V, unless otherwise noted.
Table 2.
Parameter
DYNAMIC PERFORMANCE
–3 dB Bandwidth
Slew Rate
Settling Time to 0.1%
DISTORTION/NOISE PERFORMANCE
Second Harmonic
Third Harmonic
Peak-to-Peak Noise
Input Voltage Noise
Input Noise Voltage 1/f Corner
Input Current Noise
Input Current Noise 1/f Corner
DC PERFORMANCE
Input Offset Voltage
Input Offset Voltage Drift
Input Bias Current
Input Bias Current Drift
Input Offset Current
Input Offset Current Drift
Open-Loop Gain
INPUT CHARACTERISTICS
Common-Mode Input Resistance
Differential Input Resistance
Common-Mode Input Capacitance
Differential Input Capacitance
Input Common-Mode Voltage Range
Common-Mode Rejection Ratio (CMRR)
DISABLE CHARACTERISTICS1
DISABLE Low Input Voltage
DISABLE High Input Voltage
DISABLE Low Input Current
DISABLE High Input Current
Test Conditions/Comments
Min
Typ
Max
Unit
G = +1, VOUT = 20 mV p-p
G = +1, VOUT = 2 V p-p
G = +1, VOUT = 5 V step, 20% to 80%, rise/fall
G = +1, VOUT = 4 V step
180
28
225/250
47
MHz
MHz
V/μs
ns
fC = 1 kHz, VOUT = 2 V p-p
fC = 100 kHz, VOUT = 2 V p-p
fC = 1 MHz, VOUT = 2 V p-p, ADA4807-1
fC = 1 MHz, VOUT = 2 V p-p, ADA4807-2
fC = 1 kHz, VOUT = 2 V p-p
fC = 100 kHz, VOUT = 2 V p-p
fC = 1 MHz, VOUT = 2 V p-p
f = 0.1 Hz to 10 Hz
f = 100 kHz
f = 1 kHz
f = 10 Hz
−141
−112
−95
−84
−144
−115
−79
160
3.1
3.3
5.8
29
0.7
10
2
dBc
dBc
dBc
dBc
dBc
dBc
dBc
nV p-p
nV/√Hz
nV/√Hz
nV/√Hz
Hz
pA/√Hz
pA/√Hz
kHz
f = 100 kHz
f = 10 Hz
−VS ≤ VICM ≤ +VS − 1.5 V
+VS − 1.5 V ≤ VICM ≤ +VS
−VS ≤ VICM ≤ +VS − 1.2 V, TMIN to TMAX
−VS ≤ VICM ≤ +VS − 1.5 V
+VS − 1.5 V ≤ VICM ≤ +VS
−VS ≤ VICM ≤ +VS − 1.2 V, TMIN to TMAX
−VS ≤ VICM ≤ +VS − 1.5 V
+VS − 1.5 V ≤ VICM ≤ +VS
−VS ≤ VICM ≤ +VS − 1.2 V, TMIN to TMAX
VICM = −3 V to +2 V
Disabled
Enabled
Disabled
Enabled
Rev. A | Page 3 of 25
−125
−750
120
±20
±140
0.7
−1.2
530
2.5
8
25
30
130
+125
+750
3.7
−1.6
1000
3.6
100
150
250
μV
μV
μV/°C
μA
nA
nA/°C
nA
nA
pA/°C
dB
MΩ
kΩ
pF
pF
V
96
45
35
1
1
−VS − 0.2 to
+VS + 0.2
110
<1.3
>1.7
−470
−3
V
V
nA
nA
dB
ADA4807-1/ADA4807-2
Parameter
DISABLE On Time
DISABLE Off Time
OUTPUT CHARACTERISTICS
Saturated Output Voltage Swing
High
Low
Linear Output Current
Short-Circuit Current
Capacitive Load Drive
POWER SUPPLY
Operating Range
Quiescent Current per Amplifier
Power Supply Rejection Ratio (PSRR)
Positive
Negative
1
Data Sheet
Test Conditions/Comments
DISABLE input midswing point to >90%
of final VOUT
DISABLE input midswing point to <10%
of enabled quiescent current
Min
RLOAD = 1 kΩ
+VS − 0.08
−VS + 0.1
Sourcing
Sinking
Sourcing
Sinking
CLOAD = 15 pF
Typ
1.3
+VS = 3 V to 5 V, −VS = −5 V
+VS = 5 V, −VS = −3 V to −5 V
ns
+VS − 0.04
−VS + 0.07
60
50
80
76
17
V
V
mA
mA
mA
mA
% overshoot
1.0
2.4
98
98
Unit
μs
850
2.7
Enabled, no load, TA = 25°C
Disabled, TA = 25°C
Max
107
120
11
1.1
4.0
V
mA
μA
dB
dB
The disable pin is DISABLE on the ADA4807-1 and DISABLE1 or DISABLE2 for the ADA4807-2 LFCSP package, hereafter referred to as DISABLE for the ADA4807-1/ADA4807-2.
Rev. A | Page 4 of 25
Data Sheet
ADA4807-1/ADA4807-2
5 V SUPPLY
TA = 25°C, VS = 5 V, RLOAD = 1 kΩ to midsupply, RF = 0 Ω, G = +1, 0 V ≤ VICM ≤ +VS − 1.5 V, unless otherwise noted.
Table 3.
Parameter
DYNAMIC PERFORMANCE
–3 dB Bandwidth
Slew Rate
Settling Time to 0.1%
DISTORTION/NOISE PERFORMANCE
Second Harmonic
Third Harmonic
Peak-to-Peak Noise
Input Voltage Noise
Input Noise Voltage 1/f Corner
Input Current Noise
Input Current Noise 1/f Corner
DC PERFORMANCE
Input Offset Voltage
Input Offset Voltage Drift
Input Bias Current
Input Bias Current Drift
Input Offset Current
Input Offset Current Drift
Open-Loop Gain
INPUT CHARACTERISTICS
Common-Mode Input Resistance
Differential Input Resistance
Common-Mode Input Capacitance
Differential Input Capacitance
Input Common-Mode Voltage Range
CMRR
DISABLE CHARACTERISTICS
DISABLE Low Input Voltage
DISABLE High Input Voltage
DISABLE Low Input Current
DISABLE High Input Current
DISABLE On Time
DISABLE Off Time
Test Conditions/Comments
Min
Typ
Max
Unit
G = +1, VOUT = 20 mV p-p
G = +1, VOUT = 2 V p-p
G = +1, VOUT = 2 V step, 20% to 80%, rise/fall
G = +1, VOUT = 2 V step
170
28
145/160
40
MHz
MHz
V/μs
ns
fC = 1 kHz, VOUT = 2 V p-p
fC = 100 kHz, VOUT = 2 V p-p
fC = 1 MHz, VOUT = 2 V p-p, ADA4807-1
fC = 1 MHz, VOUT = 2 V p-p, ADA4807-2
fC = 1 kHz, VOUT = 2 V p-p
fC = 100 kHz, VOUT = 2 V p-p
fC = 1 MHz, VOUT = 2 V p-p
f = 0.1 Hz to 10 Hz
f = 100 kHz
f = 1 kHz
f = 10 Hz
−149
−111
−93
−83
−153
−115
−78
160
3.1
3.3
5.8
29
0.7
10
2
dBc
dBc
dBc
dBc
dBc
dBc
dBc
nV p-p
nV/√Hz
nV/√Hz
nV/√Hz
Hz
pA/√Hz
pA/√Hz
kHz
f = 100 kHz
f = 10 Hz
0 V ≤ VICM ≤ +VS − 1.5 V
+VS − 1.5 V ≤ VICM ≤ +VS
0 V ≤ VICM ≤ +VS − 1.2 V, TMIN to TMAX
0 V ≤ VICM ≤ +VS − 1.5 V
+VS − 1.5 V ≤ VICM ≤ +VS
0 V ≤ VICM ≤ +VS − 1.2 V, TMIN to TMAX
0 V ≤ VICM ≤ +VS − 1.5 V
+VS − 1.5 V ≤ VICM ≤ +VS
0 V ≤ VICM ≤ +VS − 1.2 V, TMIN to TMAX
VICM = 1 V to 3 V
Disabled
Enabled
Disabled
Enabled
DISABLE input midswing point to >90%
of final VOUT
DISABLE input midswing point to <10%
of enabled quiescent current
Rev. A | Page 5 of 25
−125
−720
113
±20
±110
0.7
−1.2
500
2.6
8
25
30
130
+125
+720
3.7
−2.0
1000
3.8
100
150
250
μV
μV
μV/°C
μA
nA
nA/°C
nA
nA
pA/°C
dB
MΩ
kΩ
pF
pF
V
96
45
35
1
1
−VS − 0.2 to
+VS + 0.2
110
<1.3
>1.8
−360
−1.3
450
V
V
nA
nA
ns
850
ns
dB
ADA4807-1/ADA4807-2
Parameter
OUTPUT CHARACTERISTICS
Saturated Output Voltage Swing
High
Low
Linear Output Current
Short-Circuit Current
Capacitive Load Drive
POWER SUPPLY
Operating Range
Quiescent Current per Amplifier
PSRR
Positive
Negative
Data Sheet
Test Conditions/Comments
Min
Typ
RLOAD = 1 kΩ
+VS − 0.05
−VS + 0.05
+VS − 0.03
−VS + 0.04
60
50
106
101
24
Sourcing
Sinking
Sourcing
Sinking
CLOAD = 15 pF
2.7
Enabled, no load, TA = 25°C
Disabled, TA = 25°C
+VS = 1.5 V to 3.5 V, −VS = −2.5 V
+VS = 2.5 V, −VS = −1.5 V to −3.5 V
Rev. A | Page 6 of 25
950
1.3
98
98
115
130
Max
Unit
V
V
mA
mA
mA
mA
% overshoot
11
1000
2.0
V
μA
μA
dB
dB
Data Sheet
ADA4807-1/ADA4807-2
3 V SUPPLY
TA = 25°C, VS = 3 V, RLOAD = 1 kΩ to midsupply, RF = 0 Ω, G = +1, 0 V ≤ VICM ≤ +VS − 1.5 V, unless otherwise noted.
Table 4.
Parameter
DYNAMIC PERFORMANCE
–3 dB Small Signal Bandwidth
Slew Rate
Settling Time to 0.1%
DISTORTION/NOISE PERFORMANCE
Second Harmonic
Third Harmonic
Peak-to-Peak Noise
Input Voltage Noise
Input Noise Voltage 1/f Corner
Input Current Noise
Input Current Noise 1/f Corner
DC PERFORMANCE
Input Offset Voltage
Input Offset Voltage Drift
Input Bias Current
Input Bias Current Drift
Input Offset Current
Input Offset Current Drift
Open-Loop Gain
INPUT CHARACTERISTICS
Common-Mode Input Resistance
Differential Input Resistance
Common-Mode Input Capacitance
Differential Input Capacitance
Input Common-Mode Voltage Range
CMRR
DISABLE CHARACTERISTICS
DISABLE Low Input Voltage
DISABLE High Input Voltage
DISABLE Low Input Current
DISABLE High Input Current
DISABLE On Time
DISABLE Off Time
Test Conditions/Comments
Min
Typ
Max
Unit
G = +1, VOUT = 20 mV p-p
G = +1, VOUT = 2 V p-p
G = +1, VOUT = 2 V step, 20% to 80%, rise/fall
G = +1, VOUT = 2 V step
165
28
118/237
40
MHz
MHz
V/μs
ns
fC = 1 kHz, VOUT = 2 V p-p
fC = 100 kHz, VOUT = 2 V p-p
fC = 1 MHz, VOUT = 2 V p-p
fC = 1 kHz, VOUT = 2 V p-p
fC = 100 kHz, VOUT = 2 V p-p
fC = 1 MHz, VOUT = 2 V p-p
f = 0.1 Hz to 10 Hz
f = 100 kHz
f = 10 kHz
f = 10 Hz
−98
−85
−65
−94
−91
−68
160
3.1
3.3
5.8
29
0.7
10
2
dBc
dBc
dBc
dBc
dBc
dBc
nV p-p
nV/√Hz
nV/√Hz
nV/√Hz
Hz
pA/√Hz
pA/√Hz
kHz
f = 100 kHz
f = 10 Hz
0 V ≤ VICM ≤ +VS − 1.5 V
+VS − 1.5 V ≤ VICM ≤ +VS
0 V ≤ VICM ≤ +VS − 1.2 V, TMIN to TMAX
0 V ≤ VICM ≤ +VS − 1.5 V
+VS − 1.5 V ≤ VICM ≤ +VS
0 V ≤ VICM ≤ +VS − 1.2 V, TMIN to TMAX
0 V ≤ VICM ≤ +VS − 1.5 V
+VS − 1.5 V ≤ VICM ≤ +VS
0 V ≤ VICM ≤ +VS − 1.2 V, TMIN to TMAX
VICM = 0.3 V to 1.3 V
Disabled
Enabled
Disabled
Enabled
DISABLE input midswing point to >90%
of final VOUT
DISABLE input midswing point to <10%
of enabled quiescent current
Rev. A | Page 7 of 25
−125
−720
104
±20
±125
0.7
−1.2
500
2.7
8
25
40
113
+125
+720
3.8
−2.0
1000
3.8
130
150
230
μV
μV
μV/°C
μA
nA
nA/°C
nA
nA
pA/°C
dB
MΩ
kΩ
pF
pF
V
92
45
35
1
1
−VS − 0.2 to
+VS + 0.2
110
<1.1
>1.5
−325
−500
450
V
V
nA
nA
ns
850
ns
dB
ADA4807-1/ADA4807-2
Parameter
OUTPUT CHARACTERISTICS
Saturated Output Voltage Swing
High
Low
Linear Output Current
Short-Circuit Current
Capacitive Load Drive
POWER SUPPLY
Operating Range
Quiescent Current per Amplifier
PSRR
Positive
Negative
Data Sheet
Test Conditions/Comments
Min
Typ
RLOAD = 1 kΩ
+VS − 0.04
−VS + 0.04
+VS − 0.02
−VS + 0.03
50
40
80
70
30
Sourcing
Sinking
Sourcing
Sinking
CLOAD = 15 pF
2.7
Enabled, no load, TA = 25°C
Disabled, TA = 25°C
+VS = 1.5 V to 3.5 V, −VS = −1.5 V
+VS = 1.5 V, −VS = −1.5 V to −3.5 V
Rev. A | Page 8 of 25
915
1.0
97
97
113
130
Max
Unit
V
V
mA
mA
mA
mA
% overshoot
11
1000
2.0
V
μA
μA
dB
dB
Data Sheet
ADA4807-1/ADA4807-2
ABSOLUTE MAXIMUM RATINGS
THERMAL RESISTANCE
Storage Temperature Range (All Packages)
Lead Temperature (Soldering 10 Sec)
Rating
11 V
See Figure 4
±VS ± 0.2 V
±1.4 V
Observe power
derating curves
in Figure 4
−65°C to +125°C
300°C
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
MAXIMUM POWER DISSIPATION
The maximum power that can be safely dissipated by the
ADA4807-1/ADA4807-2 is limited by the associated rise in
junction temperature. The maximum safe junction temperature
for plastic encapsulated devices is determined by the glass
transition temperature of the plastic, approximately 150°C.
Exceeding this limit temporarily can cause a shift in parametric
performance due to a change in the stresses exerted on the die
by the package. Exceeding a junction temperature of 175°C for
an extended period can result in device failure.
θJA is specified for the worst-case conditions, that is, a device
soldered in a circuit board for surface-mount packages.
Table 6. Thermal Resistance
Package Type
6-Lead SC70, 4-Layer Board
6-Lead SOT-23, 4-Layer Board
8-Lead MSOP
10-Lead LFCSP
θJA
209
223
123
51
Unit
°C/W
°C/W
°C/W
°C/W
4.0
3.5
3.0
2.5
LFCSP
2.0
1.5
1.0
MSOP
SOT-23
0.5
0
–40
SC70
–25
–10
5
20
35
50
65
80
AMBIENT TEMPERATURE (°C)
95
110
125
12611-003
Parameter
Supply Voltage
Internal Power Dissipation
Input Voltage (Common Mode)
Differential Input Voltage
Output Short-Circuit Duration
MAXIMUM POWER DISSIPATION (W)
Table 5.
Figure 4. Maximum Power Dissipation vs. Ambient Temperature for a
4-Layer Board
ESD CAUTION
Although the ADA4807-1/ADA4807-2 are internally shortcircuit protected, this may not be sufficient to guarantee that
the maximum junction temperature (150°C) is not exceeded
under all conditions. To ensure proper operation, it is necessary
to observe the power derating curves shown in Figure 4.
Rev. A | Page 9 of 25
ADA4807-1/ADA4807-2
Data Sheet
6
+VS
–VS 2
5
DISABLE
+IN 3
4
–IN
Figure 5. ADA4807-1 6-Lead SC70 Pin Configuration
Mnemonic
VOUT
−VS
+IN
−IN
DISABLE
+VS
6
+VS
–VS 2
5
DISABLE
+IN 3
4
–IN
Figure 6. ADA4807-1 6-Lead SOT-23 Pin Configuration
Table 7. ADA4807-1 Pin Function Descriptions
Pin No.
1
2
3
4
5
6
VOUT 1
12611-005
VOUT 1
12611-004
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
Description
Output
Negative Supply
Noninverting Input
Inverting Input
Active Low Power-Down
Positive Supply
Rev. A | Page 10 of 25
1
2
3
4
5
10
9
8
7
6
+VS
VOUT2
–IN2
+IN2
DISABLE2
NOTES
1. THE EXPOSED PAD CAN BE CONNECTED TO
GROUND OR POWER PLANES, OR IT CAN
BE LEFT FLOATING.
12611-060
VOUT1
–IN1
+IN1
–VS
DISABLE1
ADA4807-1/ADA4807-2
Figure 7. ADA4807-2 10-Lead LFCSP Pin Configuration
VOUT1 1
8
+VS
–IN1 2
7
VOUT2
+IN1 3
6
–IN2
–VS 4
5
+IN2
12611-061
Data Sheet
Figure 8. ADA4807-2 8-Lead MSOP Pin Configuration
Table 8. ADA4807-2 Pin Function Descriptions
Pin No.
10-Lead LFCSP
8-Lead MSOP
1
1
2
2
3
3
4
4
5
Not applicable
6
Not applicable
7
5
8
6
9
7
10
8
Not applicable
Mnemonic
VOUT1
−IN1
+IN1
−VS
DISABLE1
DISABLE2
+IN2
−IN2
VOUT2
+VS
EPAD
Description
Output 1.
Inverting Input 1.
Noninverting Input 1.
Negative Supply.
Active Low Power-Down 1.
Active Low Power-Down 2.
Noninverting Input 2.
Inverting Input 2.
Output 2.
Positive Supply.
Exposed Pad. For the 10-Lead LFCSP, the exposed pad can be connected to ground
or power planes, or it can be left floating.
Rev. A | Page 11 of 25
ADA4807-1/ADA4807-2
Data Sheet
TYPICAL PERFORMANCE CHARACTERISTICS
27
24
21
18
15
12
9
6
3
0
–3
–6
–9
–12
–15
–18
–21
–24
0.1
6
VS = ±2.5V
G = +1
3 R
LOAD = 1kΩ
VS = ±2.5V
RLOAD = 1kΩ
VOUT = 20mV p-p
G = +10
CLOSED-LOOP GAIN (dB)
G = +2
G = +1
G = –1
–6
–9
–15
100
1000
–24
0.1
1
10
6
3
0
0
±5.0V
–3
–6
–9
–12
±1.5V
–15
VOUT = 2V p-p
G = +1
RLOAD = 1kΩ
±1.5V
–3
–6
–9
–12
–15
–18
±5.0V
–21
–24
–18
100
1000
FREQUENCY (MHz)
–30
0.1
12611-007
10
3
0
CLOSED-LOOP GAIN (dB)
–12
–15
–3
–6
–9
–12
–40°C
–15
+125°C
–18
+25°C
–21
–24
VS = ±2.5V
G = +1
VOUT = 20mV p-p
RLOAD = 1kΩ
–27
10
FREQUENCY (MHz)
100
1000
–30
0.1
12611-008
CLOSED-LOOP GAIN (dB)
–9
1
1000
VS = ±2.5V
G = +1
VOUT = 2V p-p
RLOAD = 1kΩ
3
–6
–24
0.1
100
6
–40°C
+25°C
+85°C
+125°C
–3
–21
10
Figure 13. Large Signal Frequency Response for Various Supplies
0
–18
1
FREQUENCY (MHz)
Figure 10. Small Signal Frequency Response for Various Supplies
6
±2.5V
–27
±2.5V
1
1000
Figure 12. Frequency Response for Various Output Amplitudes
VOUT = 20mV p-p
G = +1
RLOAD = 1kΩ
–21
0.1
100
FREQUENCY (MHz)
12611-010
10
Figure 11. Small Signal Frequency Response for Various Temperatures
1
10
FREQUENCY (MHz)
100
1000
12611-011
1
12611-009
–21
CLOSED-LOOP GAIN (dB)
CLOSED-LOOP GAIN (dB)
2V p-p
–12
Figure 9. Small Signal Frequency Response for Various Gains,
RF = 499 Ω
3
20mV p-p
–3
–18
FREQUENCY (MHz)
6
200mV p-p
0
G = +5
12611-006
CLOSED-LOOP GAIN (dB)
FREQUENCY RESPONSE
Figure 14. Large Signal Frequency Response for Various Temperatures
Rev. A | Page 12 of 25
Data Sheet
3
CLOSED-LOOP GAIN (dB)
CLOSED-LOOP GAIN (dB)
0
1kΩ
0
–3
–6
–9
100Ω
–12
–15
–18
10
100
1000
Figure 15. Small Signal Frequency Response for Various Resistive Loads
–12
100Ω
–15
–18
–21
3
0.5
0.4
CLOSED-LOOP GAIN (dB)
6
0
–3
0pF
–6
–9
5pF
–12
–15
10pF
–18
1
10
100
1000
FREQUENCY (MHz)
Figure 16. Small Signal Frequency Response for Various Capacitive Loads
VS = ±2.5V
G = +1
VOUT = 20mV p-p
RLOAD = 1kΩ
VCM = 0V
0
–3
–6
VCM = +VS – 0.5V
–9
–12
–15
1
10
100
FREQUENCY (MHz)
1000
12611-013
–18
–21
0.1
1000
VS = ±2.5V
G = +1
RLOAD = 1kΩ
20mV p-p
0.3
0.2
0.1
0
–0.1
2V p-p
–0.2
200mV p-p
–0.3
–0.5
12611-050
–24
0.1
100
–0.4
15pF
–21
10
Figure 18. Large Signal Frequency Response for Various Resistive Loads
0.6
VS = ±2.5V
G = +1
VOUT = 20mV p-p
RLOAD = 1kΩ
9
1
FREQUENCY (MHz)
12
CLOSED-LOOP GAIN (dB)
1kΩ
–9
–30
0.1
12611-012
1
FREQUENCY (MHz)
CLOSED-LOOP GAIN (dB)
–6
–27
–24
0.1
3
–3
–24
–21
6
VS = ±2.5V
VOUT = 2V p-p
G = +1
12611-015
3
6
VS = ±2.5V
VOUT = 20mV p-p
G = +1
Figure 17. Small Signal Frequency Response for
Various Input Common-Mode Voltages (VCM)
Rev. A | Page 13 of 25
–0.6
0.1
1
10
FREQUENCY (MHz)
Figure 19. 0.1 dB Flatness Frequency Response for
Various Output Amplitudes
100
12611-016
6
ADA4807-1/ADA4807-2
ADA4807-1/ADA4807-2
Data Sheet
FREQUENCY AND SUPPLY CURRENT
VS = ±2.5V
G = +1
–40
ON
DISABLE = +VS
0
–50
–60
–20
–70
–40
CMRR (dB)
–60
OFF
DISABLE = –VS
–80
–80
–90
–100
–100
–110
–120
–120
0.1
1
10
100
1000
FREQUENCY (MHz)
–130
0.001
12611-017
–140
0.01
0.01
Figure 20. Off Isolation vs. Frequency
–30
100
140
–40
80
120
40
80
20
60
0
40
–20
20
1
10
100
10
100
VS = ±2.5V
∆VS = –16dBm
–PSRR
–70
+PSRR
–80
–90
–100
–110
0
1000
–120
0.001
12611-018
0.1
100
–60
PSRR (dB)
100
0.01
10
–50
PHASE (Degrees)
60
FREQUENCY (MHz)
0.01
0.1
1
FREQUENCY (MHz)
Figure 21. Open-Loop Gain and Phase vs. Frequency
Figure 24. PSRR vs. Frequency
1.6
2.5
1.4
2.0
DISABLE SUPPLY CURRENT (μA)
DISABLE = –VS
VS = ±5.0V
1.2
1.0
0.8
VS = ±2.5V
VS = ±1.5V
0.6
0.4
0.2
+IS
1.5
1.0
0.5
0
–0.5
–1.0
–IS
0
–40
–25
–10
5
20
35
50
65
80
95
110
TEMPERATURE (°C)
125
Figure 22. Quiescent Supply Current vs. Temperature
–2.0
0
1
2
3
4
5
POWER SUPPLY, ±VS (V)
Figure 25. DISABLE Supply Current vs. Power Supply
Rev. A | Page 14 of 25
6
12611-022
–1.5
12611-019
QUIESCENT SUPPLY CURRENT (mA)
OPEN-LOOP GAIN (dB)
VS = ±2.5V
–40
0.001
1
Figure 23. CMRR vs. Frequency
160
120
0.1
FREQUENCY (MHz)
12611-020
OFF ISOLATION (dB)
VS = ±2.5V
∆VCM = 0dBm
12611-021
20
Data Sheet
ADA4807-1/ADA4807-2
DC AND INPUT COMMON-MODE PEFORMANCE
250
200
150
100
0
–600
–400
–200
0
200
400
INPUT REFERRED OFFSET VOLTAGE (µV)
600
Figure 26. Input Referred Offset Voltage Distribution
200
100
0
–100
–200
–300
–5.2
12611-122
50
PNP
VS = ±5V
VCM = 0V
450 UNITS
= –1.58nA
σ = 6.62nA
30
200
150
100
50
0
–50
50
INPUT OFFSET CURRENT (nA)
100
150
12611-123
–100
Figure 27. Input Offset Current Distribution
0
1.3
2.6
3.9
5.2
VS = ±5.0V
10 UNITS
20
10
0
–10
–20
VS = ±5.0V
10 UNITS
0
–0.5
–1.0
–3.9
–2.6
–1.3
0
1.3
2.6
3.9
5.2
INPUT COMMON-MODE VOLTAGE (V)
12611-124
–1.5
–2.0
–5.2
–40
–5.2
–3.9
–2.6
–1.3
0
1.3
2.6
3.9
5.2
INPUT COMMON-MODE VOLTAGE (V)
Figure 30. Input Offset Current vs. Input Common-Mode Voltage
0.5
INPUT BIAS CURRENT (µA)
–1.3
–30
0
–150
1.0
–2.6
Figure 29. Input Referred Offset Voltage vs. Input Common-Mode Voltage
INPUT OFFSET CURRENT (nA)
NUMBERING UNITS
250
NPN
VS = ±5V
VCM = +VS – 0.5V
450 UNITS
= –1.18nA
σ = 22.59nA
–3.9
INPUT COMMON-MODE VOLTAGE (V)
40
300
VS = ±5V
10 UNITS
12611-125
NUMBERING UNITS
300
300
PNP
VS = ±5V
VCM = 0V
450 UNITS
= –1.5µV
σ = 17.9µV
Figure 28. Input Bias Current vs. Input Common-Mode Voltage
Rev. A | Page 15 of 25
12611-126
350
NPN
VS = ±5V
VCM = +VS – 0.5V
450 UNITS
= –32.7µV
σ = 109.4µV
INPUT REFERRED OFFSET VOLTAGE (µV)
400
ADA4807-1/ADA4807-2
Data Sheet
SLEW, TRANSIENT, SETTLING TIME, AND CROSSTALK
G = +1
RLOAD = 1kΩ
260
0.5
VS = ±5V
VOUT = 5V p-p
FALLING EDGE
OUTPUT VOLTAGE (% of Final Value)
280
RISING EDGE
220
200
180
FALLING EDGE
VS = ±2.5V
VOUT = 2V p-p
160
RISING EDGE
140
120
0.3
0.2
0.1
0
–0.1
–0.2
–0.3
–10
5
20
35
50
65
80
95
110
125
TEMPERATURE (°C)
–0.5
0
20
40
10
OUTPUT VOLTAGE (mV)
10
5
0
–5
0.1
0.2
0.3
0.4
0.5
0.6
0.7
TIME (µs)
–20
CROSSTALK (dB)
0
–0.5
±1.5V
±5V
0.2
0.3
0.4
0.5
0.6
0.7
0.8
VS = ±2.5V
VOUT = 2V p-p
DISABLE = 2.5V
–60
–80
–100
–140
300
0.1
400
500
600
700
DRIVING AMP 1
–120
–1.0
200
0
–40
±2.5V
800
900
TIME (ns)
12611-025
OUTPUT VOLTAGE (V)
–5
0
0.5
100
0pF
5pF
10pF
15pF
0
Figure 35. Small Signal Transient Response for Various Capacitive Loads
G = +1
RLOAD = 1kΩ
0
VS = ±2.5V
G = +1
TIME (µs)
1.0
–1.5
140
5
–15
Figure 32. Small Signal Transient Response for Various Supplies
1.5
120
–10
G = +1
RLOAD = 1kΩ
VS RANGE = ±1.5V TO ±5V
12611-024
OUTPUT VOLTAGE (mV)
15
0
100
Figure 34. Settling Time to 0.1%
15
–15
80
TIME (ns)
Figure 31. Slew Rate vs. Temperature
–10
60
12611-027
–25
12611-023
100
–40
12611-026
–0.4
Figure 33. Large Signal Transient Response for Various Supplies
DRIVING AMP 2
–160
0.0001
0.001
0.01
0.1
1
10
FREQUENCY (MHz)
Figure 36. Crosstalk vs. Frequency
Rev. A | Page 16 of 25
100
1000
12611-036
SLEW RATE (V/µs)
240
VS = ±2.5V
OUTPUT STEP = 2V p-p
0.4
Data Sheet
ADA4807-1/ADA4807-2
DISTORTION AND NOISE
HARMONIC DISTORTION (dBc)
VS = ±1.5V, HD2
–60
VS = ±1.5V, HD3
–80
–100
VS = ±5V, HD2
VS = ±5V, HD3
–140
–180
VS = ±2.5V, HD2
1
10
100
1000
10000
FREQUENCY (kHz)
Figure 37. ADA4807-1 Harmonic Distortion vs. Frequency for Various Supplies
0
G = 1, HD2
–120
G = 5, HD3
–140
G = 2, HD3
10
1000
10000
VS = 10V
VS = 5V
VS = 3V
–40
–50
–60
HD2
–70
HD2
HD2
HD3
–80
HD3
–90
–100
–110
HD3
0
–90
f = 100kHz
–110
–120
–130
f = 1kHz
–140
2
3
4
5
6
7
8
9
10
Figure 41. Harmonic Distortion vs. Input Common-Mode Voltage
TOTAL HARMONIC DISTOTION (%)
f = 1MHz
1
INPUT COMMON-MODE VOLTAGE (V)
1
–80
VS = ±2.5V
G = +1
f = 1kHz
0.1
0.01
0.001
16Ω
0.0001
32Ω
600Ω
1.0
1.5
2.0
2.5
3.0
3.5
12611-029
–150
–160
0.5
10000
G=+1
VOUT = 2V p-p
RLOAD = 1kΩ
f = 100kHz
–30
–140
Figure 38. ADA4807-1 Harmonic Distortion vs. Frequency for Various Gains
–100
1000
–130
100
VS = ±2.5V
G = +1
RLOAD = 1kΩ
100
–120
FREQUENCY (kHz)
–60
10
Figure 40. ADA4807-1 Harmonic Distortion vs. Frequency for Various
Resistive Loads
G = 1, HD3
–70
1
FREQUENCY (kHz)
HARMONIC DISTORTION (dBc)
G = 2, HD2
1
RLOAD = 100Ω
HD3
–140
–180
12611-028
HARMONIC DISTORTION (dBc)
G = 5, HD2
–160
RLOAD = 1kΩ
HD3
–120
–20
–80
TOTAL HARMONIC DISTORTION (dB)
–100
0
–60
–100
RLOAD = 1kΩ
HD2
–10
–40
–180
–80
VS = ±2.5V
VOUT = 2V p-p
RLOAD = 2kΩ
–20
RLOAD = 100Ω
HD2
–160
VS = ±2.5V, HD3
12611-127
–160
–60
12611-030
–120
G = +1
VOUT = 2V p-p
VS = ±2.5V
–40
12611-037
–40
HARMONIC DISTORTION (dBc)
–20
G = +1
RLOAD = 1kΩ
VOUT = 2V p-p
4.0
OUTPUT VOLTAGE (V p-p)
Figure 39. ADA4807-1 Total Harmonic Distortion vs. Output Voltage
Rev. A | Page 17 of 25
0.00001
0.001
0.01
0.1
1
OUTPUT VOLTAGE (V rms)
Figure 42. Total Harmonic Distortion vs. Output Voltage for Various
Resistive Loads
12611-132
–20
ADA4807-1/ADA4807-2
Data Sheet
OUTPUT CHARACTERISTICS
10
100
1k
10k
100k
1M
0.1
100M
10M
FREQUENCY (Hz)
CURRENT NOISE
10
+125°C
1.0
0.8
0.6
0.4
–40°C
0.2
0
0
10
20
30
40
50
60
70
80
90
100
LOAD CURRENT (mA)
DISABLED OUTPUT IMPEDANCE (kΩ)
10
1
0.1
10
100
FREQUENCY (MHz)
1000
12611-141
ENABLED OUTPUT IMPEDANCE (Ω)
1.8
1M
10M
VS = ±2.5V
G = +1
1.6
+125°C
1.4
+25°C
1.2
+85°C
1.0
0.8
–40°C
0.6
0.4
0.2
0
0
1000
100
1
100k
10
20
30
40
50
60
70
80
90
100
Figure 47. Negative Rail Output Saturation Voltage (−VS + VOUT) vs.
Load Current for Various Temperatures
VS = ±2.5V
DISABLE = +VS
0.01
0.1
10k
LOAD CURRENT (mA)
Figure 44. Positive Rail Output Saturation Voltage (+VS – VOUT) vs.
Load Current for Various Temperatures
1000
1k
FREQUENCY (Hz)
NEGATIVE RAIL OUTPUT SATURATION VOLTAGE (V)
(–VS + VOUT)
+25°C
1.2
12611-040
POSITIVE RAIL OUTPUT SATURATION VOLTAGE (V)
(+VS – VOUT)
1.4
+85°C
100
Figure 46. Input Voltage Noise and Current Noise,
VCM = +VS − 0.5 V vs. Frequency
VS = ±2.5V
G = +1
1.6
0.1
100M
0.1
1
CURRENT NOISE (pA/√Hz)
1
1
Figure 43. Input Voltage Noise and Current Noise,
VCM = 0 V vs. Frequency
1.8
10
VOLTAGE NOISE
12611-043
1
10
100
12611-134
1
CURRENT NOISE
VS RANGE = ±1.5V TO ±5V
NPN ACTIVE
Figure 45. Enabled Output Impedance vs. Frequency
VS = ±2.5V
DISABLE = –VS
100
10
1
0.1
0.01
0.001
0.1
1
10
100
FREQUENCY (MHz)
Figure 48. Disabled Output Impedance vs. Frequency
Rev. A | Page 18 of 25
1000
12611-144
1
INPUT VOLTAGE NOISE (nV/√Hz)
VOLTAGE NOISE
CURRENT NOISE (pA/√Hz)
10
10
0.1
100
100
VS RANGE = ±1.5V TO ±5V
PNP ACTIVE
12611-136
INPUT VOLTAGE NOISE (nV/√Hz)
100
Data Sheet
ADA4807-1/ADA4807-2
OVERDRIVE RECOVERY AND POWER-UP/POWER-DOWN
–1
–2
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
TIME (µs)
1
0
0
–0.5
–1
–1.0
–2
–1.5
0
0.2
0.8
1.0
1.2
1.4
1.6
–3
2.0
1.8
Figure 52. Output Overdrive Recovery
+VS
0.4
–VS
+25°C
0.2
–40°C
0.6
0.4
±1.5V
±5V
DISABLE PIN (V)
+125°C
0.6
OUTPUT VOLTAGE (V)
+VS
DISABLE PIN (V)
0.6
TIME (µs)
Figure 49. Input Overdrive Recovery
–VS
0.4
0.2
±2.5V
0
0
VS = ±2.5V
G = +1
G = +1
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
–0.2
1.0
TIME (µs)
0
12611-045
0
0.2
0.6
0.8
1.0
1.2
1.4
1.6
1.8
–0.2
Figure 53. Power-Up Time for Various Supplies
1.5
–VS
+125°C
1.0
+25°C
–40°C
0.5
+VS
2.0
–VS
1.5
DISABLE PIN (V)
2.0
SUPPLY CURRENT (mA)
VS = ±2.5V
G = +1
DISABLE PIN (V)
0.4
TIME (µs)
Figure 50. Power-Up Time vs. Temperature
+VS
OUTPUT VOLTAGE (V)
0
12611-041
–3
0.5
OUTPUT VOLTAGE (V)
0
2
1.0
0.5
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
TIME (µs)
0
2.0
VS RANGE = ±1.5V TO ±5V
G = +1
12611-046
0
Figure 51. Power-Down Time vs. Temperature
0
0.2
0.4
0.6
0.8
1.0
TIME (µs)
Figure 54. Power-Down Time for Various Supplies
Rev. A | Page 19 of 25
–0.5
1.2
12611-048
VOLTAGE (V)
1
3
VS = ±2.5V
G = +2
RLOAD = 1kΩ
VOUT
1.0
INPUT VOLTAGE (V)
2
VIN
12611-044
1.5
VS = ±2.5V
G = +1
RLOAD = 1kΩ
VOUT
12611-047
VIN
SUPPLY CURRENT (mA)
3
ADA4807-1/ADA4807-2
Data Sheet
THEORY OF OPERATION
ADA4807-2 the best choices when driving 18-bit precision
converters.
The ADA4807-1/ADA4807-2 have a rail-to-rail input stage with
an input range that goes 200 mV beyond either rail. A PNP
transistor input pair is active for a majority of the input range,
while an NPN transistor input pair is active for the commonmode voltages within 1.3 V of the positive rail. The ADA4807-1/
ADA4807-2 are fabricated in Analog Devices, Inc., third generation, extra fast complementary bipolar (XFCB) process resulting
in exceptionally good distortion, noise, slew rate, and settling
characteristics for 1 mA devices. Given traditional rail-to-rail
input architecture performance, the input 1/f noise is surprisingly
low, and the current noise is only 0.7 pA/√Hz for a 3 nV/√Hz
voltage noise. Typical high slew rate devices suffer from increased
current noise because of input pair degeneration and higher input
stage current. The ADA4807-1/ADA4807-2 exceed current benchmark parameters given the performance of the XFCB process.
The ADA4807-1/ADA4807-2 are optimized for a low shutdown
current (4 μA maximum), in the order of a few microamperes.
In power sensitive applications, this can eliminate the use of a
power FET and enable time interleaved power saving operation
schemes.
The rail-to-rail input stage is useful in many different applications.
Although the precision is reduced from input to input, many
applications can tolerate this loss when the alternative is no
functionality at all. The positive rail input range is indispensable
for servo loops with a high-side input range
The ADA4807-1/ADA4807-2 input operates 200 mV beyond
either rail. Internal protection circuitry prevents the output
from phase inverting when the input range is exceeded. When
the input exceeds a diode beyond either rail, internal electrostatic
discharge (ESD) protection diodes source or sink current through
the input.
The multistage design of the ADA4807-1/ADA4807-2 has
excellent precision specifications, such as input drift, offset,
open-loop gain, CMRR, and PSRR. Typical harmonic distortion
numbers fall in the range of −130 dBc for a 10 kHz fundamental
(see Figure 40). This level of performance makes the ADA4807-1/
+VS
R1
I2
Q9
R2
1.3V
VIN
Q3
Q2
Q8
Q5
VIP
Q13
Q7
OUTPUT STAGE,
COMMON-MODE
FEEDBACK
Q14
Q11
Q18
R4
Q4
Figure 55. Simplified Schematic
I1
I2
Q51
Q42
Q47
DIFFERENTIAL
DRIVE
FROM
INPUT STAGE
Q37
Q38
Q68
C9
+
Q20
R29
Q27
Q21
Q43
Q48
VOUT
C5
Q49
I4
I5
Q50
VBIAS2
12611-051
R3
–VS
+
I1
5µA
VBIAS1
Q17
Q44
Figure 56. Differential Drive from Input Stage
Rev. A | Page 20 of 25
12611-052
R5
Data Sheet
ADA4807-1/ADA4807-2
DISABLE CIRCUITRY
INPUT PROTECTION
When the DISABLE pin is an option, a pull-up resistor is
necessary if the logic leakage currents exceed 300 nA. Pulling
the DISABLE pin to ≥3.7 V below +VS turns the ADA4807-1/
ADA4807-2 off, which reduces the supply current to 2.4 μA for a
10 V voltage supply. Applying ≤3.4 V below +VS on the DISABLE
pin enables the ADA4807-1/ADA4807-2 with a low quiescent
current of 1 mA for a 10 V voltage supply. When the ADA4807-1/
ADA4807-2 device is disabled, its output enters a high impedance state. The output impedance decreases as frequency
increases. When disabled, a forward isolation of 120 dB is
achieved at 100 kHz (see Figure 20). ESD clamps protect the
DISABLE pin, as shown in Figure 58. Voltages beyond the
power supplies cause these diodes to conduct. To avoid
excessive current in the ESD diodes, ensure that the voltage to
the DISABLE pin does not exceed 0.7 V above the positive
supply or that it does not fall 0.7 V below the negative supply.
If an overvoltage condition is expected, limit the input current
to less than 10 mA with a series resistor.
The ADA4807-1/ADA4807-2 are fully protected from ESD
events, withstanding human body model ESD events of ±3 kV
and charged device model events of ±1.25 kV with no measured
performance degradation. The precision input is protected with
an ESD network between the power supplies and diode clamps
across the input device pair, as shown in Figure 58. For differential voltages above approximately 1.2 V at room temperature
and 0.8 V at 125°C, the diode clamps begin to conduct. Too
much current can cause damage due to excessive heating. If
large differential voltages must be sustained across the input
terminals, it is recommended that the current through the input
clamps be limited to less than 10 mA. Series input resistors sized
appropriately for the expected differential overvoltage provide
the needed protection.
+VS
BIAS
+IN
3.8
–IN
ESD
ESD
3.6
3.4
3.0
TO THE REST OF THE AMPLIFIER
2.8
Figure 58. Input Stage and Protection Diodes
2.6
NOISE CONSIDERATIONS
2.4
2.2
Figure 59 illustrates the primary noise contributors for the
typical gain configurations. The total output noise (VN_OUT) is
the root sum square of all the noise contributions.
1.8
VTH
VON = VTH +150mV
VOFF = VTH –150mV
1.6
3
4
5
6
7
8
9
10
POWER SUPPLY, VS (V)
RF
VN _ R G = 4kT × RG
ien
Table 9. Threshold Voltages for Disabled and Enabled Modes
Mode
Enabled
Disabled
+3 V
1.35 V
1.05 V
+5 V
1.6 V
1.3 V
+10 V
6.6 V
6.3 V
±5 V
1.6 V
1.3 V
ven
RG
Figure 57. DISABLE Trigger Voltage
VN _ RS = 4kT × RS
+7 V/−2 V
+3.6 V
+3.3 V
VN _ R F = 4kT × RF
+ vout_en –
RS
iep
Figure 59. Noise Sources in Typical Gain Configurations
Calculate the output noise spectral density using Equation 1.
Source resistance noise, amplifier input voltage noise, and the
voltage noise from the amplifier input current noise (IN+ × RS)
are all subject to the noise gain term (1 + RF/RG).
 R
VN _ OUT  4kTRF  1  F
 RG
2
R

 4kTRs  I N  2 RS 2  VN 2   F
R

 G



2

 4kTRG  I N  2 RF 2


where:
k is Boltzmann’s constant.
T is the absolute temperature in degrees Kelvin.
RF and RG are the feedback network resistances, as shown in Figure 59.
RS is the source resistance, as shown in Figure 59.
IN+ and IN− represent the amplifier input current noise spectral density in pA/√Hz.
VN is the amplifier input voltage noise spectral density in nV/√Hz.
Rev. A | Page 21 of 25
(1)
12611-055
2.0
1.4
12611-054
–VS
3.2
12611-152
TRIGGER VOLTAGE BELOW +VS (V)
ESD
ESD
4.0
ADA4807-1/ADA4807-2
Data Sheet
APPLICATIONS INFORMATION
CAPACITIVE LOAD DRIVE
LAYOUT, GROUNDING, AND BYPASSING
Figure 60 shows the schematic for driving large capacitive loads,
and Figure 61 shows the frequency response for a gain of +2. Note
that the bandwidth decreases with larger capacitive loads (see
Figure 61).
The ADA4807-1/ADA4807-2 are high speed devices. Realizing
their superior performance requires attention to the details of
high speed printed circuit board (PCB) design.
Figure 62 shows the required series resistor (RSERIES) when
limiting the peaking to 3 dB for a range of load capacitors
(CLOAD) at a gain of 2. From Figure 62, no series resistors are
necessary to maintain stability for larger capacitors.
Bypass each power supply pin directly to a nearby ground plane,
as close to the device as possible. Use 0.1 μF high frequency
ceramic chip capacitors.
RF
VIN
VOUT
RSERIES
VLOAD
CLOAD
RLOAD
RT
49.9Ω
Provide low frequency bulk bypassing using 10 μF tantalum
capacitors from each supply to ground.
Stray transmission line capacitance in combination with
package parasitics can potentially form a resonant circuit at
high frequencies, resulting in excessive gain peaking or possible
oscillation. Signal routing must be short and direct to avoid
such parasitic effects. Provide symmetrical layout for complementary signals to maximize balanced performance.
12611-056
RG
Figure 60. Schematic for Driving Large Capacitive Loads
3
Use radio frequency transmission lines to connect the driver
and receiver to the amplifier.
15pF, 100Ω
47pF, 82.5Ω
470pF, 20Ω
–3
Minimize stray capacitance at the input and output pins by
clearing the underlying ground and low impedance planes
near these pins.
1nF, 10.5Ω
–6
10nF, 1.69Ω
100nF, 0.5Ω
–9
–12
–15
–18
0.1
VS = ±5V
RLOAD = 1kΩ
G = +2
VOUT = 70mV p-p
1
10
100
1000
FREQUENCY (MHz)
12611-155
NORMALIZED CLOSED-LOOP GAIN (dB)
6
0
The first requirement is to use a multilayer PCB with solid ground
and power planes that cover as much of the board area as possible.
If the driver and receiver are more than one-eighth of the
wavelength from the amplifier, minimize the signal trace
widths. This nontransmission line configuration requires
clearing of the underlying and adjacent ground and low
impedance planes near the signal lines.
Figure 61. Frequency Response for Driving Large Capacitive Loads,
RF = RG = 249 Ω
100
90
80
60
50
40
30
20
10
0
0.001
0.01
0.1
1
10
CLOAD (nF)
100
12611-057
RSERIES (Ω)
70
Figure 62. Required Series Resistor (RSERIES) vs.
Capacitive Load (CLOAD) at 3 dB Peaking
Rev. A | Page 22 of 25
Data Sheet
ADA4807-1/ADA4807-2
OUTLINE DIMENSIONS
2.20
2.00
1.80
6
5
4
1
2
3
2.40
2.10
1.80
0.65 BSC
1.30 BSC
1.00
0.90
0.70
0.40
0.10
1.10
0.80
0.10 MAX
COPLANARITY
0.10
SEATING
PLANE
0.30
0.15
0.46
0.36
0.26
0.22
0.08
072809-A
1.35
1.25
1.15
COMPLIANT TO JEDEC STANDARDS MO-203-AB
Figure 63. 6-Lead Thin Shrink Small Outline Transistor Package [SC70]
(KS-6)
Dimensions shown in millimeters
3.00
2.90
2.80
1.70
1.60
1.50
6
5
4
1
2
3
PIN 1
INDICATOR
3.00
2.80
2.60
0.95 BSC
1.90
BSC
0.15 MAX
0.05 MIN
1.45 MAX
0.95 MIN
0.50 MAX
0.30 MIN
0.20 MAX
0.08 MIN
SEATING
PLANE
10°
4°
0°
0.60
BSC
COMPLIANT TO JEDEC STANDARDS MO-178-AB
Figure 64. 6-Lead Small Outline Transistor Package [SOT-23]
(RJ-6)
Dimensions shown in millimeters
Rev. A | Page 23 of 25
0.55
0.45
0.35
121608-A
1.30
1.15
0.90
ADA4807-1/ADA4807-2
Data Sheet
3.20
3.00
2.80
3.20
3.00
2.80
8
1
5.15
4.90
4.65
5
4
PIN 1
IDENTIFIER
0.65 BSC
0.95
0.85
0.75
15° MAX
1.10 MAX
0.40
0.25
0.80
0.55
0.40
0.23
0.09
6°
0°
10-07-2009-B
0.15
0.05
COPLANARITY
0.10
COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 65. 8-Lead Mini Small Outline Package [MSOP]
(RM-8)
Dimensions shown in millimeters
2.48
2.38
2.23
3.10
3.00 SQ
2.90
0.50 BSC
10
6
1.74
1.64
1.49
EXPOSED
PAD
0.50
0.40
0.30
1
5
BOTTOM VIEW
TOP VIEW
0.80
0.75
0.70
SEATING
PLANE
0.30
0.25
0.20
0.05 MAX
0.02 NOM
COPLANARITY
0.08
0.20 MIN
PIN 1
INDICATOR
(R 0.15)
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
0.20 REF
Figure 66. 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]
3 mm × 3 mm Body, Very Very Thin, Dual Lead
(CP-10-9)
Dimensions shown in millimeters
Rev. A | Page 24 of 25
02-05-2013-C
PIN 1 INDEX
AREA
Data Sheet
ADA4807-1/ADA4807-2
ORDERING GUIDE
Model1
ADA4807-1AKSZ-R2
ADA4807-1AKSZ-R7
ADA4807-1ARJZ-R2
ADA4807-1ARJZ-R7
ADA4807-2ACPZ-R2
ADA4807-2ACPZ-R7
ADA4807-2ARMZ
ADA4807-2ARMZ-R7
ADA4807-1AKSZ-EBZ
ADA4807-1ARJZ-EBZ
ADA4807-2ACPZ-EBZ
ADA4807-2ARMZ-EBZ
1
Temperature Range
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
Package Description
6-Lead Thin Shrink Small Outline Transistor Package [SC70]
6-Lead Thin Shrink Small Outline Transistor Package [SC70]
6-Lead Small Outline Transistor Package [SOT-23]
6-Lead Small Outline Transistor Package [SOT-23]
10-Lead Lead Frame Chip Scale Package [LFCSP_WD]
10-Lead Lead Frame Chip Scale Package [LFCSP_WD]
8-Lead Mini Small Outline Package [MSOP]
8-Lead Mini Small Outline Package [MSOP]
Evaluation Board for 6-Lead SC70
Evaluation Board for 6-Lead SOT-23
Evaluation Board for 10-Lead LFCSP_WD
Evaluation Board for 8-Lead MSOP
Z = RoHS Compliant Part.
©2014–2015 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D12611-0-4/15(A)
Rev. A | Page 25 of 25
Package
Option
KS-6
KS-6
RJ-6
RJ-6
CP-10-9
CP-10-9
RM-8
RM-8
Branding
H3J
H3J
H3J
H3J
H3S
H3S
H3S
H3S